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Abstract

This document presents the current status of development of an OperatingModel for the Indian Ocean swordfish
(Xiphias gladius) stock, with the re-condition of themodels to themost recent sworsfish stock assessment, conducted
in 2020. It explores the role of 9 axis of structural uncertainty, each with 2 to 3 levels. The current grid results in
2592 alternative population trajectories and productivity estimates. To reduce the number of model runs, a partial
factorial design of 108 model runs is proposed. A set of diagnostics are then applied, and currently a set of 70 models
is considered to compose the OM.

1 Introduction

The Indian Ocean Tuna Commission (IOTC) has committed to a path of using Management Strategy Evaluation
(MSE) to meet its obligations for adopting the precautionary approach. A species-specific workplan was adopted
at the 2017 IOTC meeting (IOTC 2017a), outlining the steps required to adopt simulation-tested Management Pro-
cedures for the highest priority species, among them the Indian Ocean swordfish stock. The 2017 session of the
IOTCWorking Party on Methods (WPM) (IOTC 2017b) discussed and proposed an initial set of elements likely to be
responsible for most of the model uncertainty, both in past dynamics and current stock status. The development of
the operating model (OM) started with the 2017 assessment and several updates have been presented as well as an
initial testing for candidate management procedures (Mosqueira et al. (2017), Rosa et al. (2018), Rosa et al. (2019)).
The objective of the present working document is to update the OM conditioning to the most recent IOTC swordfish
stock assessment, conducted in 2020, including diagnostics applied to OMs.

2 2020 Stock Assessment

Themost recent Indian Ocean swordfish stock assessment (Fu 2020) was presented at the 2020 session of theWorking
Party on Billfish (WPB). The Stock Synthesis 3 (Methot and Wetzel 2013) population model is age-based (with ages
0-30), separated by sex, and partitioned into four areas. Information from 15 fisheries, defined by fleet and region,
was used, including length composition data for fourteen of them.

The stock assessment explored the uncertainty with respect to various assumptions through a grid of 24 model
runs (Figure 1), based around two alternative values for growth, three values of stock-recruit steepness, two of
recruitment variability, and two of effective sample size of the length composition data. All of these elements have
been incorporated in the grid developed by WPM. Sensitivity runs included changes to CPUEs, length composition
and growth information. For complete details of the models please refer to Fu (2020) and IOTC (2020).
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Figure 1: Population trajectories (recruitment, SSB, catch and F) estimated by the 2020 Stock Synthesis stock assess-
ment of Indian Ocean swordfish.

The operating model (OM) was built around one of the stock assessment models io4_h80_GoMf_r2_CL005.
This is a four area model, with both the Japanese (all areas), Portuguese and South African (southwest) CPUEs,
steepness of 0.80, fast growth, recruitment sigmaR=0.2, effective length frequency sample size capped at 5. For
simplicity of building the OM grid, as both the Portuguese and South African CPUE presented similar trends, the
last was dropped from the model fit. This model will be hereafter refered to as “base case.”

2.1 Model diagnostics

As in albacore MSE (Mosqueira 2020), an initial set of model diagnostics, following Carvalho et al. (2020), was
applied to the base case. Diagnostics were based on convergence, retrospective analysis, runs test and hindcast cross
validation. These diagnostics were run using the R package ss3diags (Winker et al. 2021).

2.1.1 Convergence level

Convergence is assessed by the inversion of the Hessian matrix, and the value of the gradient at the solution. Car-
valho et al. (2020) suggest the value of the gradient at the solution should be smaller than 1e-4. In the first iteration
the convergence value of the base case model was higher than the proposed value, initial parameters were jittered
and a convergence lower than 1e-4 was obtained.

