Indian Ocean swordfish management strategy evaluation: Operating model

Daniela Rosa[†], Dan Fu[‡], Rui Coelho[†], Iago Mosqueira^{*} 19th Working Party on Billfish 13-16 September 2021, online

IOTC-2021-WPB19-24

†Instituto Português do Mar e da Atmosfera (IPMA), Av. 5 de Outubro, 8700-305 Olhão, Portugal
*Wageningen Marine Research. Haringkade 1, Postbus 68, 1976CP, IJmuiden, The Netherlands
‡Indian Ocean Tuna Commission Secretariat, Le Chantier Mall (2nd floor), PO Box 1011, Victoria Mahé, Seychelles

Current Operating Model

- An initial grid of model runs was constructed for the Indian Ocean Swordfish based on the 2017 initial set of options suggested by the WPM in 2017;
- This resulted in a total of 2,592 model runs.

Variable	Values		
Selectivity	Double Normal	Logistic	
Steepness	0.6	0.75	0.9
Growth +	Slow growth, late	Fast growth, early maturity	
Maturity	maturity (Wang et al., 2010)	(Farley et al., 2016, otoliths)	
М	Low = 0.2	High = 0.3	Sex-specific Lorenzen <i>M</i> (Farley et al. (2016), otoliths)
ESS	2	20	
CPUE scaling schemes	Area effect x Surface	Catch	Biomass
CPUEs	JPN late + EU.PRT	JPN late	TWN + EU.PRT
Catchability increase	0%	1% / year	

2020 Stock Assessment

- Update and revison of the 2017 Stock Synthesis model;
- Age-based (with ages 0-30), sex explicit, partitioned into four areas
- Period of 1950-2018
- Information on 15 fisheries, defined by fleet and region
 - Final model uses 3 CPUEs (Japan 4 areas, SW - Portugal and South Africa)
 - Length compositions data are available for 14 fisheries

Fu, 2020 - IOTC-2020-WPB18-16 IOTC, 2020 - IOTC-2020-WPB18-RE

Longitude

2020 Stock Assessment

- Final assessment models based on an ensemble of 24 models:
 - Steepness: 0.7/0.8/.09
 - Growth: Farley et al., 2016/Wang et al., 2010
 - SigmaR: 0.2/0.4
 - ESS: 5/20

Overfishing

2.5

3.0

Base Case

- M=0.25;
- h=0.8;
- SigmaR= 0.2;
- Growth&Mat: Farley et al., 2016,
- ESS=5;
- CPUE= JPNlate+PRT;
- Scaling= biomass,
- Selectivity= Double normal for longlines
- Turned-off: South Africa CPUE
- First iteration did not converge; jittered \rightarrow convergence

Model diagnostics: Retrospective analysis

Year

Model diagnostics: CPUE runs test

Model diagnostics: Length frequency runs test

Model diagnostics: Hindcast cross validation

Main effects

- M=0.2, 0.3, Lorenzen
- h=0.6, 0.75, 0.9
- SigmaR= 0.2, 0.6
- Growth&Mat= Farley et al., 2016, Wang et al., 2010
- ESS=2,20
- CPUE= JPNIate+PRT, JPNIate, TWNIate+PRT
- Scaling= biomass, catch (**region?**), area
- Selectivity= Double normal, Logistic
- One by one change to the "base model" model with current grid (16 models)
 - Non convergence in several models had to be jittered

- 108 models
- Convergence level < 0.001
- MASE score for NW area < 1
- Final 70 models

Unrealistic SSB Virgin (125,866t- 461,701t) and stock status (0.5-3.25)?

Management Procedure testing

- Planned to be presented at WPM
- Model weighting based MASE using p-value from Diebold-Mariano test
- Incorporating feedback from TCPM with the following tunning objectives:
 - TS1: Pr(Kobe green zone 2029:2033) = 0.5.
 - TS2: Pr(Kobe green zone 2029:2033) = 0.6.
 - TS3: Pr(Kobe green zone 2029:2033) = 0.7.
 - Additional guidance:
 - TAC is to be set every 3 years.
 - A maximum of 15% change to the TAC (increase or decrease)
 - A 3 year lag between data and TAC implementation.

Robustness tests

- Planned to be presented at WPM
 - Continued low recruitment
 - CPUE overcompensation bias
 - Reported and not reported overcatch
 - Using SW CPUE

Feedback needed

- Is the current uncertanity grid still acceptable?
- Is using the NW CPUE for projections an acceptable approach?
 - The selection of CPUEs for projection will also influence the selection of OMs through MASE score
- Any suggestion on robustness tests to be implemented?

<u>Thank you</u>