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ABSTRACT 

Three distant-water tuna longline countries, Japan, Korea and Taiwan, have started a collaborative 

study since December 2019 for producing the joint abundance indices using integrated fishery data of 

these fleets to contribute to the upcoming stock assessments of yellowfin tuna in the Indian Ocean. 

The intention is to produce reliable indices by increasing the spatial and temporal coverage of fishery 

data. In this paper, results using data up to 2020 fisheries were provided to update the WPTT on the 

progress of this activity. As an underlying analysis, a clustering approach was utilized to account for 

the inter-annual changes of the target in each fishery in each region. For this purpose, a hierarchical 

clustering method with “fastcluster” was used, and the outputs of the finalized cluster were then used 

to assign the cluster label on fishery target to each catch-effort data. For standardizing the 

catch-per-unit-effort data, the conventional linear models and delta-lognormal linear models were 

employed for data of monthly and 1° grid resolution in each region. In addition to the implicit target 

species through the clustering, geographical and temporal covariates were used in the regression 

structures. The models were diagnosed by the standard residual plots and influence analysis.  

 

INTRODUCTION 

Tuna-RFMOs, including the IOTC, recommended that the joint CPUE of longline fisheries be developed to 

improve the stock assessments for tropical tunas, and thus the IOTC has conducted collaborative works for 

several years to produce an abundance index by combining CPUEs data from major longline fleets. An ensemble 

approach of fishery data from multiple longline fleets has been applied to the tropical and temperate tuna species 

for their stock assessments (e.g. Hoyle et al. 2018, Hoyle et al. 2019a, 2019b). 

However, it was found that the fishing technologies, data formats, spatial-temporal coverage were different 

among the fleets, and therefore it is important to discuss and exchange the information among countries using 

ample time in order to improve the analysis and index. To this end, three longline countries, Japan, Korea and 

Taiwan, have been conducting a collaborative study for developing the abundance index since December 2019. 

Some preliminary results using data up to 2019 fisheries have been reported at WPTT-23(DP) to update the 

WPTT on the progress of this activity (e.g. Kitakado et al. 2021).  

In WPTT-23(DP), several suggestions were made:  
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 Data period for Taiwanese data: due to data quality problems, we used data from 2005 onwards; 

 Vessel screening: in our earlier analysis, vessels which have more than or equal to 20 data set (one data set 

means 5-degree grid by month by year by cluster) were used for standardization of CPUE, but this time top 

50% vessels of the number of efforts were also used as requested by the WPTT(DP); 

 Clustering method: in our earlier analysis, a two-step approach with K-means and hierarchical clustering 

was used to sort some dimension problems, but this time “fastcluster” (http://danifold.next/fastcluster.html) 

was used according to the guidance; 

 Target information: in addition to the clustering approach, data of HBF was used for the target index;  

 Target in tropical area: another request was to conduct clustering with BET&YFT as a single species, but 

based on the conversations among member countries, it does not reflect to the YFT target, so finally we 

used the these as separate species. 

 

In this paper, results using data up to 2020 fisheries were provided. Since some detailed information on 

distributions of fishing efforts etc. has been shown in our previous report (Kitakado et al. 2021), main outcomes 

were reported here.  

 

MATERIALS  

Data sharing protocol  

Initially, the analysis was planned to conduct in a series of in-person meetings through data sharing in an intranet 

system to ensure the data security. However, after a face-to-face meeting in Busan in December 2019, we have 

been holding only webinar meetings because of COVID-19 pandemic. Under this circumstance, a data sharing 

protocol was finalized among the three countries with a restriction of data access only by the Chair of the group 

(Toshihide Kitakado) for reduced resolution of data set (not operational data but some aggregated data over 1° 

square grid by month by vessel). The data set combined for yellowfin CPUE standardization were available from 

1975 to 2020, with data fields of year and month of operation, location to 1° of latitude and longitude, vessel id, 

number of hooks, and catch by species in number. We classified the species into albacore (ALB), bigeye (BET), 

yellowfin (YFT), southern bluefin tuna (SBT), black marlin (BLM), blue marlin (BUM), swordfish (SWO), 

other billfishes (BIL), sharks (SKX) and others (OTH).  

 

METHODS 

Analytical procedures 

For standardizing the catch-per-unit-effort data, the conventional linear models and delta-lognormal linear 

models were employed for data of monthly and 1° grid resolution in each region. In addition to the implicit 

target species through the clustering, geographical and temporal covariates were used in the regression structures. 

The models were diagnosed by the standard residual plots and influence analysis and compared via the model 

selection criteria. Besides these conventional regression methods, analyses using an advanced spatio-temporal 

model, VAST, were attempted for developing abundance indices with additional consideration of 

spatio-temporal correlations and targets as well as the life stage of yellowfin tuna. So, in a nutshell, the 

approaches are as follows:  

1) investigation of better approaches to account for changes in targeting within each country;  

2) analyses using conventional regression models with geographical, environmental and fishery (including 

targeting) information for continuity from the previous approaches.   

