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Project Background and Objectives

Based on simulation evaluations of candidate harvest control rules by Bentley and Adam (Adam
and Bentley, 2013, Bentley and Adam, 2014a,b, 2015, 2016), reviewed and endorsed by the
Working Party on Tropical Tunas (WPTT), Working Party on Methods (WPM), and the Scientific
Committee (SC), the IOTC adopted Resolution 16/02 “On Harvest Control Rules for Skipjack
in the IOTC Area of Competence.” This described the harvest control rule (HCR) to be used
for setting a recommended catch for skipjack (SKJ) and stated that its first implementation
will be based upon the 2017 stock assessment agreed by the WPTT and then endorsed by SC.
Implementation of the HCR to give a recommended catch limit for 2018-2020 is described in
IOTC (2017a). The Resolution also requested a further review and possible modification of the
HCR to be conducted no later than 2021.

In 2018, the IOTC WPM noted that the SKJ HCR is not a fully specified Management Procedure
(MP), since the underlying data required and assessment methodology are not defined (I0TC,
2018b). Hence the WPM suggested that a review and potential revision required under Resolution
16/02 be conducted with the aim of determining a fully specified MP for SKJ. This was noted
by the SC in 2018 and provides the motivation and basis for the current work (IOTC, 2018a).

A fully specified MP is one that can be simulation tested, including at the least specification of the
data inputs, a decision algorithm, and management outputs. Testing requires an accompanying
operating model (OM) to describe dynamics of the resource under management and the generation
of observational data for iterated application of the MP forward in time. The current report
describes development of an empirical MP, which is tested using the OM developed by Edwards
(2020b). Previous work towards a model-based MP has shown that a simple biomass dynamic
model, on which the MP could be based, may not provide information on the stock depletion
and it was noted by the WPM that an empirical MP may be more useful for SKJ (I0TC, 2021).
The current report describes initial developments of an empirical MP based on CPUE inputs
from the Maldivian Pole and Line (PL) and European Purse Seine Log-School (PSLS) fisheries.



1 Introduction

For a Management Procedure to be evaluated through simulation it needs to be specified fully in
terms of: the data inputs; a decision algorithm; and management outputs. The decision algorithm
includes a component for estimation of the stock status. For example a stock assessment model
that may provide an estimate of the depletion. Conversion of the stock status into a management
action takes place via a catch control rule (CCR), which describes a relationship between the
status and either a fishing mortality or catch. If a fishing mortality is output, then it needs
to be converted to a target catch using an estimate of the exploitable biomass. The decision
algorithm may also contain meta-rules that limit the magnitude of the change in any given year,
or exceptional circumstances that may be considered to invalidate the MP (Punt et al., 2016).

Under Resolution 16/02 the Indian Ocean SKJ fishery is currently managed using a CCR (or
Harvest Control Rule) that is based on an estimate of the stock status and a target exploitation
rate, which provide both the parameters needed to define the control rule and the stock status
inputs required to implement it.

Although the product of substantial development work, the stock status estimator is not fully
specified in 16/02 and it cannot therefore be formally tested through simulation. For example,
between 2017 and 2020 there were changes in both the data inputs and the grid of SS Il
assessment runs. Periodic “benchmark” assessments of this type cannot, by their nature, be
specified a priori. A much more parsimonious stock status estimator is needed, such as a two or
three parameter biomass dynamic model. This kind of model has been developed for Indian Ocean
BET (Kolody and Jumppanen, 2020). Given their relative simplicity, they can be fully specified
and therefore tested. A biomass dynamic model has been applied to catch and abundance data
from the 2017 SKJ assessment, and shown to provide reasonable estimates of the depletion
(Edwards, 2020a). However the abundance indices have since been updated (Guery, 2020, Guery
et al., 2020, Medley et al., 2020a,b), and are no longer informative for estimation of the depletion
using this kind of model (IOTC, 2021). For this reason, it was noted by the WPM that an
empirical approach should be investigated (IOTC, 2021).

An empirical MP is based on descriptive rather than process based models. This report describes
development of such an MP, based on CPUE indices from the PL and PSLS fleets, which
are both used routinely in assessments of the stock (Fu, 2017, 2020). The empirical MP is
developed in parallel to a reference MP that assumes perfect knowledge of the resource biomass.
Comparison of the two serves to demonstrate utility of the empirical approach. A summary of
current management is first provided, before the empirical MP is described. A range of MPs are
proposed based on two different CCRs, and tested using a SS Il operating model. Because this
represents an initial phase of the work, only simple evaluations are performed, based on the grid
of single area runs used in the most recent stock assessment (Fu, 2020).

1.1 Current management

Based on the work of Bentley and Adam (Adam and Bentley, 2013, Bentley and Adam, 2014a,b,
2015, 2016) Resolution 16/02 was adopted in 2016 as a means of setting catch quotas for SKJ.
It was implemented in 2017 to provide a recommended catch limit of 470,029 tonnes for the

period 2018-2020 inclusive, and more recently in 2020 to recommend a preliminary catch limit
of 513,572 tonnes for 2019-2023 (Table 1).
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Using the terminology of Bentley and Adam (2016), the control rule outputs an intensity multiplier
(I,) as a function of the spawning stock biomass (SSB, ), using a step-linear relationship:

1 for SSB, > SSByqe,
SSB, —SSBy e
l, = —55845%45&‘1(/)"% for SSB1g9, < SSBy < SSByge, (1a)
0 for SSB, < SSByqe,

Multiplication of the intensity by a target exploitation rate gives the realised exploitation rate:
E, =1, X Eqoo (1b)

The exploitation rate is defined as the catch over the vulnerable (selected) component of
the biomass (Section 2.1.3, Bentley and Adam, 2016). However in the control rule itself the
exploitation rate is implicitly re-defined as a proportion of the spawning stock biomass. Thus the
recommended catch is set using the following relationship:

Cy+1:3 = Iy X E40% X SSBy (].C)

The following additional meta-rules were also endorsed:
= The recommended catch limit should not exceed 900,000 tonnes;

» The change in recommended catch from the previous year should not exceed 30% unless
SSB,, < SSBjgy,, in which case C, 1.3 will always be zero.

