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Executive Summary 
Different approaches to modelling fishing selectivity can have a profound impact on stock 
assessments. This exploratory work considers how this selectivity might be better modelled. 
Interest in this subject  was inspired by the length composition changes observed in 
longlines over 2003/4 and how these changes may be best accounted for. Data used were 
the longline length frequencies for yellowfin and bigeye tunas within the tropical region 
(+/- 15 degrees latitude) covering the period from 1952 to 2018 and Regional Observer 
Program data. All the data are available to the public on IOTC’s website. Results showed 
that there is a clear break in length frequency patterns around 2003/4, most apparent for 
yellowfin although a similar pattern occurs for bigeye. This pattern is solely found in the 
Taiwanese fleet length frequencies that makes up most of the data. It was originally 
hypothesized that the change in length compositions in 2003/4 could be due to change in 
discard practices. However, this appears to be inconsistent with the available data which 
does not show length frequency truncation that might result from size-specific discarding. 
The data are more consistent with some other cause such as a change in vessel operations 
which have affected the underlying selectivity. What this change might have been and how 
these changes may impact yellowfin and bigeye stock assessments remain unclear to date. 
Ways to proceed with this analysis that may provide further insight are discussed. 

Introduction 
This exploratory work considers how selectivity might be better modelled. It is useful to 
consider how selectivity is being modelled because it can have a profound impact on stock 
assessments. The original motivation was concerned with length composition changes 
observed in longlines through 2003/4 in the tropical region of the IOTC convention area and 
how these changes may be best accounted for, particularly with respect to the longline 
abundance index which is important source of information for the stock assessment. The 
potential relative misreporting of small size fish by industrial longlines since 2004 (Geehan 
and Hoyle 2013, Sharma 2018, Urtizberea et al., 2019, IOTC-2019-WPTT21-50) may have 
led to misspecification of selectivity which could particularly had a large effect on the joint 
longline CPUE used in the yellowfin stock assessment (Naunet, 2020). The associated with 
these uncertainties has been excluded from the longline abundance index (Hoyle et al. 
2019). This paper evaluates possible causes of changes in the apparent size compositions 
reported by longlines during this period and explores alternative approaches to addressing 
this issue. 

This study was funded by the Spanish Producer Organisation OPAGAC. 
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Data and Methods 
The scope of data used were the longline length frequencies for yellowfin and bigeye within 
the tropical region (+/- 15 degrees latitude). These are the main large tropical tunas caught 
by longline. The length frequency data consisted of 2 cm precision length bins reported by 
month and quadrant area coded as 1°x1°, 5°x5° and 10°x20° grids (Figure 1). These data 
were made available by IOTC contracting parties to the IOTC secretariat for input into stock 
assessments, and have been pre-processed to remove errors and standardised various size 
measures to the 2 cm length bin measurement (including conversion of processed weight to 
length). For tropical tunas, the data cover the period from 1952 to 2018, but coverage of 
fishing activity varies. The reported length frequencies for longline are divided on the basis of 
categorical variables, relevant ones consisting of year/month, grid latitude/longitude location, 
fleet, and gear type. All data used in this analysis are publicly available and can be 
downloaded from the IOTC website: 

‘IOTC-2020-WPTT22_prep-DATA11-SF_YFT_FL.xlsx’, and ‘IOTC-2020-WPTT22_prep-
DATA11-SF_BET_FL.xlsx’. 

Because the initial motivation was to consider the apparent change in length compositions 
reported by longline in 2003/4, data were selected for 10 years on either side of this point to 
explore how selectivity might be modelled to account for the change. Irregular quadrants 
(coded ‘9’) were excluded from this analysis as the area they are applied to are ill-defined. 
All other grids (coded: ‘5’: 1°x1o, ‘6’: 5°x5o, ‘2’: 10°x20o) were mapped to their 5°x5o squares, 
including the small number of 10x20o squares for which the data were distributed evenly 
among the 5x5o squares they contained. This was done for the sampling data, and not 
related to catches which we considered separately. 

This resulted in a subset of around 9 000 length frequency ‘samples’ each for yellowfin and 
bigeye for the period 1993-2013, mostly provided from Taiwanese vessels (see Anon. 2013). 
These ‘samples’ are defined by separate categorical variables, so each sample may 
combine one or more trips and may divide single trips among months and locations. The 
majority of data are self-reported (Anon. 2013), but scientific observer data are also 
included.  