2.1.2 Retrospective analysis

The retrospective pattern for the estimated SSB from the base case model is shown in Figure 2. This plot also includes
a one-step ahead projection of SSB based on the known total catches. Retrospective analysis is a form of hindcasting
commonly used to assess the stability of a model formulation to updates in the data. Mohn’s rho (Mohn 1999) is then
used to quantify the strength of the retrospective pattern. (Hurtado-Ferro et al. 2014) proposed that values outside
the -0.15 to 0.20 range, should indicate an undesirable retrospective pattern for longer lived species. In the case of
the base case model Monh’s rho is within the proposed range.
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Figure 2: Five year restrospective runs with a one step ahead forecast of spawning stock biomass according to total
catch for Indian Ocean swordfish.

2.1.3 Runs test

Runs tests on the CPUE and length-frequency data sources are common diagnostics of goodness of fit (Carvalho et
al. 2017). The Wald-Wolfowitz runs test, a non-parametric statistical test that checks the randomness hypothesis
for a data sequence, can be used to identify residuals patterns that should not be considered random. The runs test
for the CPUEs and for the length-frequency data sources in the base case (Figure 3 and Figure 4) indicate that the
model fit to most CPUE data series (those in green) do not present significant patterns, while for length half the
series present significant patterns in the residuals.

2.1.4 Hindcasting cross validation

A proposed model-free hindcasting technique (HCXval) uses cross-validation to compare observations to their pre-
dicted future values (Kell, Kimoto, and Kitakado 2016). The prediction skill of a model is then computed from the
prediction residuals. A robust statistic for evaluation the prediction skill can be constructed using the mean absolute
scaled error (MASE) of Hyndman et al. (2006). The R package ss3diags contains functions that simplify the calcula-
tion of prediction skill and the computation of their MASE for both CPUE and length frequencies. The prediction
skills of the indices for each area are presented in Figure 5. A MASE score larger than 1 indicates the model does
only as well as a random walk at predicting the quantity, while a value of 0.5 indicates the model is twice as good as
a random walk. The model prediction skill appears to be better for the Northwest area.

3 Operating model

The OM being developed here is a second iteration of conditioning of the operating model. It is based on the
population and fishery models used for the assessment of the stock status of Indian Ocean swordfish in 2020 (see
above). Work on this MSE exercise is being carried out around a public source code repository, available at https:
//github.com/iotcwpm/SWO.
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Figure 3: Runs tests of the CPUE series in the base case model for Indian Ocean swordfish.
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Figure 4: Runs tests for the various sources of length frequency data in the Indian Ocean swordfish base case.
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Figure 5: Hindcasting cross-validation results for CPUEs by area for Indian Ocean swordfish base case.

3.1 Structural uncertainty grid

The 2017 session of the WPM proposed an initial set of options for characterizing the structure of the uncertainty
grid for generating the OM, based on a set of SS3 model runs (IOTC 2017b). Those options were further discussed
during the workshop meeting of the authors to start the conditioning of the OM. The decision was to construct a grid
of model runs built around those suggested by the WPB on feasible, or at least not too extreme, values for a number
of assumptions and fixed parameters in the population model. The impact of some of these elements in the model
were already explored in some detail by the researchers carrying out past stock assessments (Secretariat (2017), Fu
(2020)).

The nine factors currently considered in the structural uncertainty grid for the swordfish OM are the following:

3.1.1 Selectivity

Two functions were considered for the selectivity-at-length of the longline fleets: the current double normal, in
which selectivity decreases in the older ages, and a logistic function, in which selectivity remains flat after reaching
its asymptote.

3.1.2 Steepness

Steepness (h) from Beverton and Holt stock-recruitment function is often a very influential parameter which is
difficult to estimate in most stock assessments. The base case SA models used 0.80, to reflect plausible lower and
higher values, three values are considered in the uncertainty grid (0.6, 0.75 and 0.9).
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3.1.3 Growth & Maturity

Growth and maturity are very important parameters in stock assessments. Swordfish exhibit a marked difference
in growth between male and female, therefore sex-specific growth and maturity estimates are used in all cases.
There are concerns in the age estimation of swordfish, with differences being found in the results depending on
what structure is used to estimate age (fin rays or otoliths). This uncertainty also undermines the maturity by age
relationship. Two growth curves and maturity estimates are considered for the OM (Figure 6):

• Slow growth and late maturity (Wang, Lin, and Chiang (2010))
• Faster growth and earlier maturity (Farley et al. (2016), from otoliths)

Figure 6: Maturity at age scenarios used for conditioning the Swordfish operating model.

