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A B S T R A C T

The Schaefer and Pella-Tomlinson production models (LPM and PTPM) can be used to provide management
advice in data poor situations, as they require only a time-series of catches and an index of abundance. These
models are commonly fit using Bayesian methods, with the prior for the intrinsic rate of growth (r) set based on
the results of a demographic analysis. We used simulations based on blue shark Prionace glauca in the Indian
Ocean to evaluate the performances of estimation methods that reflect different assumptions regarding the form
of the production function and the basis for the prior for r. Nine age-structured operating models reflected
different levels of productivity (determined by the steepness of stock-recruitment relationship [h=0.4; h=0.6;
h=0.79] and the pattern of historical catches (increasing, stable and declining). As expected, estimation per-
formance was poorer for greater extents of observation error, and better when there was more ‘contrast’ in
biomass. However, the PTPM usually performed worse than the LPM, particularly for high levels of observation
error. Surprisingly, the prior for r with mean set to of the estimate of the r inferred from the demographic
analysis combined with the LPM performed best for an increasing catch series (a one-way trip in biomass) and
high uncertainty in the abundance index. Additional analyses revealed that the poor performance of the PTPM
was due to the additional estimation variance associated with the estimation of the shape parameter, while the
better performance for the ‘wrong prior’ occurred because the Schaefer model assumes a linear relationship
between growth rate and population depletion whereas an age-structured model implies a non-linear relation-
ship. Given poor data, r is not updated much, leading the LPM to overestimate productivity. This paper high-
lights the dangers of naively integrating demographic analysis into Bayesian surplus production models, and the
value of including simulation analysis as a part of the standard set of diagnostics used when selecting an esti-
mation method on which to base stock assessments. We also recommend use of JABBA-Select or a prior for r from
a demographic analysis that accounts for the status of the population when the data on which the demographic
parameters are based as well as the form of the production function.

1. Introduction

Considerable progress has been made in fisheries stock assessment
methods over the last 30 years, owing to improvements in computer
power and computational algorithms (Maunder and Punt, 2013). In
particular, complex age-structured models and integrated analysis
methods are now more frequently and widely used as the basis for stock
assessments to support fisheries management (Zhang, 2013; Walters
et al., 2008). Methods such as MULTIFAN-CL (Fournier et al., 1990) and
Stock Synthesis (Methot and Wetzel, 2013) are based on complex po-
pulation dynamics models that account for, inter alia, age-based mi-
gration, relationships between recruitment and environmental factors,

and tagging data (Lee et al., 2017; Maunder and Watters, 2003).
However, such models are hard to apply when data are limited (Kelly
and Codling, 2006). For example, the cost of age identification and
collection of length-frequency data means that only a few fish species
have stock assessments based on complex models (Costello et al., 2012).

Surplus production models (SPMs) can provide time-trajectories of
population size and associated fisheries reference points with few
parameters (Winker et al., 2018). These models represent all biological
processes, including natural mortality, individual growth, and fe-
cundity using a production function. The Schaefer/logistic production
model (LPM) (Schaefer, 1954) estimates time-trajectories of population
size based on estimates of the intrinsic growth rate (r) and carrying
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capacity (K), while the Pella–Tomlinson production model (PTPM)
(Pella and Tomlinson, 1969) includes a parameter p that allows the
population size at which production is maximized, B K/MSY , to differ
from 0.5K, i.e. = + −B K p/ ( 1)MSY

p1/ . Given a catch time-series, the LTM
and PTPM require only a time-series of abundance indices for para-
meter estimation, which makes them useful for fisheries where age- or
size-composition data are unavailable. Some data-limited methods of
stock assessment can determine catch limits with fewer data, but these
methods lead to highly uncertain estimates of stock status and often
lack transparent assumptions about historical population dynamics
(Dichmont and Brown, 2010).

The Bayesian approach to stock assessment takes account of prior
information, and model robustness can be improved markedly by using
informative priors (Punt and Hilborn, 1997). However, in the context of
the PTPM, it is challenging to develop informative priors for p and
particularly K given only biological information or limited survey data,
and the priors for these parameters are consequently often selected with
the intent of being uninformative (e.g., Aires-da-Silva and Gallucci,
2007). Demographic analysis has been suggested as a standard way to
create informative priors for r for use in production model analyses by
several authors (e.g., McAllister et al., 2001; Cortés, 2008; Tsai et al.,
2014) because the relationship between r and life-history parameters
can be determined using demographic analysis (McAllister et al., 2001).
The uncertainty in life-history parameters will be reflected in the prior
for r. For example, the prior for r for blue shark (Prionace glauca) would
differ by a factor of two depending on whether a one- or two-year re-
production cycle is assumed (Takeuchi et al., 2004; Aires-da-Silva and
Gallucci, 2007).