Input values for the control rule (SSByg9, SSB1gy,, and E4qo,) are obtained as medians across
estimated values from the grid of SS Il assessment runs in the year in which the control rule
is applied. In 2017, there were 36 alternative assessment model runs in the final grid (Fu,
2017, IOTC, 2017b), yielding the median values listed in Table 1a. Following implementation
of the control rule, the catch in 2018 was approximately 607 thousand tonnes: 29% above the
recommended catch limit; and in 2019 the catch was 547 thousand tonnes. Despite these high
catches, the stock assessment in 2020, consisting of 24 grids (Fu, 2020, IOTC, 2020a), yielded a
positive stock status (Table 1b).

1.2 Empirical MPs

Empirical MPs are based on descriptive models of the raw data, rather than the process based
models applied in model-based MPs. For example, the mean length, or recent changes in an
abundance index would provide the information needed to set a catch quota (e.g. Carruthers
et al., 2016). Their main advantages are that they are simple to understand, apply and ultimately
communicate. They are also more amenable to comprehensive evaluation and notwithstanding
their simplicity have been shown to perform well in both simulation tests (Geromont and
Butterworth, 2015a,b) and long-term observational studies (Breen et al., 2016).

A management procedure has three primary components, namely the data inputs, the decision
algorithm (including the catch control rule) and management outputs (Punt et al., 2016). These
are dealt with in reverse order here. Other components, such as meta-rules or the exceptional
circumstances that may invalidate the MP, are left for future work and not considered in the
current explorations. A glossary of terms used for description of the MPs is provided in Table 2.
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Table 1: Derived quantities from the 2017 and 2020 SKJ stock assessments used
by the control rule to recommend preliminary catch limits according to Resolution
16/02. Values are median and 80% quantiles across the grid of assessment model
runs. Catch and biomass values are given in units of 1000 tonnes.

(a) SKJ 2017 stock assessment
outputs Fu (2017), IOTC (2017b)
yielding a recommended catch of
470,029 tonnes for 2018 — 2020

(I0TC, 2017a, 2018a).

(b) SKJ 2020 stock assessment
outputs Fu (2020), IOTC (2020a)
yielding a recommended catch
limit of 513,572 tonnes for 2021

—2023 (I0TC, 2020b).

Quantity Median  80% quantiles Quantity Median  80% quantiles
Cao% 510.1 (455.9 - 618.8) Cao% 536.0 (462.0 — 674.5)
Ezo16/Eao% 0.93 (0.70-1.13) E2019/Eao% 0.92 (0.67-1.21)
Cao16/Caoos 0.88 (0.72-0.98) Ca010/Caoos 1.02  (0.81-1.18)
SSBo 2,015.2 (1,651.2-2,296.1) SSBo 1,992.1  (1,691.7-2,547.1)
SSBao1s/SSBagy, 1.00 (0.88-1.17) SSBao10/SSBagy, 111 (0.95-1.29)
SSB2016/SSBo 0.40 (0.35-0.47) SSB2019/SSBo 0.45 (0.38-0.50)
SSBao16 796.7 (582.7-1059.4) SSBao1g 870.5 (660.4-1,253.2)
Eao% 0.59  (0.53-0.65) Eao% 0.59  (0.53-0.66)
Cao16 446.7 Cao19 547.2
C2012-2016 407.5 C2015-2019 506.6
Co018-2020 470.0 C2021-2023 513.6
Table 2: Glossary of terms used for description of MPs.

Notation Description

Cyi13 Total catch for years y + 1 to y + 3 recommended by the CCR

CTARGET Target catch for implementation of CCR1

Crac Previous TAC for implementation of CCR2

ly Fishing intensity multiplier in year y

ay mean of the log-normalised PL and PSLS abundance indices per year

aRr, aL tuning parameters for index-based CCRs

SSbh, depletion SSB,, /SSBg

SSDg, SSD  tuning parameters for SSB-based CCRs
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1.2.1 Management outputs

In a catch controlled fishery, empirical MPs must output a catch. Since the stock biomass
is unknown, a fishing mortality output could not be converted into a catch for management
purposes.

1.2.2 Catch control rules

Calculation of a recommended catch from the data inputs occurs via a catch control rule. In the
current context, the CCR calculates a fishing intensity multiplier I, that represents a proportion
of a known catch value (C*). With analogy to Equation 1c, the recommended catch is then:

Cy+1;3 = Iy x C*

If a stock is in reasonable condition then choice of C* can be informed by recent catches and an
MP can be constructed to maintain the catch and catch rates at or above their current levels via
small adjustments in |,. The recent assessments for SKJ suggest that the stock is healthy, with
current catches close to the estimated target catch at SSByqo, (Fu, 2017, 2020). Although there
is concern that these catches may not be sustainable should environmental conditions change
(IOTC, 2020a), they nevertheless provide an indicative starting point for management.