3.1.4 Natural Mortality (M)

Natural mortality is a common unknown in most stock assessment models. The base case considered in the stock
assessmentmodel was 0.2 constant for all ages, whichwas supplementedwith an alternative value of 0.4 also constant
for all ages as suggested by the WPM. After initial exploration of OM results it was clear that setting M at 0.4 would
not produce plausible estimates of biomass, therefore, based on these results, the authors decided to set natural
mortality to 0.3 instead of 0.4. A 3rd possibility using age-specific M values, based on the the Lorenzen equation was
also included in the grid. The age specific mortality was scaled so that M at age at maturity (age 6) was 0.25. A total
of 3 possibilities were therefore considered for M in this grid (Figure 7):

• 0.2, constant for all ages
• 0.3, constant for all ages
• Age and sex specific values based on the Lorenzen equation

3.1.5 Effective Sampling Size (ESS)

Two values were used for the relative weight of length sampling data in the total likelihood, through changes in the
effective sampling size parameter, of 2 and 20. This alters the relative weighting of length samples and CPUE series
in informing the model about stock dynamics and the effects of fishing at length.
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Figure 7: Natural Mortality options used for conditioning the swordfish operating model.

3.1.6 CPUE series

CPUE series presented to the WPB showed conflicting trends, specially in the final years of the series. The base case
considered in the assessment used the Japanese late (1994-2018) CPUEs, with the Portuguese indices from 2000-2015
being used in the Southwest area. An alternative view could be generated by using the Taiwanese CPUEs, again in
combination with those from the Portuguese fleet for the SW. A total of 3 possibilities are thus being considered for
CPUE series in this model grid:

• JPNlate + EU.PRT : Japanese CPUE (1994-2018) with indices 2000-2018 in the SW replaced by the Portuguese
index (with an overlap in the years 2000-2003),

• JPNlate: Japanese CPUE (1994-2018) for all areas,
• TWN + EU.PRT : Taiwanese CPUE (1994-2018) with indices 2000-2018 in the SW replaced by the Portuguese
index (with an overlap in the years 2000-2003).

3.1.7 CPUE scaling

The stock assessment assumed a stock residing in four areas and CPUE scaling was used as a mean to determine
regional biomass distribution. Three alternatives for scaling the CPUES were considered:

• area effect * surface
• catch by area
• biomass by area, as estimated from a four area model with no scaling

3.1.8 Catchability increase

Two scenarios were considered for the effective catchability of the CPUE fleet. On the first one it was assumed that
the fleets have not improved their ability to fish for swordfish over time, or that any increase had been captured by the
CPUE standardization process (0% increase). An alternative scenario considered a 1%/year increase in catchability
by correcting the CPUE index to reflect this.

3.1.9 SigmaR

Two values were considered for the true variability of recruitment in the population (sigmaR), specifically 0.2 and
0.6. The WPM discussed that both lower and higher options should be considered, but that a further middle value
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could also be added in the future (0.4) (IOTC 2017b). At this stage, and in order to not increase too much the grid of
model runs, only the two extremes (0.2 and 0.6) were considered for recruitment variability.

3.1.10 Summary of the OM grid of uncertanties

Table 1 below summarizes the grid of uncertanties considered for the conditioning of the OM. This grid results in a
total of 2,592 model runs.

Table 1: Summary view of the swordfish operating model grid.