Simulation has been used widely to evaluate the performances of
assessment methods (e.g., Cope, 2013; Cope et al., 2015; Carruthers
et al., 2014), and is used here to evaluate the implications of prior
choices using blue shark in the Indian Ocean as a case-study species.
Specifically, we: (a) compared four ways for constructing a prior for r,
and (b) evaluated which of the LPM and PTPM has better estimation
performance given observation error in catches and the index of
abundance. The results of our simulations illustrate some concerns with
using demographic analysis as the basis for priors for r in uninformative
situations and we consequently use additional analyses to conduct a
deeper exploration of the use of demographic analysis as the basis for a
prior for r.

2. Materials and methods

The simulation study involved using Stock Synthesis (Methot and
Wetzel, 2013) parameterized for Indian Ocean blue shark as an oper-
ating model (OM) and production models fitted using Bayesian methods
as the estimation methods (EMs). The simulations accounted for un-
certainty in productivity and the quality of the available data. The
operating model and estimation methods assume deterministic dy-
namics (i.e., no process error) for simplicity and because recruitment
variation for sharks is likely low, and certainly low compared to that of
most teleosts (Walker, 1998). The OM is started at unexploited equili-
brium and this assumption also forms the basis for the EMs.

2.1. Operating model

A simplified version of the 2017 stock assessment for the Indian
Ocean blue shark conducted using Stock Synthesis (Rice, 2017; Coelho
et al., 2018) was used as the operating model (OM). Natural mortality
was sex- and age-specific, growth was modeled using the 3-parameter
Richards growth model (Schnute, 1981; Richard et al., 2013; Methot
and Wetzel, 2013), and the stock-recruitment relationship was modeled
using the Beverton–Holt form, with biological parameter values set to
those in the 2017 assessment (Table 1). For computational ease, and to
more easily identify the reasons for the patterns in the results, all the
fisheries in the 2017 assessment were merged into a single fishery with

a logistic selectivity pattern equal to the maturity ogive. The assump-
tion that the exploitable biomass is the same as the mature biomass and
the assumption of deterministic dynamics increased the consistency
between the production models and the OM, resulting in differences
between the OM and EMs being primarily a result of differences in the
assumed population dynamics model and observation error. The si-
mulated CPUE data were based on the expected CPUE in the OM under
the assumption of lognormal error, and the simulated catch data were
likewise assumed to be lognormally distributed. The simulated data
were generated using the bootstrap feature of Stock Synthesis, and the
analyses were based on 100 simulated data sets.

2.2. Estimation methods

2.2.1. The Pella–Tomlinson and Schaefer production models
The PTPM is defined by Polacheck et al. (1993):

= ⎧
⎨⎩

+ − − =
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where Bt is the biomass at the start of year t, and Ct is the total catch
during year t. The value of ϕ was set to 1 to match the OM, and setting
p=1 leads to the Schaefer model. The annual growth rate for the PTPM
(and the LPM for p=1) is given by:

= −r B K(1 ( / ) )t
r
p t

p
(2)

The relationship between the modeled biomass and the CPUE in-
dices, Ît is:

=Î qB et t
εt (3)

where q is the catchability coefficient, It is observed abundance index,
and ԑt is independent and normally distributed observation error with
mean 0 and precision τ (i.e., 1/variance). The negative log-likelihood
likelihood function for the CPUE data is, therefore:
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where n is the number of CPUE data points.
A Markov Chain Monte Carlo (MCMC) algorithm based on R2jags

Table 1
Life history parameters and model assumptions used in the operating model.

Parameter Value

Female Male

Natural mortality-at-age Supplementary Fig. S1
Age-at-maturity(mt) 5 yr N/A
Reference age-1 (a1) 0.5 yr
Maximum age-2 (a2) 26 yr
Length at age a1 (L1) 49.8 cm
Length at age a2 (L2) 283.2 cm
Growth rate (K) 0.129 yr−1 0.131 yr−1

Weight-at-length W=5.39e–006 ×
L3.10

W=3.29e–006 ×
L3.23

Size-at-50%-maturity 145cm N/A
The slope of the maturity

curve
−0.138 N/A

Stock-recruitment relationship Beverton–Holt
Steepness (h) 0.4, 0.6, 0.79
Log of recruitment in an

unexploited state log(R0)
7.6721

Reproduction cycle 1 yr N/A
Fecundity (litter size) 38 N/A
Sex ratio at birth 0.5 0.5
Fishery selectivity

(Inflection point and
slope)

β1= 145 cm; β2= 21.3365 cm−1
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version 0.5–7 (Su, 2015) implemented within R (R Development Core
Team, 2018) was used to sample the parameter space. Four chains, each
with 85,000 iterations were generated. The first 5000 iterations for
each chain were eliminated as a burn-in, and a thinning rate of 40 was
applied. This led to 8000 samples (2000 from each chain) from the
posterior distribution. The Brooks–Gelman–Rubin statistic (BGRs;
Gelman and Rubin, 1992; Brooks and Gelman, 1998) was used to
evaluate convergence (< 1.1 for all parameters), and only converged
results were used for inference.