Catches were used as a relative statistical weight for the length frequency to evaluate their 
potential importance in the stock assessment. Catch-effort data were compiled separately 
(‘IOTC-2020-WPTT22-DATA04-CELongline.csv’) and treated similarly, aggregating data by 
month and 5°x5o square. Because catches were used as a statistical weight, catch was 
measured in numbers of fish. Where numbers were not reported, weight was converted to 
numbers using the average weight within the stratum, either within the month, or failing that 
over the year, for the relevant square. 

For this exploratory analysis, length frequency data were combined based on their statistical 
similarity to see whether this reflected any categories and provide an alternative way to 
group data for modelling. In analysing length frequencies, a critical question is how data 
should be grouped into sufficient sets that will be consistent with the way selectivity is being 
modelled. Data are usually combined based on categorical variables, so for example fleets, 
target species, fishing location or time are used to define grouping for length frequency that 
can be added together to create homogeneous data sets with the same selectivity. Initial 
review of the data suggested that this may cover up underlying patterns that could help 
guide how length frequency data should be handled in the stock assessment.  
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Figure 1 Spatial distribution of length frequency data for different grid sizes (coded: “5”: 1x1o, “6”:5x5o, 
“2”:10x20o). Data selected for this analysis were between the horizontal black lines 

A simple clustering method was used based on the chi-squared statistic as a measure of 
distance between any two length frequency samples. This simple statistic is used to evaluate 
whether contingency tables are drawn from different underlying distributions, among other 
things. However, here we only used it as a measure of distance between length frequencies. 
To measure the difference, each pair of counts can be compared to the expected counts for 
the combined frequency using the chi-squared statistic: 

𝜒𝜒2 =
1
𝑑𝑑
�

(𝑂𝑂 − 𝐸𝐸)2

𝐸𝐸
 

Where d=degrees of freedom, O=observed count and E=expected count based on the 
combined samples. This distance measure can be used in a cluster analysis to group 
samples based upon their similarity.  

Some initial agglomerative clustering was carried out by combining the frequency data 
based on fleet, period, or area first and then conducting an agglomerative cluster analysis on 
the marginal data. Given around 9 000 samples for this subset of the data, it would not be 
easy to apply such agglomerative clustering for all samples simultaneously, so grouping was 
based on categorical variables.  

For the individual 9 000 samples, a clustering method was applied where samples could only 
be combined with near neighbours. Samples could only be combined if they were within +/- 
6 months of the start or end month of the sample, and shared a vertex with any 5x5o square, 
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so the areas were at least adjoining each other. Each iteration, a pair of length frequencies 
which had the lowest chi-squared score were combined by adding them together to create a 
new length frequency ‘cluster’, incorporating the months and quadrants covered by both. 
The distance between this new length frequency and all other length frequencies was then 
calculated to complete the step. The initial time window was arbitrary but needed to start 
reasonably narrow because it rapidly expanded as length frequencies were combined. 
However, if too narrow, many clusters would be orphaned and would be unable to link 
through time. 

Separately, the Regional Observer Program data (‘IOTC-2020-WPEB16-DATA12-
ROS_Rev2’) was used to estimate the potential effect of fish size on discard rates. These 
data are compiled observer data that include observations on size and species of individual 
fish caught by longline, together with whether they were discarded or not. Data were 
available from EU France (2009-2018) and Japan (2012-2016) longliners and were filtered 
so that the data set (based on categories) had at least one recorded discard within the 
category based on flag, year-month, grid, and species. These data were used to estimate 
the discard rate conditional upon fish length using a standard binomial logit generalised 
linear model. This assumes that the observations are unaffected by discarding, and it is not 
clear that this is the case. For example, depredation is a major cause of discarding, may 
prevent a length measurement being taken and could be size dependent. 

Interpreting length frequencies outside of an integrated stock assessment requires the use of 
data- limited models. The main aim is to attempt estimation of the length composition of the 
population alongside selectivity. There is no easy flexible way to do this, and models 
generally require hard assumptions if they include explicit growth, mortality, and selectivity. 
For this analysis, a length-based catch curve was used to account for the underlying 
negative exponential mortality dependent upon multiple double-normal selectivities. The 
objective was to see what form selectivity functions might need to take when separate length 
frequencies were considered together rather than provide reliable parameter estimates. In 
general, due to parameter aliasing, parameters need to be limited to reasonable ranges and 
cannot be estimated freely. Guidance for parameter values were taken from the 2018 
yellowfin stock assessment (Fu et al. 2018).  