We consider here empirical MPs that depend on an index or indices of abundance. These provide
either a trend in abundance or a status relative to a preferred index value (location). Either the
trend or location are used to adjust I,. For example, a typical trend-based MP will calculate the
slope (A) of the recent index values and use this to adjust the catch up or down:

l, =1+k-X

with k a tuning parameter chosen during the simulation evaluation process. A location based MP
will use an abundance index a, relative to a reference value ar, which is perceived as a desirable
catch rate for the stock:
Ay
l, = =
Y T R
If a, > aR then the catch is increased, if a, < ar then the catch is reduced. Rules of this type
would usually include a lower limit ai below which extreme management measures are taken (e.g.
closure of the fishery):
I _{;{{_Zt for a, >a_
y =

0 for a, <a_

A characteristic of location based rules is that they are sensitive to fluctuations in the index
due to observation error. This can be ameliorated by using an average of (a, —ar)/(ar —aL)
over years, not just the current index. However this produces a lag that can potentially delay
appropriate management action (Hoshino et al., 2020).

If a desirable target catch is reasonably well known, then a plateau at |, = 1 can be included
for a, > aR to maintain the catch close that value, with ar chosen to be low enough to ensure
stability in |, and high enough to ensure that it is sensitive to reductions in the stock abundance.
This is the same functional form as Equation 1a. However if a desirable target catch is less well
known, then it is possible to induce stability by updating the catch recursively using a weighted
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average:

aR—aL

0+ (1—0)- (ay—at) for a, >a

l, =

0 for Ay < aL
with # = 0.5 a typical value (e.g. Carruthers et al., 2016, Hoshino et al., 2020). This type of
rule increases the catch for a, > ar and decreases the catch for a, < ar, moving progressively

towards a level where a, ~ aRr.

We investigate both control rule types. For CCR1 we assume that the target catch is known
from the benchmark assessment of Fu (2020). Specifically CyargeT is set at a quantile of the
target catch (Cygo,) values estimated across the grid of assessment runs. The catch is then:

CCR1
Cyi13 =1y X CraRGET (2a)

The fishing intensity is adjusted using:

CCR1 (index)
1 for a,>ag

|, = ¢ &—°a
Y aR—aL

0 for a, <a

for a_ <a, <ag (2b)

For values of a_ < a, < aR, the fishing intensity increases linearly to |, =1 at a, = aR, so that
Cy+1:3 = CyarceT- The recommended catch is constant for values of a, > ar. For a, < ai the
fishery is closed. During simulation testing a small constant catch of 100 tonnes is added during
fishery closure so that index values continue to be simulated.

For comparative purposes, the equivalent “perfect information” rule is explored, which uses the
known depletion (SSD,) from the operating model.

CCR1 (SSB)
1 for SSD, > SSDr
ly = { B0 for SSDL < SSD, < SSDg (2¢)
0 for SSD, < SSD_

For CCR2 we update the previous TAC to provide a new recommendation using the weighted
average approach:

CCR2
Cyt13 =1, x Cyac (3a)

CCR2 (index)

ly = R (3b)
0.5 for a, <a_

0.5+ 0.5 x (ay_aL) for a, >a_

which includes a minimum fishing intensity multiplier I, = 0.5 at a, < a_. A constant catch
recommendation is achieved at a, = ag, for which I, =1, and C, ;1.3 = Cyac. However in
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Figure 1: Annual log-normalised PL and PSLS indices. The mean value across indices
is used as the input a, for implementations of each MP.

contrast to CCR1, the recommended catch increases above the previous recommendation for
values of a, > a|. This could allow the rule to potentially exploit high levels of stock productivity,
but likely at the expense of stability in the catches.

The equivalent perfect information rule is:
CCR2 (SSB)

_Jos+osx (32=2%31) for SSD, > SSDR -
g 0.5 for SSD, < SSD|

In summary, two index-based catch control rules have been proposed (CCR1 and CCR2), each
with equivalents based on the known SSD,, for comparison. For the CCR to be fully specified,
the tuning parameters need to be defined, in this case values for ar and a_. These are considered
next in relation to calculation of the CCR input value: ay, including it's relation to the SSB.

1.2.3 Data inputs

To inform paramaterisation of the CCRs, we estimate the relationship between depletion (SSD, =
SSB, /SSByg) and the stock status indicator in the previous year a,_1. The status indicator is
calculated from the log-normalised PL and PSLS abundance indices. These show similar trends
over time (Figure 1), and we calculate a, as the mean of the two log-normalised indices across
all four seasons within the year. Using outputs from the stock assessment, we can plot the
relationship between a,_; and the depletion at the beginning of the following year. These are
shown in Figure 2 for the twelve single area SS Il models listed in IOTC (2020a). From linear
regression fits for each model run, we can estimate the value of a,_; associated with different
depletion levels. The mean and minimum values for a,_; taken across runs, are listed in Table 3.
The full list of regression parameters is given in Table Al.
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Mean log—normalised PL and PSLS indices per year

Figure 2: Relationships between the mean, within year log-normalised PL and PSLS
indices, and the depletion at the beginning of the following year, estimated from the
grid of stock assessment runs (Fu, 2020). Twelve single-area model runs are shown.
The estimated linear relationship is shown in blue, with the index at SSBgo9, marked
in red.
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Table 3: Estimated values for a,_; at different depletion levels (left table), showing
the mean and minimum values across runs (regressions used to calculate these values
are shown in Figure 2 with a full list of parameters per run in Table A1l). Minimum
values were used to construct equivalent inputs for the SSB and index-based control
rules shown in the right table.