2.2.2. Demographic analysis
Demographic analysis, using a Leslie population projection matrix

(Caswell, 2002), was used to develop an informative prior for r for use
in the EMs:

=+N NMt t1 (5)

where Nt is the vector of numbers-at-age (females only) at the start of
year t, and M is a Leslie population projection matrix based on a birth-
pulse population and a post-breeding census (Caswell, 2002), i.e.:

=
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where sx is the annual natural survivorship for age x, and the fx re-
presents the age-specific per-capita fecundity rates. The first age class
(age 0) represents newborn pups, and the fecundity (fx) terms include
the probability that a pregnant female delivers pups at the end of the
year ( =f p mx x0 where mx is the average number of female eggs per
female, and p0 is the proportion of eggs that survive to pups1). The mx

terms were calculated as the product of the eggs-per-female and the sex
ratio of litters, divided by the length of the reproductive cycle in years.

In a stable state, =N λNM t t, where λ is the finite rate of population
increase ( =r λln ), and is computed as the dominant eigenvalue of M
(Simpfendorfer et al., 2005). The demographic model was para-
meterized based on the values for the biological parameters in the OM.
The OM is based on the Beverton–Holt stock-recruitment relationship
(Rice, 2017):

=
− + −

R hR P P
h h P P

4 /
(1 ) (5 1) /

0 0
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where R is the number of age-0 animals (pups), P is the number of eggs
produced, R0 is the number of pups at unexpected equilibrium, and P0 is
the number of eggs produced at unexploited equilibrium. According to
Brooks et al. (2010), the value for p0 can be derived from the pups/egg
ratio in the limit of zero population size, i.e.:

=
−

p hR
SB h

4
(1 )0

0

0 (8)

2.2.3. Priors
The parameters of the EM are r, q, K and p. BMSY/K is seldom larger

than 0.5 for the Beverton–Holt stock-recruitment relationship (Punt
et al., 2014). The prior for p was therefore set to U [0,1], which cor-
responds to a range for BMSY/K from 0.37 to 0.5. The prior for q was
selected to be uninformative (U[−20,0] on log-q; Millar and Meyer,
2000), as was the prior for the precision parameter τ ∼ Gamma
(0.001,0.001). It is seldom possible to obtain independent information
about K, and it is therefore common to place a uniform prior on this
parameter based on the maximum historical annual catch (e.g., Froese
et al., 2016). However, Millar and Meyer (2000) argued that this

assumption could lead to a flat posterior distribution in some cases.
Hence, following McAllister (2011), a uniform prior was placed on log-
K − U[logCmax, log50Cmax], where Cmax is the maximum historical
annual catch.

Four priors are considered for r:

• normal with a mean given by the value of r from the demographic
analysis [r=0.1, 0.16 and 0.25 for h=0.4, 0.6 and 0.79], and a
standard deviation of 0.2 (e.g., Takeuchi et al., 2004) [denoted
“DEM”];

• normal with a mean that is half of the value of r from the demo-
graphic analysis [r=0.05, 0.08 and 0.13 for h=0.4, 0.6 and 0.79],
and a standard deviation of 0.2 [denoted “DEML”];

• normal with a mean based on a demographic analysis that assumes
p0= 1 (0.38), and a standard deviation of 0.2 [denoted “DEMH”];

• U[0,0.5], which contains the values of r for low and very low pro-
ductivity species (Froese et al., 2017) [denoted “NON”].

Some demographic analyses (e.g., Aires-da-Silva and Gallucci,
2007) are based on the assumption p0= 1 owing to lack of information
regarding the recruitment process and the value of steepness. p0 should
be less than 1 so the third prior is based on an over-estimation of r. In
addition, the second prior is speculative, developed primarily to explore
the consequences of a ‘mis-specified’ and underestimated prior. Table 2
summarizes the prior specifications for the eight EMs considered.

2.3. Scenarios

The scenarios relate to the priors on which the EM is based (see
section 2.2.3) and the specifications of the OM. Three values for the
steepness of the stock-recruitment relationship (h=0.4; h=0.6;
h=0.79), where h=0.79 is the value assumed in the 2017 assessment
of Indian Ocean blue shark, were considered to explore robustness to
productivity. Three catch series (Fig. 1): “Increasing” (the actual catch
series for blue shark in the Indian Ocean), a time-series that decreases
to zero during the last 20 years of the modeled period (denoted “De-
clining”), and a time-series that declines and is relatively stable over the
last 30 years of the modeled period (denoted “Stable”) were considered
to explore the impact of data contrast on estimation performance
(Fig. 2). Lognormal observation error was applied to the historical catch
and CPUE, with CVs of 0.1, 0.4, and 0.7 (CPUE) and 0.1, 0.5 and 1
(catch). These values capture a broad range of scenarios from very in-
formative to very imprecise, and the higher values are not unreasonable
given the lack of information for blue shark in the Indian Ocean.