Variable Values
Selectivity Double Normal Logistic
Steepness 0.6 0.75 0.9
Growth +
Maturity

Slow growth, late
maturity (Wang et al.,
2010)

Fast growth, early maturity
(Farley et al., 2016, otoliths)

M Low = 0.2 High = 0.3 Sex-specific Lorenzen M (Farley et
al. (2016), otoliths)

ESS 2 20
CPUE scaling
schemes

Area effect x Surface Catch Biomass

CPUEs JPN late + EU.PRT JPN late TWN + EU.PRT
Catchability
increase

0% 1% / year

3.2 Main effects

A first exploration has been carried out of the individual effect on model output of adopting an alternative value for
each variable, one at a time, using the base case model. The estimates of virgin spawning biomass (SSB0) are shown
in Figure 8, while trend (SSB2018/SSBMSY) is presented in Figure 9.

3.3 Fractional factorial design

In the first iteration of the OM the 2,592 models were run, which is computationally demanding, specially if running
also the diagnostics that are in need of removing years of data. The MSE WPM (IOTC 2021a) suggested the frac-
tional factorial design could be attempted. The fractional factorial design consists of a subset of the models in the
full factorial design, considering that 3-way (and higher) interactions are rare and that models in the full factorial
design are redundant, not providing any new information. In this case, 108 model runs were chosen to represent the
uncertainties in stock dynamics.

3.3.1 Model selection

Model selection followed the suggestions byMosqueira (2020) for albacoreMSE. Initial selection of models was based
on convergence level. Based on the distribution of the convergence level of the models (figure 10), models with a
convergence level of 0.001 were excluded from further analysis (14 models).

Another selection was based on the CPUE MASE scores, in order to keep models with some prediction skill. Con-
sidering this, model runs with a MASE score>1 for the CPUE series in the NW region were also excluded from the
operating model (26 models).

Given these two selection objectives, from the 108 models, 70 models are considered to constitute the operating
model.

8



Rosa et al. - Swordfish OM

0e+00

1e+05

2e+05

3e+05

0.
2

0.
3

Lo
re

nz
en 0.

6

0.
75 0.
9

0.
6 2 20

1.
01

W
an

g

jp
n

tw
np

t

ar
ea

ca
tc

h

Lo
gi

st
ic

S
S

B
0

cpue ess growmat llq llsel M scaling sigmaR steepness

Figure 8: Changes in estimated virgin spawning stock biomass (SSB0) for each level within each factor. Horizontal
lines represent the minimum and maximum estimates of the stock assessment models, dashed line represents the
model estimates used to construct the base case.
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Figure 9: Changes in estimated spawning stock biomass in the last year (SSB2018) over the SSB at MSY (SSBMSY)
for each level within each factor. Horizontal lines represent the minimum and maximum estimates of the stock
assessment models, dashed line represents the model estimates used to construct the base case.
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Figure 10: Frequency distribution of the convergence level for the 108 model runs. The black line represents the
applied cut-off value (1e-3).

Further selection would be based on unrealistic estimates of SSB0 (Figure 11) or SSB2018/SSBMSY (Figure 12).

In albacore models that cannot explain current catches are also being excluded from the OM, in the case of swordfish
updating to recent catches (2019 and 2020-provisional) does not lead to the exclusion of any model.

A comparison of key quantities by each level of each factor is presented in Figures 13 and 14. Additionally, the overall
time series plot of the OM (70 runs), shows values for abundance and fishingmortality to bewidely distributed around
the stock assessment (Figure 15), although somewhat more pessimistic.

4 Next steps

This document presents development of the work that has been carried out regarding to the management strategy
evaluation of swordfish in the Indian Ocean, focus has been given to the re-conditioning of the OM. Progress on the
MSE work for swordfish will continue on the development of the OM, testing of candidate management procedures
with model weighting based on prediction skill (through MASE) using the p-value from Diebold-Mariano test and
incorporating the feedback from TCPM04 (IOTC (2021b)). Potential robustness tests are also proposed to carried out
as bellow:

• Continued low recruitment
• CPUE overcompensation bias
• Reported overcatch
• Not reported over catch
• Tracking the Southwest area abundance.
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