SSD, Mean a,_1  Minimum a,_; SSB-based inputs  Index-based inputs
50% -0.14 -0.68 SSDr = 0.5 ar = —0.7
40% -0.77 -1.17 SSDr = 0.4 aR = —1.2
30% -1.40 -1.65 SSDr =0.3 ar = —1.7
20% -2.03 -2.21 SSD. =0.2 aL=-—2.2
10% -2.66 -2.81 SSD, =0.1 a.=-3.0
0% -3.29 -3.51 SSD. = 0.0 aL=-5.0

From the relationships between SSD, and a,_; we can calculate equivalent values for the
SSB-based, and index-based control rules. As an example, for CCR1 (SSB) we can investigate
a control rule with values of SSD_ = 0.1 and SSDgr = 0.4. Using the minimum values listed
in Table 3 (to make the control rule conservative), the equivalent inputs for CCR1 (index) are
aL. = —3.0and ar = —1.2.

For CCR1, we are also required to choose a target catch value CrargeT, which we fix at the
10%, 30% and 50% quantiles of the distribution of C4q0, across model runs. These are 461215,
481523 and 521638 tonnes respectively. There were therefore a total of twleve CCR1 options
investigated. For CCR2, the previous TAC is updated following each implementation of the
control rule, starting at Ctac = 513572 tonnes in 2024. There were therfore only four CCR2
options investigated. In addition, constant catch control rules (CCRO) were implemented, again
using the 10%, 30% and 50% quantiles of C,q0,. These serve to illustrate the benefits of feedback
control. The full list of CCR parameterisations is given in Table 4.

Table 4: List of CCR definitions. Each MP is referred to by the CCR, tuning parameter
combinations and data inputs, e.g. CCR1A (index) and CCR1A (SSB).

CCRO CCR1 CCR2

Crarcer  SSDi (a) SSDr (ar)  CrarceT SSD. (aL) SSDk (ar)
A 4612  0.0(50) 03(-17) 4612 0.0 (-5.0) 0.4 (-1.2)
B 4851 00 (5.0) 03(-17) 4815 0.1 (-3.0) 0.4 (-1.2)
C 5216 00(50) 03(-L7) 5216 0.0 (-5.0) 05 (-0.7)
D 0.1(-3.0) 03(-17) 4612 0.1(-3.0) 05 (-0.7)
E 0.1(-3.0) 03(-17) 4815
F 0.1(30) 03(-17) 5216
G 0.0 (-50) 0.4 (-12) 4612
H 0.0 (-5.0) 0.4 (-12) 4815
| 0.0 (-5.0) 04(-12) 5216
J 0.1(-3.0) 04(12) 4612
K 0.1(-3.0) 04(12) 4815
L 0.1(-30) 04(-12) 5216

2 Evaluation framework

The evaluation framework was based on a set of SS Il operating models (Methot Jr. and
Wetzel, 2013, version 3.30.16.02), called from within R (R Core Team, 2021) and making use
of the r4ss R-package (Taylor et al., 2021). Justification for this approach was provided by
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Edwards (2020b). Reference code developed for implementation of the current project is stored
in https://github.com/cttedwards/skj.

2.1 Operating models

Operating models were based on the SKJ stock assessment of Fu (2020), covering the period
1950 to 2019 inclusive. The assessment included a grid of twelve single area SS 11l runs described
in IOTC (2020a). Labels per run are listed in Table 5. The two-area model was not considered.
Models were re-fitted for validation purposes, giving the results summarised in Table 6 (for
comparison to Table 1b).

Table 5: List of single area SS 1l assessment runs used as operating models, repro-
duced from Table 2 of IOTC (2020a)

Label Steepnes (h)  Catchability Tag likelihood

trend  weighting ()
i0_h70_q0_tlambda01 0.7 1.0000 0.1
i0_h70_q0_tlambdal 0.7 1.0000 1.0
io_h70_ql_tlambda0l 0.7 1.0125 0.1
io_h70_q1l_tlambdal 0.7 1.0125 1.0
i0_h80_q0_tlambda01 0.8 1.0000 0.1
io_h80_q0_tlambdal 0.8 1.0000 1.0
i0_h80_q1_tlambda0l 0.8 1.0125 0.1
io_h80_ql_tlambdal 0.8 1.0125 1.0
i0_h90_q0_tlambda01 0.9 1.0000 0.1
i0_h90_q0_tlambdal 0.9 1.0000 1.0
i0_h90_q1l_tlambda01 0.9 1.0125 0.1
io_h90_ql_tlambdal 0.9 1.0125 1.0

Recruitment deviations: An auto-regressive (AR1) time series model was fitted to the log-
recruitment residuals estimated by SS Il for the period 1983 to 2018. Recruitment for 2019
was estimated by the model as a free parameter. Recruitment deviations from 2020 onwards
were generated using a auto-regressive random walk that was additive on the log-scale. Example
recruitment deviations are shown in Figure 3.

Implementation of the catch: The catch in 2020 was set by SS Il as equal to the estimated
target fishing mortality per run (Cyq0,). The TAC from 2021 to 2023 was fixed at 513,572 tonnes
based on recommendation from IOTC (2020b). Thereafter the MP was used to set the catch.
Annual, multiplicative catch deviations (implementation errors) were generated from a Gamma
distribution with a mean of 1.10 and standard deviation of 0.05. A positive implementation error
was assumed due to the observed overcatch of the TAC in 2018 and 2019 (Fu, 2020).