Results 
There is a clear break in length frequency patterns around 2003/4, most apparent for 
yellowfin although a similar pattern occurs for bigeye (Figure 2). This pattern is solely from 
the Taiwanese fleet which makes up most of the data. Other patterns are not clearly 
discernible from the standard cluster analysis. 

Based on the natural clustering method, the length frequencies appear to come from 
different distributions that can be separated. Results suggest at least five groups, based only 
on statistical difference, might exist (Figure 3). For further exploration below, 10 or 8 
clustering levels were examined. 

Length frequencies consisting of similar sizes separate out into discrete clusters for both 
yellowfin (Figure 4) and bigeye (Figure 5). The clusters can be identified by their mean 
length. The small fish apparent as a separate mode in the combined length frequencies form 
their own separate group and are not integral with samples of larger fish. This is not 
consistent with, for example, changes in discarding practice where the change in presence 
of smaller fish might be detected as an increased left-sided truncation of the samples.  
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There is some correspondence between mean length of clusters between yellowfin and 
bigeye. Length frequencies containing small or large fish for both species are more likely to 
occur together within the same time and location (Figure 6). 

In a minority of samples either the vessels are targeting swordfish or observers are present. 
When the longline is targeting swordfish, the samples tend to be more often allocated to 
clusters containing smaller fish (Table 1). Swordfish longline is generally set shallower and 
overnight compared to tuna longline, and this would likely affect selectivity. The implication is 
that variations in the way tuna longline are set may similarly affect the size of fish they catch. 
Observer length frequencies are absent from the small fish clusters, but no observer data 
exist for the earlier period which will explain this. Otherwise, observer data shows a 
reasonable spread among clusters, but data from training and research trips have not been 
identified within this period.  

No patterns were evident based on flag, although it is worth noting only Japan, Korea and 
Taiwan cover the earlier years and Taiwan data dominate the observations for all periods. 

The cluster groups chain through time in a complex way and there is no simple pattern in 
their distribution. For the period considered, different length frequency groups either extend 
throughout the time period or are limited in extent, mostly breaking around the 2003/4 mid-
point for both yellowfin and bigeye (Figure 7). 

Focusing on the smallest category of yellowfin (mean length 87 cm) and plotting its 
occurrence over time suggests that it sporadically appears throughout the 1993-2003 time 
period, with peak times in 1993, 1995 and through 1999-2001 (Figure 8). In terms of 
location, the majority of the samples come from the area bounded by 0°N 60°E and 10°N 
65°E. However, this cluster is not seen after 2003, and it is still not clear why.  

Weighting the samples by reported catches appears to raise the proportion of the small fish 
selectivity considerably compared to the raw samples for yellowfin (Figure 4) and bigeye 
(Figure 5) but is based on a relatively small overlap between the length frequency samples 
and the reported catches. For yellowfin, between 85 % and 96 % of length frequency 
samples can be linked to a reported catch/effort in a year/month/grid stratum. This is likely 
because length compositions were reported from training vessels, but not catches. The 
proportion of catch/effort that can be allocated in reverse to a length frequency sample 
varies from 4 % to 41 % in any year, and these catch/effort data only cover 13 %-36 % of the 
total reported catch. The proportion of the total catches that can be reliably allocated to a 
length frequency cluster is therefore very small. The proportion of catch effort data that can 
be linked to a length frequency, important for the abundance indices, is higher but still will 
present a significant problem for interpreting the time series data if length frequency data are 
broken out into smaller groups. The same problem occurs for bigeye, but the overlap is a 
little greater. 