2.4. Performance evaluation and expectations

Estimation performance was evaluated in terms of the means (over
simulations) of the absolute relative errors (MAREs) of MSY and current
stock status relative to unfished biomass (referred to as ‘depletion’):

= −MARE E T
T

| |
(9)

where E and T are respectively the estimated and true values of the
quantities of interest. The estimated value is set to the mean of the
posterior distribution. The simulations involve many factors so a linear
model of the form:

= +MARE hlog( ) EM* *catch-series CV(catch)*CV(cpue) (10)

where * denotes an interaction of variables, was fitted to the results of
the simulations. Stepwise model selection was applied separately to the
MAREs for MSY and depletion to enable patterns to be detected quan-
titatively. The most parsimonious model was selected using AIC
(Akaike, 1974).

The expectation for this analysis would have been: (a) the MAREs
would be higher for larger extents of CPUE and catch observation error,

1 Or equivalently for this case a multiplier on the pup survival given the OM
does not allow for fishery impacts on pups.
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(b) more contrast in biomass would lead to better estimation perfor-
mance, (c) the PTPM would lead to lesser bias and more variation than
the LPM, and (d) the results for the EMs based on the prior for r cen-
tered on the results of the demographic analysis would outperform the
other EMs.

3. Results and discussion

3.1. Results of the simulations

The values for the MAREs for all scenarios are listed in

Table 2
The eight estimation methods and the priors on which they are based.

Abbreviation r p log(K)

h=0.4 h= 0.6 h= 0.79

DEM_LPM N[0.1,0.2] N[0.16,0.2] N[0.25,0.2] Fixed at 1 U[Cmax,50*Cmax]
DEM_PTPM N[0.1,0.2] N[0.16,0.2] N[0.25,0.2] U[0,1]
NON_ LPM U[0,0.5] Fixed at 1
NON_PTPM U[0,0.5] U[0,1]
DEML_LPM N[0.05,0.2] N[0.08,0.2] N[0.13,0.2] Fixed at 1
DEML_PTPM N[0.05,0.2] N[0.08,0.2] N[0.13,0.2] U[0,1]
DEMH_LPM N[0.38,0.2] Fixed at1
DEMH_PTPM N[0.38,0.2] U[0,1]

Gamma denotes the gamma distribution; U denotes the uniform distribution; N[x,y] denotes a normal distribution with expectation and standard deviation equal to x
and y respectively.

Fig. 1. The catch series (1950–2015) in the operating models.

Fig. 2. Expected operating model CPUE (1950–2015) and the fit of the LPM and PTPM models when the catch and CPUE data are not subject to observation error.
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Supplementary Tables S1–S9. The linear model supports that the main
effects as well as several 2- and 3-way interactions are consequential
(Tables 3 and 4). However, the reduction in the variance in log (MARE)
explained by the interactions that are evaluated to be “significant” is
quite small (adding these interactions only increased the explained
variation by 2% for both MSY and depletion [e.g., the Residual Sum of
Squares for depletion decreased from 75,617 to 75,551]; Supplemen-
tary Tables S10 and S11). Although measures of significance are pro-
vided in Tables 3 and 4, they should only be interpreted qualitatively
because the ‘data’ is model output, and significance could be increased
by increasing the number of replicates.

The values for the parameters of the selected sub-model of Eq. 10 for
MSY are listed in Table 3. The magnitude of the MARE for MSY differs
among the catch series (highest for ‘increasing’, intermediate for ‘de-
clining’, and lowest for ‘stable’). For the stable catch series, the MARE
for MSY is lower for the higher values of steepness (0.6 and 0.79). The
MARE for MSY increases with increases to both the extent of catch and
(particularly) CPUE observation error, with a strong (and positive) in-
teraction (Table 3). The MAREs for MSY differ among the EMs but there
is a complex interaction among the various factors in relation to the
impact of EM choice. However, in general, the MARE is higher for the
DEMH prior and the use of the PTPM. The effect of selecting the DEML
prior (negatively biased prior mean for r) leads to slightly lower MAREs
for MSY, but significantly for the increasing catch series and higher
steepness (a reduction inMARE of almost 19% all things being equal for
the increasing catch series for both production model types).

The values for the parameters of the selected sub-model of Eq. 10 for

Table 3
Summary of the application of the linear model to determine which factors
most influence theMAREs for MSY. Significant results (p < 0.05) are indicated
by bold underlined typeface. The impact of using the LPM, steepness= 0.4, the
declining catch series and assuming the DEM prior are included in the intercept.
The estimates indicate the difference between the impacts of the other factors
and the intercept.

Factors Estimate Standard
error

t value p value

(Intercept) −2.89 0.03 −83.07 <0.001
Catch(Increasing) 1.17 0.04 26.94 <0.001
Catch(Increasing)*Model(PTPM) 0.03 0.04 0.70 0.49
Catch(Increasing)*Model

(PTPM)*Steepness(0.6)
−0.01 0.05 −0.20 0.84

Catch(Increasing)*Model
(PTPM)*Steepness(0.79)

0.11 0.05 2.05 0.04

Catch(Increasing)*Steepness(0.6) 0.07 0.06 1.09 0.28
Catch(Increasing)*Steepness(0.79) 0.14 0.06 2.29 0.02
Catch(Stable) −0.07 0.04 −1.63 0.10
Catch(Stable)*Model(PTPM) 0.03 0.04 0.82 0.41
Catch(Stable)*Model