Observation: The last year of CPUE data was 2019. Future observations were generated from
the exploitable biomass values predicted by SS Ill and the estimated catchabilities. Multiplicative
observation errors were estimated from the log-residuals of the SS Il model fits and applied to
simulated index values using random numbers generated from a log-normal distribution. For runs
assuming a constant catchability the observation errors had a mean of one. For runs with an
increasing catchability (Table 5), the PSLS observation errors were assumed to have a mean that
increased by 1.25% per year (Fu, 2020, IOTC, 2020a).
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Table 6: Derived
tion. Catch and b

quantities from the twelve assessments used in the current applica-
iomass values are given in units of 1000 tonnes. Values are median

and 80% quantiles reference point estimates across model runs, estimated using SS Il

Quantity Median  80% quantiles
Cao% 521.8 (460.8 - 672.0)
E2019/Ea0% 0.955 (0.69 - 1.20)
C2019/Ca0% 1.049 (0.82-1.19)
SSBg 1969.9 (1675.3 - 2555.6)
SSB2019/SSBaoe 1.14 (0.98 - 1.25)
SSB2019/SSBo 0.46 (0.39 - 0.50)
SSBao19 879.3 (700.4 - 1252.3)
Eo0% 0.59 (0.53 - 0.64)
Cao10 547.2

2.2 Dimensions

A total of twelve MPs using CCR1 and four MPs using CCR2, were tested (Table 4). Equivalent
SSB and index-based runs were performed for each. For each MP, the twelve operating model
variations were projected (Table 5), with ten stochastic iterations for each. To ensure comparability

of the simulation results across MPs being applied to a particular operating model run, stochastic

deviations and error values were generated for each iteration and the same values per iteration
applied across all the MPs being tested. Each simulation projected the stock forward twenty
years from 2020 to 2039 inclusive, with implementation of the MP every third year, starting in
2023 (to set the recommended catch for 2024 to 2026).

2.3 Diagnostics

A list of diagnostics with which to compare MPs was obtained from Bentley and Adam (2016).
These are listed in Table 7.

Recruitment deviations

1.0

0.54

0.04

-0.51

Figure 3: Exampl

2000 2020 2040
Year

e recruitment dynamics across model runs, used to evaluate different

tuning parameters for CCR1 (index). Recruitment deviations are estimated by SS Il

between 1983 and
in 2019 is uninfor

2019, and show a similar pattern across all models. The recruitment

med by the data and can therefore be considered a free parameter.

Recruitment deviations from 2020 to 2039 were simulated from a fitted auto-regressive

model. A sample

of stochastic iterations is shown.
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Table 7: Diagnostic outputs for MP evaluations. Each performance statistic is
generated by first calculating the summary statistic per run and iteration across
projection years, and then reporting the median and 80% quantiles across those values
— unless the statistic is a probability, in which case it is calculated as a proportion
across all projection years, runs and iterations simultaneously.

Performance Statistic  Description Summary statistic
Catch

C Total catch Mean

Ciry Catch for PL fleet Mean

Cipsts) Catch for PSLS fleet Mean

CipsFs) Catch for PSFS fleet Mean

Cy /Cuo% Relative catch Geometric mean
Catch stability

Pr. C, =0 Closure Probability

Pr. > Cy1 Catch increase Probability

Pr. < Cy_1 Catch decrease Probability
|Cy+1/Cy — 1] Catch change Geometric mean
Catch rate

CPUE[p CPUE for PL fleet Geometric mean
CPUEps.s) CPUE for PSLS fleet Geometric mean
Exploitation rate

Fy, Exploitation rate Geometric mean
Fy /Fa0% Relative exploitation rate Geometric mean
Stock biomass

SSB, Stock biomass Mean

SSB, /SSBy Depletion Geometric mean
SSBwmin/SSBo Min. depletion Minimum

Pr. > SSB20% SSBy > SSBgo% Probablllty

Pr. > SSBig SSB, > SSBigy Probability
Kobe Quadrants

Pr. Red SSBy < SSB40% and Fy > F40% Probablllty

Pr. Green SSBy > SSBygy, and Fy, < Fao,  Probability

10 SKJ MSE
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3 Results

Summary diagnostics for all MPs are shown in Figures 4 and 5, for the SSB-based and index-based
MPs respectively. Both feedback control rules (CCR1 and CCR2) appear to perform better than
the constant catch rule (CCRO), yielding similar catches but with a lower chance of excessive
exploitation. Performance of the SSB and index-based MPs are similar, confirming utility of
an index-based rule. However in both cases, at least for the tuning parameters explored here,
CCR1 appears superior, with higher and less variable catches for equivalent levels of depletion
and exploitation. This difference between CCR1 and CCR2 is more apparent for the index-based
rules, with CCR2 having more variable catches and a higher chance of over-exploitation (Figure 5
and Table A4).

Noting the limited tuning parameterisations explored, the apparent superiority of CCR1 is further
demonstrated by the trade off plots in Figure 6. For similar catches, the mean depletion is higher,
the exploitation rate is lower, and the catches less variable.