 

Cluster analysis  

In our previous version of analysis, a two-step approach with K-means and hierarchical clustering was used to 

sort some dimension problems. In WPTT-23(DP), it was advised that a non-two-step approach “fastcluster” be 

used, and therefore the analysis was conducted to follow such a guidance. The data were aggregated by 10-days 

duration (1st-10th, 11th-20th, and 21st~ for each month) based on the agreement of the trilateral collaborative 

working group. The number of clusters was determined when the relative improvement of SS within-clusters 

was less than 10%. See some details shown in Wang et al. (2021).  

 

Regression analyses  
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Log-normal (LN) regression models with a constant adjustment 

Given that around 8.4% of the catch data are 0, we used an adjustment factor (here 10% of mean of CPUE) to 

the CPUE data to employ conventional log-normal distributions as follows: 

log (���	 + �)  =  ���� ������� +  ������������ +  	���� 

Potential covariates used in the analysis were shown below: 

 Temporal component (year, quarter, year*quarter) 

 Spatial component (5° squared longitudinal and latitudinal grid) 

 Vessel ID 

 Cluster category 

 HBF averaged within aggregated data: Shallow (<=7), Medium (8<=HBF<=13) and Deep (14 <= HBF) 

The error terms are assumed to be independently and identically distributed as the normal distribution with mean 

0 and standard deviation σ. The constant adjustment factor, c, is 10% of the overall mean as has been used in 

previous analyses. 

 

Delta-lognormal (DL) regression model 

For R3, a delta-lognormal model was also tested to account for “zero data” statistically as has been used in 

previous analyses (see e.g. Hoyle et al. 2018). For the first component of “zero” or “non-zero” is expressed as a 

binomial distribution with a probability of “non-zero” catch as a logistic relationship with some explanatory 

variables, and the second component for positive catch assumed the same regression structures used in the LN 

regression models with a constant adjustment. The number of hooks was also used in the first component of 

analysis. 

 

Diagnosis and impacts of covariates (Residual plots, Q-Q plots, influence plots) 

The standard residual plots were for the diagnosis for fitting of models to the data and Q-Q plots (only for the 

positive catch component in DL models). In addition, we used influence plots (Bentley et al. 2011) to interpret 

the contribution of each covariate to the difference between nominal and standardized temporal effects.  

 

Extracts of abundance indices from models with interactions 

Once the model fitting and model evaluation were conducted, the final output of the abundance index is 

extracted through an exercise of the least square means (so-called LS means) to account for heterogeneity of 

amount of data over covariate categories (as well as the standardized probability of "non-zero" catches in DL 

models). 

 

RESULTS 

 

Cluster analysis 

The results of cluster analysis were shown in Figure 1. In each country’s analysis, the number of clusters ranged 

from 3 to 5, and among the clusters, there were some clear patterns in cluster groups in which the target was 

clearly yellowfin and some other patterns of mixed targets of yellowfin and bigeye tunas. However, as shown in 

Figure 2 as an example of Taiwanese analysis, when mixing yellowfin and bigeye into a single species, the 

cluster sign and geographical pattern was somewhat lost. Therefore, cluster results with the separate two species 

were used.  

 

Conventional regression analysis 

Full evaluation of models thought the model selection criterion has not yet reached, but comparison of results 

over the following models are shown in Figure 3. Also, the diagnostics and influence plots were shown in 

Figures 4-7.  
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New_clu_use0.5:  YrQ + LonLat + Cluster + Vessel  [top 50% vessels in the number of efforts] 

New_clu_use20:  YrQ + LonLat + Cluster + Vessel  [vessels having more than or equal to 20 data set] 

New_hbf_use0.5:  YrQ + LonLat + HBF + Vessel  [top 50% vessels in the number of efforts] 

New_hbf_use20:  YrQ + LonLat + HBF + Vessel   [vessels having more than or equal to 20 data set] 

 

General and specific observations are given below:  

 Decreasing patterns were similar over the four different models in each region. Data screening methods 

(use0.5 and use20) did not influence the results.  

 In tropical regions, R1 and R4, where two different target indices were matter of concern, general pattens of 

the standardized CPUEs including the recent trend were similar between the two analyses while the relative 

scale over time was slightly different. Some missing information in HBF cannot compare the models 

formally.  

 With some difference, decreasing patterns were also similar to the previous CPUEs used in 2018 

assessment.  

 For region R3, there were much less catch there and quite less YFT targeted vessels, and our data were 

aggregated one, so information might have been a bit poor, and we have not reached very much reasonable 

results in the earlier period of years. So, for the assessment specification, a down-weighted option relative 

to other areas might be worth considering. We have also tried delta-LN analyses as  

DL[for 0/1: YrQ + LonLat + Cluster + LnHooks, for positive catch: YrQ + LonLat + Cluster + Vessel],  

but this did not solve the problems reasonably (see Figure 8) although the residua pattern was improved. If 

R3 results shown in this paper are regarded as usable, another way is to use previous index developed by 

operational data although the recent 3 years’ information is lost. 