(PTPM)*Steepness(0.6)
0.16 0.05 2.92 0.04

Catch(Stable)*Model
(PTPM)*Steepness(0.79)

−0.32 0.05 −5.91 <0.001

Catch(Stable)*Steepness(0.6) −0.64 0.06 −10.49 <0.001
Catch(Stable)*Steepness(0.79) −0.16 0.06 −2.54 0.01
cv_catch 0.82 0.02 34.73 <0.01
cv_catch*cv_cpue 0.25 0.05 4.99 <0.001
cv_cpue 0.91 0.03 27.64 <0.001
Model(PTPM) 0.04 0.03 0.03 0.97
Model(PTPM)*Steepness(0.6) 0.02 0.04 0.61 0.54
Model(PTPM)*Steepness(0.79) 0.06 0.04 1.48 0.14
Prior_r(DEMH) 0.09 0.04 2.12 0.03
Prior_r(DEMH)*Catch(Increasing) 0.22 0.05 4.03 <0.001
Prior_r(DEMH)*Catch

(Increasing)*Steepness(0.6)
−0.04 0.08 −0.46 0.65

Prior_r(DEMH)*Catch
(Increasing)*Steepness(0.79)

0.01 0.08 0.14 0.89

Prior_r(DEMH)*Catch(Stable) 0.02 0.05 0.41 0.68
Prior_r(DEMH)*Catch

(Stable)*Steepness(0.6)
−0.13 0.08 −1.63 0.10

Prior_r(DEMH)*Catch
(Stable)*Steepness(0.79)

−0.08 0.08 −1.04 0.30

Prior_r(DEMH)*Model(PTPM) 0.08 0.03 2.93 <0.01
Prior_r(DEMH)*Steepness(0.6) −0.03 0.05 −0.53 0.60
Prior_r(DEMH)*Steepness(0.79) −0.07 0.05 −1.31 0.19
Prior_r(DEML) −0.01 0.04 0.27 0.79
Prior_r(DEML)*Catch(Increasing) −0.01 0.05 −0.21 0.83
Prior_r(DEML)*Catch

(Increasing)*Steepness(0.6)
−0.05 0.08 −0.66 0.51

Prior_r(DEML)*Catch
(Increasing)*Steepness(0.79)

−0.19 0.08 −2.52 0.01

Prior_r(DEML)*Catch(Stable) −0.01 0.05 −0.11 0.91
Prior_r(DEML)*Catch

(Stable)*Steepness(0.6)
0.04 0.08 0.52 0.60

Prior_r(DEML)*Catch
(Stable)*Steepness(0.79)

0.03 0.08 0.35 0.73

Prior_r(DEML)*Model(PTPM) −0.01 0.03 −0.52 0.61
Prior_r(DEML)*Steepness(0.6) −0.02 0.05 −0.32 0.75
Prior_r(DEML)*Steepness(0.79) −0.02 0.05 −0.40 0.69
Prior_r(NON) 0.03 0.04 0.65 0.52
Prior_r(NON)*Catch(Increasing) 0.03 0.05 0.50 0.61
Prior_r(NON)*Catch

(Increasing)*Steepness(0.6)
0.00 0.08 −0.06 0.95

Prior_r(NON)*Catch
(Increasing)*Steepness(0.79)

−0.15 0.08 −1.97 0.05

Prior_r(NON)*Catch(Stable) 0.01 0.05 0.16 0.87
Prior_r(NON)*Catch

(Stable)*Steepness(0.6)
−0.01 0.08 −0.15 0.88

Prior_r(NON)*Catch
(Stable)*Steepness(0.79)

−0.02 0.08 −0.21 0.84

Prior_r(NON)*Model(PTPM) 0.00 0.03 0.14 0.89
Prior_r(NON)*Steepness(0.6) −0.03 0.05 −0.47 0.64
Prior_r(NON)*Steepness(0.79) −0.02 0.05 −0.33 0.74
Steepness(0.6) 0.02 0.04 0.42 0.67
Steepness(0.79) −0.02 0.04 −0.41 0.68

Table 4
As for Table 3, but for depletion.

Factors Estimate Standard
error

t value p value

(Intercept) −3.91 0.03 −144.98 <0.001
Catch(Increasing) 1.73 0.03 55.58 <0.001
Catch(Increasing)*Model(PTPM) −0.17 0.04 −4.85 <0.001
Catch(Increasing)*Model

(PTPM)*Steepness(0.6)
−0.01 0.05 −0.11 0.91

Catch(Increasing)*Model
(PTPM)*Steepness(0.79)

0.06 0.05 1.19 0.24

Catch(Increasing)*Steepness(0.6) 0.01 0.04 0.37 0.71
Catch(Increasing)*Steepness

(0.79)
−0.12 0.04 −3.33 <0.001

Catch(Stable) 0.70 0.03 22.43 <0.001
Catch(Stable)*Model(PTPM) 0.06 0.04 1.75 0.08
Catch(Stable)*Model