Within the variations explored for CCR1, two options are selected for more detailed exposition,
namely CCR1A and CCR1H, which both appear to perform well. Two dimensional histograms are
plotted in Figure 7, illustrating how projected catches map to the control rule. The equivalent
SSB and index-based rules also shown for comparison. Recommended catches are typically on the
plateau of the rule, and actual catches slightly exceed the recommendation due to implementation
error. Notably, the number of iterations on the slope of the rule is reasonably small, consistent
with stability of the catch recommendations. Given that the operating model assumes stable
dynamics over time, this is a desirable feature. Projections of the operating model dynamics
under CCR1A (index) and CCR1H (index) are shown in Figures 8 and 9. Finally, the full suite of
diagnostics is given in Table 8.
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Figure 4: Diagnostic outputs for SSB-based MPs (Table 7). Each MP is referred to
by the CCR definitions in Table 4.
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Table 8: Diagnostic outputs for comparison of selected MPs (see Table 4 for the list
of MP definitions and Table 7 for a description of each diagnostic). Medians and
80% quantiles are reported for each statistic across runs and iterations. Probabilities
are calculated across all runs, years and iterations simultaneously.

Statistic CCR1A (SSB) CCR1H (SSB)

C 521.4 (475.86 - 537.15) 512.79 (461.12 - 553.49)
Cipy 83.99 (77.34 - 86.65) 82.79 (75.36 - 88.74)
Cipsis) 200 (180.78 - 208.69) 197.11 (174.99 - 215.05)
CipsFs] 29.59 (27.13 - 31.43) 29.55 (26.38 - 32.32)
Cy,/Cao% 0.97 (0.76 - 1.07) 0.94 (0.78 - 1.04)
Pr.C, =0 0 0

Pr. >C, 0.48 0.48

Pr.<C,1 052 0.52

|Cy+1/C, — 1| 0.08 (0.06 - 0.13) 0.1 (0.07 - 0.16)
CPUEp 0.02 (0.02 - 0.03) 0.02 (0.02 - 0.03)
CPUEjps.s) 10.18 (8.53 - 12.68) 10.4 (9 - 12.33)

F, 0.54 (0.33 - 0.73) 0.52 (0.33 - 0.65)

Fy /Faov 0.89 (0.57 - 1.22) 0.88 (0.59 - 1.1)

SSB, 849.11 (571.13 - 1475.66) 881.9 (631.18 - 1474.45)
SSB, /SSBo 0.42 (0.32 - 0.58) 0.43 (0.35 - 0.57)
SSBmin/SSBo  0.27 (0.15 - 0.4) 0.27 (0.18 - 0.38)

Pr. > SSByy, 0.97 0.98

Pr. > SSBlo% 1 1

kobe_red 0.31 0.25

Pr. Green 0.57 0.58

Statistic CCR1A (index) CCR1H (index)

C 523.65 (470.54 - 539.65) 532.96 (470.58 - 555.6)
Cipy 84.58 (76.93 - 86.95) 86.1 (77.09 - 89.47)
Cipsis) 201.09 (178.35 - 209.1) 204.84 (178.37 - 215.25)
CipsFs] 29.94 (26.98 - 31.54) 30.42 (27.02 - 32.55)
Cy/Cao% 0.95 (0.75 - 1.09) 0.96 (0.75 - 1.09)

Pr. C, =0 0 0

Pr.>C, 4 0.47 0.47

Pr. <Cy1 0.53 0.53

|Cy+1/C, — 1] 0.08 (0.05 - 0.17) 0.09 (0.06 - 0.19)
CPUEp 0.02 (0.02 - 0.03) 0.02 (0.02 - 0.03)
CPUE[ps;s) 10.86 (8.93 - 13.34) 10.61 (8.72 - 12.8)

F, 0.48 (0.29 - 0.73) 0.49 (0.3-0.74)
Fy/Faoo 0.81 (0.48 - 1.17) 0.82 (0.52 - 1.18)

SSB, 027.14 (615.41 - 1578.04)  959.87 (595.26 - 1553.33)
SSB, /SSBo 0.46 (0.34 - 0.6) 0.45 (0.33 - 0.59)
SSBwn/SSBo  0.29 (0.16 - 0.41) 0.28 (0.16 - 0.4)

Pr. > SSByy, 0.98 0.98

Pr. > SSBygy, 1 1

Pr. Red 0.26 0.27

Pr. Green 0.63 0.59
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Realised catch (1000 tonnes)

Realised catch (1000 tonnes)

Figure 7: Relationship between the stock status, as measured by either the known
SSB (top panel) or the mean log-normalised CPUE (bottom panel), and realised
catches during the projection period for MPs: CCR1A and CCR1H. The CCR is shown
for reference in each case. Colours represent a two-dimensional histogram of the
number of samples across years, iterations and model runs that fall within each bin.
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Figure 8: Dynamics following projection under CCR1A (index) and CCR1H (index).
A sample of stochastic iterations is shown with 90% and 50% quantiles shaded in
grey. Relative values are given according to SSBy, Cao9, and Esge, respectively. For
the SSB, depletion values 10-40% are shown in yellow, and 0-10% in red.
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4 Summary and further work

The current work has proposed a set of empirical control rules for application to the Indian
Ocean SKJ fishery, based on CPUE indices from the Maldivan PL and European PSLS fisheries.
For the MP to be valid, generation of the PL and PSLS indices would have to be specified and
maintained into the future.

Two control rule formulations were explored, with a step linear rule, similar in form to the current
HCR, performing the best under the limited testing conducted. The most notable feature of the
results is that an index-based rule can perform similarly to a rule that assumes perfect knowledge
of the resource, provided equivalent parameterisations are used in each. This provides a useful
justification for future developments of an empirical approach.