It is possible that the clustering process and the method using only statistical similarity may 
produce artificial discontinuities in what is more a continuous change in the size composition. 
To test this, smaller fish were removed from the data so that the clustering procedure is 
applied with a data set where these data have been censored (as might occur with 
discarding). All fish <80 cm length were excluded from the yellowfin clustering, to see 
whether the apparent break in 2003/4 would disappear or remain (Figure 9). The results 
seem robust to this test. If time series is split and the clustering applied separately to the 
periods before and after this break, very different combined length compositions result 
(Figure 10). The later data 2004-2013 are clearly much more homogeneous. 
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The Regional Observer Program data indicated that discarding would not provide an 
explanation for change in size composition (Figure 11). Even for the yellowfin smallest size 
cluster, fish are predominantly above the 83 cm 95 % retention rate. Interestingly, the 
probability of retention was not significantly different between bigeye and yellowfin, although 
the number of small fish in the samples was very low because these sized fish were rarely 
caught. It was also found that length was a better predictor for discarding than weight. In 
general, the relatively low discard rates indicated here are consistent with those reported for 
Taiwan vessels (Huang and Liu, 2010). 

Fitted double-normal selectivity curves suggested that some of these length frequency 
clusters may be adequately modelled using a simple logistic (as currently used for longline in 
the stock assessment), that bimodal length frequencies still exist after clustering that cannot 
be well-explained with a single mode selectivity function, and that there may be some 
evidence for domed-shaped selectivity in some cases (Figure 12). However, as noted, fitting 
length-based catch curves is problematic and requires that various parameters be fixed, so 
these preliminary results are qualitative only. Selectivity fits to bigeye were poorer, although 
the general results were similar.  

The same clustering analysis carried out on the public ICCAT length frequency data, 
revealed a similar pattern to that seen for the IOTC data (Figure 13). A separate length 
frequency cluster of smaller fish formed, consisting of Taiwan data from the period 1993-
2003.   

 

  

Figure 2 Hierarchical clustering for yellowfin (left) and bigeye (right) marginal distance measure (chi-
squared statistic) for length frequencies combined into categorical groups based on fleet and 5-year 
period 
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Figure 3 Sequential chain clustering distance for yellowfin (left) and bigeye (right) for the top 30 
clusters 

 

   

Figure 4 Yellowfin length frequencies for the eight chain clusters for the raw data (left) and raised 
based on the associated catch weights (right) 

 

  

Figure 5 Bigeye length frequencies for the eight chain clusters for the raw data (left) and raised based 
on the associated catch weights (right) 
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Table 1 Yellowfin clusters with sample size (number of fish measured) broken down by longline type 

Cluster 
Mean 
Length 
(cm) 

Standard Swordfish Fresh tuna With 
Observers 

86.3 29 085 0 0 0 

96.7 110 507 170 0 0 

112.2 103 876 792 0 0 

116.4 114 104 195 444 3 631 

117.8 73 048 54 0 974 

122.0 557 871 74 727 2 927 

124.3 292 222 10 0 2 051 

127.7 138 457 0 98 1 607 

129.6 84 317 188 35 2 875 

131.0 308 959 371 3 306 5 738 

 

 

Figure 6 Cluster correspondence between bigeye and yellowfin 
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Figure 7 Ten length frequency clusters chains for yellowfin (left) and bigeye (right) distribution through 
time. 

 

 

 

Figure 8 Distribution of the cluster chain for the smallest yellowfin through time (left) and in space 
(right) 

 

  

Figure 9 Yellowfin top three cluster chains for left-censored data which removes all length frequencies 
less than 80 cm 
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Figure 10 Yellowfin top 3 length frequency cluster chains conducted separately for the period 1993-
2003 and 2004-2013 

 

 

Figure 11 Retention proportion for regional observer scheme data with observed and expected based 
on a standard binomial logit model. 

 

2004-2013 1993-2003 
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Figure 12 Yellowfin double-sided normal selectivity curves fitted to the length frequency clusters  
showing the fit (left) and the estimated curves (right). 

 

  

Figure 13 ICCAT yellowfin length frequencies for the eight chain clusters for the raw data (left) and 
distribution through time (right). 
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Discussion  
An aim of this approach to combining samples was to provide an objective way to group data 
consistent with underlying selectivity models. Gear selectivity is likely the result of 1) various 
forms of sampling error 2) operational characteristics of the sets (e.g.  set depth  hook size) 
3) relative availability of different size fish in the population. The results do not provide a 
solution to separating these issues but suggest that it may be possible to use the available 
information to guide combining and modelling length frequencies appropriately. Length 
frequency data appear to be lengths drawn from mixtures of simpler selectivity functions  or 
at least might be reasonably modelled that way.  