(PTPM)*Steepness(0.6)
−0.13 0.05 −2.52 0.01

Catch(Stable)*Model
(PTPM)*Steepness(0.79)

−0.15 0.05 −3.00 <0.01

Catch(Stable)*Steepness(0.6) 0.70 0.04 19.56 <0.001
Catch(Stable)*Steepness(0.79) 1.11 0.04 30.69 <0.001
cv_catch 0.12 0.02 5.45 <0.001
cv_catch*cv_cpue 0.14 0.05 3.08 <0.01
cv_cpue 0.87 0.03 28.42 <0.001
Model(PTPM) 0.14 0.03 4.76 <0.001
Model(PTPM)*Steepness(0.6) 0.02 0.04 0.51 0.61
Model(PTPM)*Steepness(0.79) −0.06 0.04 −1.54 0.12
Prior_r(DEMH) 0.02 0.02 0.65 0.52
Prior_r(DEMH)*Catch

(Increasing)
0.08 0.03 2.55 0.01

Prior_r(DEMH)*Catch(Stable) −0.01 0.03 −0.25 0.81
Prior_r(DEMH)*Model(PTPM) −0.03 0.02 −1.04 0.30
Prior_r(DEML) 0.00 0.02 0.02 0.99
Prior_r(DEML)*Catch(Increasing) −0.05 0.03 −1.72 0.08
Prior_r(DEML)*Catch(Stable) −0.01 0.03 −0.33 0.74
Prior_r(DEML)*Model(PTPM) 0.03 0.02 1.37 0.17
Prior_r(NON) 0.02 0.02 0.79 0.43
Prior_r(NON)*Catch(Increasing) −0.02 0.03 −0.55 0.58
Prior_r(NON)*Catch(Stable) −0.01 0.03 −0.25 0.80
Prior_r(NON)*Model(PTPM) 0.01 0.02 0.44 0.66
Steepness(0.6) −0.03 0.03 −1.18 0.24
Steepness(0.79) 0.06 0.03 2.38 0.02
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depletion are listed in Table 4. The main factors again influence the
MAREs but fewer interactions are among the factors that are important
for depletion than was the case for MSY. The most influential factor is
again the catch series but, in this case, the lowest MAREs occur for the
‘declining’ series and the highest (again) for the ‘increasing’ series. In-
creasing the extent of observation error again leads to larger MAREs but
the size of the interaction of catch observation error is less con-
sequential than was the case for MSY. OM steepness is again important,
but performance is now best for the lowest value for steepness (0.6),
with the poorest performance for the highest value for steepness (0.79).
Basing the EM on the PTPM again leads to higher MAREs.

3.2. Comparison with a priori expectations

Expectation (a) is supported by the results of the simulation analysis
because the MAREs increase with increasing extents of observation
error for catch and CPUE. Lower CPUE observation error (particularly
the lowest level) somewhat reduced the likelihood of extreme over-
estimation caused by high catch observation (Supplementary Figs
S2–S4). Expectation (b) is also supported because the MAREs are
highest for the increasing catch series (a one-way trip in biomass). The
MAREs for the most informative catch series (‘declining’) were either
the lowest (depletion) or equally lowest. In relation to expectation (c),
the MAREs for the PTPM are higher than those for the LPM, presumably
because the reduction in bias is more than offset by the increase in
variation. Expectation (d) is generally strongly supported for depletion,
with the “DEM” EMs usually leading to the best performance (although
the differences in MAREs among EMs are seldom large). The situation
for MSY is less clear, with quite marked differences in MAREs amongst
EMs, in particular, the ‘wrong prior’ for r (DEML) leads to the lowest
MAREs. To help summarize the results for MSY, the best EM for each
combination of catch series, steepness value, and combination of ob-
servation error CV is indicated in Supplementary Tables S1–S9. This
highlights that when one of the EMs substantially outperforms the
others, it is the DEML prior combined with the Schaefer production
model (abbreviation DEML_LTM) when the catch series is increasing.

3.3. Why does the ‘wrong’ prior sometimes outperform the ‘correct’ prior for
r?

Two sets of analyses were undertaken to explore how the prior for r
interacts with the choice of population dynamics model. The first set of
analyses involved fitting the LPM and PTPM when there was no ob-
servation error based on maximum likelihood, and the second set in-
volved fitting these models using a Bayesian estimation framework
when there was observation error in catch and CPUE.

The LPM and PTPM can fit the CPUE data almost perfectly when
there was no observation error (Fig. 2), suggesting that both models
have the flexibility to mimic the data. However, it is evident that the
LPM and PTPM do not capture the dynamics exactly when the results of
the fits are expressed as the estimated relationship between population
growth rate and population depletion (Fig. 3) and the estimated pro-
duction function (Fig. 4), although the PTPM fits better. This occurs
because of model mis-specification (for the LPM) and because neither
the LPM or PTPM allows for time-lags and transient age-structure ef-
fects, as noted by Punt and Szuwalski (2012). In particular, the LPM
assumes a linear relationship between growth rate and depletion, the
PTPM allows for a non-linear relationship between growth rate and
depletion, and the OM is based on an age-structured model. This leads
to a marked difference between the ‘true’ (OM) relationship between
growth rate and population depletion, particularly for the LPM.