Since this work represents an initial step towards an empirical rule, the extent of simulation
testing was limited in both the control rule parameterisations and OM configurations explored.
The current OMs assume a relatively stable and productive stock. Clearly, a wider range of OMs
will need to be included to ensure that the MPs being tested are able to recover the stock under
less favorable conditions.
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A Appendix

Table Al: Regression parameters from relationship between the mean log-normalised
PL and PSLS CPUE indices (a,—1) and the estimated biomass depletion in the
following year (Figure 2). Predicted values for a,_1 are shown for different depletion
levels, estimated from the regression parameters.

Model run Intercept  Slope Predicted a,_1

SSB 50% SSB 40% SSB 30% SSB 20% SSB 10% SSB 0%
io_h70_q0_tlambda01l 0.54 0.16 -0.26 -0.89 -1.51 -2.14 -2.77 -3.40
i0_h70_q0_tlambdal 0.44 0.13 0.50 -0.30 -1.10 -1.89 -2.69 -3.49
i0_h70_q1l_tlambda01 0.62 0.20 -0.59 -1.09 -1.59 -2.10 -2.60 -3.10
io_h70_ql_tlambdal 0.48 0.15 0.16 -0.50 -1.15 -1.81 -2.47 -3.13
i0_h80_q0_tlambda01 0.56 0.16 -0.34 -0.95 -1.57 -2.18 -2.79 -3.41
io_h80_q0_tlambdal 0.46 0.13 0.33 -0.43 -1.20 -1.96 -2.73 -3.50
io_h80_ql_tlambda0l 0.63 0.20 -0.64 -1.13 -1.63 -2.12 -2.61 -3.11
io_h80_ql_tlambdal 0.49 0.16 0.05 -0.59 -1.23 -1.86 -2.50 -3.14
io_h90_q0_tlambda01l 0.57 0.17 -0.40 -1.01 -1.61 -2.21 -2.81 -3.41
io_h90_q0_tlambdal 0.47 0.13 0.22 -0.53 -1.27 -2.02 -2.76 -3.51
i0_-h90_ql_tlambda01l 0.64 0.21 -0.68 -1.17 -1.65 -2.14 -2.63 -3.11
io_h90_ql_tlambdal 0.51 0.16 -0.04 -0.66 -1.28 -1.90 -2.53 -3.15
Mean 0.53 0.16 -0.14 -0.77 -1.40 -2.03 -2.66 -3.29
Min. 0.44 0.13 -0.68 -1.17 -1.65 -2.21 -2.81 -3.51
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Table A2: Diagnostic outputs for evaluation of constant-catch MPs (see Table 4 for
the list of MP definitions and Table 7 for a description of each diagnostic). Medians
are reported for each statistic across runs and iterations. Probabilities are calculated
across all runs, years and iterations simultaneously.

Statistic CCROA CCROB CCROC
C 527.05 542.81 566.35
Cipy 84.99 87.76 91.42
Cipsis) 201.74 208.50 214.75
CipsFs) 30.23 31.15 32.50
Cy/Cao% 0.94 0.92 0.86
Pr. C, =0 0.00 0.00 0.00
Pr. > C,_; 0.45 0.44 0.41
Pr. <Cy1 0.55 0.56 0.59
|Cyt1/Cy — 1] 0.08 0.08 0.10
CPUEp 0.02 0.02 0.02
CPUE(ps;s) 9.85 9.62 9.18
F, 0.57 0.55 0.57
Fy /Fao% 0.92 0.97 0.94
SSB, 825.68 806.11  897.05
SSB, /SSBo 0.41 0.40 0.41
SSBmin/SSBo 0.25 0.24 0.21
Pr. > SSByge, 0.90 0.86 0.79
Pr. > SSBigy 0.94 0.92 0.86
Pr. Red 0.39 0.43 0.46
Pr. Green 0.52 0.46 0.44
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Table A3: Diagnostic outputs for evaluation of SSB-based MPs (see Table 4 for the
list of MP definitions and Table 7 for a description of each diagnostic). Medians
are reported for each statistic across runs and iterations. Probabilities are calculated
across all runs, years and iterations simultaneously.