It was hypothesized that the change in length compositions in 2003/4 could be due to 
change in discard practice (Hoyle et al. 2019). This appears to be inconsistent with the 
available data  which does not show length frequency truncation that might result from size-
specific discarding. The data are more consistent with some other cause such as a change 
in vessel operations which have affected the underlying selectivity. However  what this 
operational change might have been remains unclear. Because this pattern is seen in 
separate oceans  it would seem to be mostly likely because of a common change in fleet 
operations  sampling or data management. A change in sampling protocol cannot be ruled 
out because there remains an inconsistency with the catch-effort data (Geehan and Hoyle 
2013)  but it appears that the problem may still have only affected a discrete group of the 
samples. It therefore may be worth reconsidering how these Taiwan length frequencies  
which make up a substantial proportion of the data  might be readmitted to the stock 
assessment. 

Linking the length frequencies to catches appears to be problematic and the overlap 
between separate data sets is limited. While most length frequency samples can be linked to 
catch and effort data in the same month and 5°x5° square  the reverse is not true  
particularly for yellowfin. Even if catches can be linked to the nearest length frequency  it is 
not clear that length frequency samples at this fine scale would be representative of all 
catches in that area-time stratum. There are other data such as mean weights (Geehan and 
Hoyle 2013) which might help with resolving this problem. 

The clustering approach used here was naïve and may not produce the desired grouping 
based upon selectivity. For example  some clusters appear to be bi-modal and may be 
mixtures themselves. Clusters also appear to have a different spread  with the right-hand 
side of each frequency potentially having a different slope that may reflect the way they have 
been selected to be combined rather than the underlying patterns in selectivity. Some 
samples consist of very few fish and these contribute to the ‘spiking’ around the frequency 
modes  and some minimum sample size might be identified to exclude them. Grouping the 
length frequencies may need a more sophisticated approach to be reliable particularly as 
more heterogeneous frequencies are combined. It is worth noting that Taiwan uses cluster 
analysis to identify fishing strategy to standardise CPUE (Hoyle et al. 2019)  so some 
correspondence might be found with their approach. 

The results from this exploratory analysis suggest that there are latent categorical variables 
which might be inferred using more sophisticated classification techniques. These 
techniques might be able to identify an underlying cause for the apparent different 
selectivities by comparing different species  oceans and fleets. Using classification to obtain 
more consistent length frequencies would improve modelling of the selectivity in the stock 
assessment. 
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There are several ways to proceed with this analysis that may provide further insight. These 
include:  

• Expand the data outside the limited range used for this exploratory analysis. More 
recent data in particular should be included that have a higher proportion of observer 
coverage and the area should be extended to cover Oman in the north and the 
Mozambique Channel in the south. 

• A model-based approached for grouping and combining length frequencies may 
improve results  particularly as clusters become large. A model-based approach 
would explicitly try to identify the underlying mixture of length frequencies that make 
up the selectivity function and avoid  for example  multi-modal distributions forming. 

• A standardisation approach for the size composition data may also be developed in a 
similar way as for the abundance index (Thorson 2014). This might be used 
specifically to account for the poor overlap between the size and catch-effort data. 
Mean weights could be used as an additional guide where direct length frequencies 
are unavailable as well as be used to detect inconsistencies. 

• It would be useful to improve the distance measures  incorporating time and location 
as distance measures. This would avoid the need to collapse 1°x1o squares into 
coarser 5°x5o squares and control better how clusters chain through time. If available  
finer scale data and raw reported data might be also used  which could potentially 
identify differences between length frequencies more accurately as well as identify 
different sampling protocols (see Anon. 2013).  

• The observer data can be used more explicitly to initiate clusters and mean weights 
can be used as an additional indicator of size composition (Matsumoto  2013). This 
might help identify data with sampling problems as opposed to other causes of 
differing length compositions. 

• Length frequency data from other gears could be used to look for an availability effect 
on length compositions. The operation of free-school set purse seine  gill net and troll 
size compositions may show size overlap to some degree with longline. 

• Understand possible causes of change in length compositions from 2003/4 by 
consulting IOTC CPCs (that is IOTC members and cooperating non-contracting 
parties). 

• The same analyses could be applied for other oceans (e.g. ICCAT data) to look for 
operational or sampling effects that they have in common. 
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