Accounting for observation error (see Fig. 5–7 for a sample of the
scenarios for the DEM_LPM, DEM_PTPM, DEML_LPM, and DEML_PTPM
estimation methods for a steepness of 0.6; Supplementary Fig. S2 for all
scenarios for the increasing catch series) reveals that the PTPM usually
mimics the relationship between growth rate and population depletion

better than the LPM in terms of central tendency, and particularly at
low levels of depletion. However, the PTPM leads to much greater inter-
simulation variation in this relationship than the LPM. The lack of in-
formation caused by observation error means that the prior for r is not
updated substantially for the fairly uninformative increasing catch
series, (Fig. 8). This lead, for higher observation error CVs for catch and
CPUE, to the situation in which the true relationship between growth
rate and depletion is not included in the samples from the posterior
(second and third rows of Fig. 5–7), and to frequently over-estimate K
and hence MSY. The over-estimation of growth rate occurs under the
DEM prior because the LPM is forced to have a growth-rate intercept
equal to the value for r generated from the prior for r that declines to
zero at K.

The relationship between growth rate and depletion is linear for the
LPM (Eq. 2) so a priori this relationship will over-estimate productivity
compared to the true situation even though the base level for r is correct
for the OM. This “problem” can be rectified by either the availability of
better data or basing the prior on a value for r that is more re-
presentative of the full range of depletion than the growth rate in the
limit of zero population size. Overall therefore, the DEML_LPM EM
performs best for estimating MSY for the increasing catch series when
the data are uninformative because (a) using the DEML prior leads to an
a priori relationship between growth rate and depletion that better
mimics the true relationship over most of the range of depletion, and
(b) using LPM leads to lesser variance.

4. Conclusion and recommendations

The results of this paper highlight the danger of integrating demo-
graphic analysis into Bayesian surplus production models without
careful consideration of the behavior and consequences of the prior for
r and the implied relationship between growth rate and population
depletion. These consequences, and hence the risk of over-estimation of
productivity when the prior for r is based on information of demo-
graphy in the limit of zero population size as is the intent, appears to be
greater in data-poor (high uncertainty in catch and CPUE) and unin-
formative (one-way trip in catch and biomass) cases. While simulation
is not only the diagnostic tool that should be used to select among es-
timation methods, it is an effective way to do so and should be part of
the standard model selection toolbox. This is particularly highlighted by
Fig. 2–4 that show that a model can provide a near-perfect fit to a data
set yet lead to quite erroneous results. We recommend that simulation
be used more routinely, particularly in data-poor cases, to examine the
consequences of limited data, and hence the implications of different
prior choices. Examining sensitivity to different priors is an important
first step, but cannot quantify the effects of model mis-specification.

Simulation has been used extensively to evaluate the performances
of assessment methods (e.g., Punt and Szuwalski, 2012; Zhang, 2013;
Carruthers et al., 2014), and this paper continues this work. We wish to
highlight the importance of not simply conducting simulations but also
developing analysis methods to attempt to synthesize the vast amount
of output from a simulation study (in this paper using graphical sum-
maries and linear models) and conducting additional analyses to assess
why the results are as they are. The most important conclusions of this
work are not the numerical results, but the insight gained on how
production models represent population dynamic processes.

The productivity of the OM is related to several parameters such as
the growth curve, the rate of natural mortality, and the shape (and
steepness) of the stock-recruitment relationship (e.g., Sissenwine and
Shepherd, 1987; Punt and Cope, 2017). The use of an informative prior
for r (DEM) from the demographic analysis led to better performance
than the use of the non-informative prior (NON). However, it is also
clear that an SPM can only capture the equilibrium production dy-
namics given a correct assumption about the shape of the production
function. r in LPM and that in PTPM are related according to:
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from which is evident that rPTPM is lower than rLPM when p is less than 1,
confirming that, all things being equal, using the same (demographic
analysis-based) prior for r will have different consequences for the two
SPMs (particularly given uninformative data). The form of relationship
between growth rate and population depletion does not explicitly ac-
count for in demographic analysis. JABBA-Select (Winker et al., 2020)
extends standard Bayesian SPMs by accounting for stock-recruitment
steepness and changes over time in selectivity using an age-structure
equilibrium model (ASEM) that applies the methods of Sissenwine and
Shepherd (1987) to create an informative prior for m (shape parameter)
[m = p+ 1] and HMSY (harvest rate at MSY). HMSY is a function of r

and m:

=H r
mMSY (12)

JABBA-Select has yet to be fully tested, but initial simulation testing
shows that it is less biased and more accurate than convention SPMs,
and can perform as well as some age-structured production models
particularly for data-poor cases (Winker et al., 2020). However, JABBA-
Select requires additional information in the form of a prior for steep-
ness. This is amongst the most difficult parameters to estimate in data-
poor situations (Lee et al., 2012; Zhu et al., 2012; and approximately
80% of the global catch comes from such fisheries; Costello et al.,
2012). Similar to demographic analysis, steepness can be derived ana-
lytically from life-history information, but in common with a

Fig. 3. True (operating model; red line)
and estimated relationships between
the growth rate and population deple-
tion. The estimates are based on fitting
the LPM and PTPM to the catch and
CPUE data sampled without error
(black solid and black dotted lines re-
spectively). For interpretation of the
references to color in this figure cita-
tion, the reader is referred to the web
version of this article.)