Statistic CCR1IA CCR1B CCR1C CCR1D CCR1E CCR1F CCR1G CCR1H CCR1ll CCR1J CCR1K CCRIL CCR2A CCR2B CCR2C CCR2D
C 521.40 533.99 557.69 519.69 531.20 550.38 504.52 512.79 537.16 499.84 507.20 527.99 49796 484.72 490.43  482.17
Cipy 83.99 85.97 90.25 83.73 85.67 88.48 81.15 82.79 86.55 80.27 81.90 85.40 79.96 78.93 79.45 78.23
Cipsts) 200.00 205.63 213.23  200.00 204.34 210.68 193.79 197.11 206.07 192.06 19491 201.94 189.52 186.00 188.53  184.54
Cipsrs) 29.59 30.50 31.94 29.51 30.36 31.72 28.86 29.55 31.06 28.59 29.18 30.59 29.33 28.66 28.32 27.92
C,/Caon% 0.97 0.98 0.96 0.94 0.95 0.93 0.92 0.94 0.97 0.90 0.91 0.94 0.89 0.88 0.89 0.87
Pr.C, =0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Pr. >C,1 0.48 0.48 0.48 0.48 0.48 0.49 0.48 0.48 0.49 0.48 0.48 0.49 0.43 0.42 0.45 0.46
Pr. <Cy1 0.52 0.52 0.52 0.52 0.52 0.51 0.52 0.52 0.51 0.52 0.52 0.51 0.57 0.58 0.55 0.54
|Cy11/Cy — 1] 0.08 0.09 0.09 0.09 0.09 0.10 0.09 0.10 0.10 0.10 0.11 0.11 0.11 0.12 0.09 0.10
CPUE[py 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
CPUEps.s) 10.18 9.78 9.62 10.22 9.96 9.57 10.69 10.40 10.07 10.81 10.52 10.30 9.47 9.72 10.51 10.80
Fy, 0.54 0.57 0.59 0.53 0.55 0.53 0.50 0.52 0.56 0.48 0.50 0.53 0.58 0.57 0.48 0.46
Fy/Faoo 0.89 0.95 0.99 0.86 0.90 0.90 0.83 0.88 0.95 0.81 0.84 0.90 0.97 0.95 0.81 0.76
SSB, 849.11 830.67 809.31 876.54 855.06 843.24 906.59 881.90 864.31 923.37 901.49 881.33 83851 843.56 908.10 937.94
SSB, /SSBo 0.42 0.40 0.41 0.43 0.41 0.40 0.45 0.43 0.42 0.45 0.44 0.43 0.39 0.39 0.45 0.45
SSBwmin/SSBo 0.27 0.25 0.21 0.27 0.25 0.21 0.29 0.27 0.25 0.29 0.27 0.26 0.19 0.20 0.24 0.25
Pr. > SSBygy 0.97 0.95 0.90 0.97 0.96 0.92 0.99 0.98 0.96 0.99 0.99 0.97 0.89 0.89 0.95 0.96
Pr. > SSBigq, 1.00 1.00 0.96 1.00 1.00 0.98 1.00 1.00 1.00 1.00 1.00 1.00 0.94 0.94 0.98 0.99
Pr. Red 0.31 0.35 0.38 0.28 0.32 0.33 0.22 0.25 0.31 0.19 0.22 0.26 0.39 0.36 0.26 0.23
Pr. Green 0.57 0.52 0.48 0.58 0.54 0.49 0.62 0.58 0.52 0.64 0.60 0.55 0.45 0.48 0.59 0.62
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Table A4: Diagnostic outputs for evaluation of index-based MPs (see Table 4 for
the list of MP definitions and Table 7 for a description of each diagnostic). Medians
are reported for each statistic across runs and iterations. Probabilities are calculated
across all runs, years and iterations simultaneously.

Statistic CCR1IA CCR1B CCR1C CCR1D CCR1E CCR1F CCR1G CCR1H CCR1ll CCR1J CCR1K CCRIL CCR2A CCR2B CCR2C CCR2D
C 523.65b 539.18 556.22 523.23 533.86 532.88 520.55 532,96 546.47 516.11 52549 52482 51895 476.70 529.05 502.99
Cipy 84.58 86.94 89.52 84.29 86.05 85.99 83.87 86.10 88.48 83.36 84.51 85.24 83.04 77.45 85.34 81.65
Cipsts) 201.09 207.08 213.30 200.84 204.25 203.73 200.17 204.84 210.08 198.38 201.74 201.26 196.17 180.87 202.01  191.97
Cipsrs) 29.94 30.77 32.04 29.68 30.44 30.38 29.58 30.42 31.60 29.46 30.03 30.17 29.99 28.67 30.50 29.71
C,/Caon% 0.95 0.94 0.93 0.90 0.88 0.83 0.95 0.96 0.93 0.90 0.89 0.86 0.86 0.71 0.92 0.89
Pr.C, =0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Pr. >C,1 0.47 0.47 0.46 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.42 0.40 0.45 0.47
Pr. <Cy1 0.53 0.53 0.54 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.58 0.60 0.55 0.53
|Cy11/Cy — 1] 0.08 0.08 0.10 0.08 0.09 0.14 0.08 0.09 0.10 0.09 0.10 0.14 0.12 0.22 0.09 0.12
CPUE[py 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
CPUEps.s) 10.86 10.60 9.96 10.93 10.64 10.20 10.86 10.61 10.13 11.10 10.83 10.23 9.18 9.48 9.77 10.04
Fy, 0.48 0.48 0.49 0.44 0.44 0.37 0.47 0.49 0.52 0.44 0.45 0.41 0.56 0.52 0.55 0.49
Fy/Faoo 0.81 0.81 0.82 0.75 0.77 0.64 0.81 0.82 0.85 0.75 0.75 0.69 0.97 0.88 0.93 0.83
SSB, 927.14 95059 877.85 967.89 980.77 940.01 936.45 959.87 910.05 981.56 975.20 914.27 879.84 931.94 913.61  954.19
SSB, /SSBo 0.46 0.45 0.42 0.47 0.46 0.42 0.46 0.45 0.42 0.47 0.46 0.44 0.39 0.40 0.41 0.43
SSBwmin/SSBo 0.29 0.27 0.21 0.29 0.28 0.21 0.30 0.28 0.21 0.30 0.28 0.22 0.18 0.16 0.22 0.21
Pr. > SSBygy 0.98 0.97 0.92 0.98 0.97 0.94 0.98 0.98 0.94 0.99 0.98 0.96 0.85 0.87 0.90 0.93
Pr. > SSBigq, 1.00 0.99 0.99 1.00 1.00 0.99 1.00 1.00 0.99 1.00 1.00 0.99 0.91 0.92 0.94 0.98
Pr. Red 0.26 0.29 0.36 0.22 0.25 0.31 0.24 0.27 0.35 0.20 0.22 0.28 0.42 0.36 0.38 0.29
Pr. Green 0.63 0.57 0.48 0.65 0.61 0.52 0.63 0.59 0.49 0.67 0.63 0.52 0.43 0.45 0.48 0.53
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