 

Acknowledgement  

The authors thank the WPTT-23(DP) participants for their useful comments on our earlier version of paper. The 

authors also thank Simon Hoyle and Dan Fu for their helpful and specific comments for improving the analysis.  

 

REFERENCES 

Bentley, N., Kendrick, T.H., Starr. P.J. and Breen P.A. 2012. Influence plots and metrics: tools for better 

understanding fisheries catch-per-unit-effort standardizations. ICES J. Mar. Sci. 69(1): 84-88.  

Hoyle, S.D., Chang, S.T., Fu. D., Kim, D.N., Lee, S.I., Matsumoto, T., Chassot, E. and Yeh, Y.M. (2019a) 

Collaborative study of bigeye and yellowfin tuna CPUE from multiple Indian Ocean longline fleets in 2019, 

with consideration of discarding. IOTC-2019-WPM10-16.  

Hoyle, S.D., Chassot, E., Fu, D., Kim, D.N., Lee, S.I., Matsumoto, T., Satoh, K., Wang, S.P. and Kitakado, T. 

(2019b) Collaborative study of albacore tuna CPUE from multiple Indian Ocean longline fleets in 2019. 

IOTC-2019-WPTmT07(DP)-19. 

Hoyle, S.D., Kitakado, T., Yeh, Y.M., Wang, S.P., Wu, R.F., Chang, F.C., Matsumoto, T., Satoh, K., Kim, D.N., 

Lee, S.I., Chassot, E., and Fu, D. (2018) Report of the Fifth IOTC CPUE Workshop on Longline Fisheries, 

May 28th–June 1st, 2018. IOTC–2018–CPUEWS05–R. 27 pp. 

Hoyle, S.D., Langley, A.D. 2020 Scaling factors for multi-region stock assessments, with an application to 

Indian Ocean tropical tuans. Fish. Res. 228 https://doi.org/10.1016/j.fishres.2020.105586 

Kitakado, T., Satoh, K., Matsumoto, T., Yokoi, H., Okamoto, K., Lee, S., Lee, M., Lim, J.H., Wang, S.H., Su, N., 

Tsai, W., Chang, S.T. 2020. Plan of trilateral collaborative study among Japan, Korea and Taiwan for 

producing joint abundance index with longline fisheries data for the tropical tuna species in the Indian 

Ocean. Collect. IOTC-2020-WPTT22(SA)-09.  

Kitakado, T., Wang, S.H., Satoh, K., Lee, S.I., Tsai, W.P., Matsumoto, T., Yokoi, H., Okamoto, K., Lee, M.K., 

Lim, J.H., Kwon, Y., Su, N.J. and Chang, S.T. Report of trilateral collaborative study among Japan, Korea 

and Taiwan for producing joint abundance indices for the yellowfin tunas in the Indian Ocean using 

longline fisheries data up to 2020. IOTC-2021-WPTT23(DP)-14. 

Wang, S.H., Xu, W.Q., Lin, C.Y. and Kitakado, T. (2021) Analysis on fishing strategy for target species for 

Taiwanese large-scale longline fishery in the Indian Ocean. IOTC-2021-WPB19-11.  



 

5 

 

(a) Japan 

R1 

 

R4 

 

R2 

 

R3 

 

 

Figure 1(a): Species composition for each cluster in Japanese fisheries.  
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(b) Korea  
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Figure 1(b): Species composition for each cluster in Korean fisheries. 



 

7 

 

 

(c) Taiwan  
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Figure 1(c): Species composition for each cluster in Taiwanese fisheries.  
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(REGION1)  

   

BET/YFT separated     BET/YFT combined 

    

   
 

Figure 2(a): Comparison of results of clustering with “BET/YFT separated” and “BET/YFT combined” for 

Taiwanese fishery data in R1.  
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(REGION4)  

BET/YFT separated     BET/YFT combined 

 

   
 

  
 

Figure 2(b): Comparison of results of clustering with “BET/YFT separated” and “BET/YFT combined” for 

Taiwanese fishery data in R4.  

  



 

10 

 

 

 
 

 

 
 

Figure 3(a): Comparison of standardized CPUEs in R1 and R2. “Previous” means the CPUE indices used in the 

2018 assessment.  
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Figure 3(b): Comparison of standardized CPUEs in R1 and R2. 
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Figure 4(a): Diagnostics and influence plots for LN(~ YrQ + LonLat + Cluster+Vessel) for R1.  
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Figure 4(b): Diagnostics and influence plots for LN(~ YrQ + LonLat + HBF+Vessel) for R1.  
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Figure 5: Diagnostics and influence plots for LN(~ YrQ + LonLat + Cluster+Vessel) for R2.  
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Figure 6: Diagnostics and influence plots for LN(~ YrQ + LonLat + Cluster+Vessel) for R3.  
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Figure 7(a): Diagnostics and influence plots for LN(~ YrQ + LonLat + Cluster+Vessel) for R4.  
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Figure 7(b): Diagnostics and influence plots for LN(~ YrQ + LonLat + HBF+Vessel) for R4.  
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Figure 8. Comparison of CPUEs in R3.  
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