Fig. 4. True (operating model; red line) and estimated relationships between the equilibrium production and spawning stock biomass (SSB). The estimates are based
on fitting the LPM and PTPM to the catch and CPUE data sampled without error (black solid and black dotted lines respectively). For interpretation of the references
to color in this figure citation, the reader is referred to the web version of this article.)
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demographic analysis requires values for the biological parameter when
the population achieves extremely low depletion (Brooks et al., 2010).

Nevertheless, informative priors for steepness for many species can
be obtained using meta-analyses of global compilations of the results of
stock assessments for data-rich species (e.g., Punt et al., 2005; Shertzer
and Conn, 2012; Wiff et al., 2018). Thus, we recommend that the use of
JABBA-Select in such cases. On the other hand, in data-poor situations,
basing an assessment on the LPM with a prior for r based on a

demographic analysis may be the only possibility. Analysts developing
priors for r need to consider several potential pitfalls related to the
information on which the prior for r is based:

• The number of eggs produced should not be considered as an esti-
mate of the number of pups (i.e., assuming p0= 1) as this will over-
estimate r all things being equal.

• The may be value in reducing the mean of the prior (the 50%

Fig. 5. True (operating model; red line) relationship between the growth rate and population depletion and summaries of posteriors from 100 stochastic simulations
(left panels), and true production functions and 100 production functions from posteriors (right panels). The results in the figure pertain to the increasing catch series
and three selected sets of levels of observation error. For interpretation of the references to color in this figure citation, the reader is referred to the web version of this
article.)

Fig. 6. As for Fig. 5, but for the stable catch series.
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considered here is arbitrary but was approximately correct for the
scenarios considered) if the demographic analysis is based on de-
mographic parameters collected from the population when it was at
low stock size (i.e., representative of the true r) but with a stable age
structure, and the assessment is based on the LPM. If the data are
informative, the prior will be updated (Fig. 8) but if not, a reduced
mean will lead to less bias for model outputs such as MSY.

• The value of r will be negatively biased if the demographic analysis
is based on values of demographic parameters collected when the
population is not at low stock size. Cortés (2016) and Gedamke et al.
(2007) note that the relationship between the actual value of r (rtrue)
and r corresponding to the status of the population when the de-
mographic data were collected (rcurrent) is approximately rtrue =

rcurent(1 − depletion) so basing the demographic analysis on para-
meter values obtained when the stock was half its unexploited level
would be equivalent to the 50% adjustment referred to above.

This paper focused on the consequences of ignoring age-structured
dynamics and observation error, and future work could examine the
additional consequence of errors in assumptions regarding selectivity,
and the nature of process error. In addition, the problems caused by
discarding, under- or mis-reporting of catches, conflicting CPUE series,
and misclassification of species may play a more important role for
some data-poor cases, especially by-catch species. However, as noted by
Rudd and Branch (2017), several of the quantities on which manage-
ment advice is based will be robust to such errors. Nevertheless, the

Fig. 7. As for Fig. 5, but for the declining catch series.

Fig. 8. Priors and posteriors for r from 100 stochastic simulations where h=0.6.
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consequences of these uncertainties need further research. The OM (and
the actual assessment for Indian Ocean blue shark) was based on the
Beverton–Holt stock-recruitment relationship for which BMSY/K is al-
most always below 0.5 (Punt et al., 2014). Further work could explore
alternative stock-recruitment relationships (e.g., Punt and Cope, 2019)
for which the production function is more representative of long-lived
species such as sharks for which BMSY/K is believed to be larger than
0.5, and hence for which the prior for Pella–Tomlinson p parameter
would need to include values larger than 1.

Finally, the purpose of this paper is not to denigrate the use of SPMs,
particularly in data-poor situations. SPMs, although unable to fully
capture the true dynamics of an age-structured population (Punt and
Szuwalski, 2012), at least make use of data on relative abundance,
which will minimally improve estimation of depletion, as long as the
model is able to mimic the trend in abundance index (Piner et al.,
2011). Many other methods for estimating population status for use in
management have been developed based on population dynamics
models (e.g., CMSY; Froese et al., 2017). However, their performances
are unlikely to be better than methods that make use of data on po-
pulation trends, especially catch-only models that were not intended for
long-term management (Wetzel and Punt, 2015). Methods that simply
involve transforming priors for population parameters into estimates of
biomass and MSY will be even more subject to the concerns outlined
here, and should be avoided in favor of methods that update priors
given available data.
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