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Executive Summary 
The values used for natural mortality (M) are very influential in stock assessment models, affecting 

model outcomes and management advice. There is often limited information about the true levels.  

This paper summarises the evidence used to estimate natural mortality at age for the four main 

stocks of yellowfin tuna, identifying some problems and information gaps. It also describes the 

history of parameter values used in stock assessments by each tuna RFMO.  

Through time, Indian Ocean yellowfin tuna (IO-YFT) stock assessments have assumed a variety of 

values for M. The values used in the most recent assessment were intermediate between the higher 

levels assumed in assessments for the Eastern Pacific and the Western and Central Pacific, and the 

lower levels assumed in the Atlantic.  

In June 2021 an online meeting was held by the Center for the Advancement of Population 

Assessment Methodology (CAPAM), to provide advice and guidance on practices for modeling 

natural mortality in fishery assessments. Based on presentations and discussions at the meeting, this 

paper provides IO-YFT natural mortality options for prior distributions derived from maximum 

observed age and suggests approaches for using these priors in stock assessments. It also 

recommends future research needed to develop improved estimates of natural mortality.  
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Introduction 
Natural mortality, an aspect of population dynamics and productivity, is very influential in stock 

assessment models and affects model outcomes and management advice (Punt et al. 2021).There is 

often limited information about the true levels of natural mortality, so analysts’ decisions and 

assumptions about natural mortality can be difficult yet important. This working paper provides 

advice to analysts on approaches for estimating natural mortality to use in the Indian Ocean 

yellowfin stock assessment.  

In addition to uncertainty in natural mortality (M), there is considerable variability. M varies at all 

scales – between sexes, ages, locations, seasons, and years, and potentially trending through time. 

M will be affected by the availability of food, by predators, by parasites and disease, as well as by 

environmental stressors.  

Fisheries data are rarely directly informative about natural mortality, and even its average level is 

difficult to estimate. Analysts must often make choices about the values, or range of values, 

assumed in an assessment. This uncertainty is unavoidable, as is the resulting uncertainty in model 

outcomes and management advice. For stock assessment and management strategy evaluation, this 

uncertainty needs to be included and explored. It is therefore appropriate for analysts to consider a 

range of plausible approaches, rather than assuming just one estimate or approach. Their goal is not 

necessarily to obtain the correct estimate of M, but to choose the most appropriate estimates for 

their particular purpose.  

In this working paper we focus mainly on the base or average value of natural mortality for yellowfin 

tuna. We also briefly consider age-dependence and variation between sexes. For an earlier 

discussion of natural mortality for yellowfin tuna, see Maunder & Aires-da-Silva (2012).  

History of M in yellowfin tuna stock assessments 
Past assessments for yellowfin tuna have assumed various levels of natural mortality. An early and 

influential estimate of natural mortality was derived in the eastern Pacific from fish caught mostly in 

the bait boat fishery and aged using cohort slicing to convert size to age. Total mortality (Z) of 1.72 

was estimated from a catch curve on fish aged 2-4 years, and estimated fishing mortality (F) of 0.95 

subtracted to give M of 0.77, usually rounded up to 0.8, or between 0.6 and 1.0 (Hennemuth 1961). 

This was later revised by Schaefer (1967) to between 0.55 and 1.05.  

However, there is good reason to expect the estimate of M=0.8 to be biased high. Catch curve 

models assume constant selectivity with increasing age, since declining selectivity with age will bias 

the estimate high. Most fishing at the time was relatively close to shore, with approximately 90 

percent of the yellowfin catch less than 100 cm FL, and sizes increased considerably when later 

fishing moved offshore (Wild 1986). Bait boats select the smallest fish of any fishery, with selectivity 

now estimated to rapidly decline with age (Minte-Vera et al. 2020). Therefore, the Z estimate of 1.72 

for fish aged 2-4 years is likely to be positively biased, with the proviso that the F estimate of 0.95 

also is likely to be unreliable given the methods available at the time.  

This same estimate of M=0.8 per year has been used in many stock assessments since. Wild (1994) 

reviewed natural mortality estimates in the eastern Pacific Ocean (EPO) and noted that although 

Francis (1977) considered 0.8 to be too high based on a simulation study, 0.8 was used in IATTC 

stock assessments for the eastern Pacific until 1989. Due to the lack of females larger than 140 cm in 

the fishery, the assessment was changed in 1989 to apply higher natural mortality to females (IATTC 

1991), while retaining 0.8 for males. The same value of natural mortality has consistently been 

applied for males since then in EPO yellowfin tuna assessments (e.g. Maunder & Harley 2004; Hoyle 
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& Maunder 2006; Maunder & Aires-da-Silva 2010; Minte-Vera et al. 2020), with some refinements to 

the approach for female M (Maunder & Watters 2001).   

Analyses of tagging data have been used to estimate natural mortality for yellowfin tuna in the 

Western and Central Pacific and Indian Oceans (WCPO). In the WCPO, an analysis of tagging data 

estimated natural mortality to be 0.68, 0.44, and 0.69 per year for the 51-60, 61-70 and 71-80 size 

classes respectively, and much higher for smaller and larger fish (Hampton 2000). This analysis 

focused more on size-variation than on the levels of the estimates. It assumed constant fishing 

mortality through time, and uniform reporting rates across sizes. Results may have been affected by 

low reporting rates of the longline vessels that catch larger fish, slower than assumed mixing of 

tagged fish with the population, and other spatial and seasonal dynamics. These estimates have 

been used in WCPO stock assessments to support the shape of the ogive (Tremblay-Boyer et al. 

2017), but not as fixed estimates. In the Indian Ocean, two implementations of Brownie-Petersen 

models were used to estimate natural mortality rates for tropical tunas based on tag attrition. 

Bousquet et al. (2012) estimated surprisingly low natural mortality rates for bigeye, yellowfin, and 

skipjack tunas, with median estimates for yellowfin aged 1-5 of approximately 0.5, 0.27, 0.22, 0.27, 

0.28. However, they characterised their results as preliminary and requiring confirmation by 

simulation studies, and this work has not been carried out. Eveson et al. (2012) applied a different 

model to the same dataset and similarly estimated low natural mortality, with rates that were 

effectively 0 for yellowfin tuna aged 1.5 or more in most model configurations. They also 

characterised their analyses as preliminary, noting the lack of spatial structure in the model, 

sensitivity to assumptions about the growth curve, and lack of tag returns from the longline 

fisheries. Simulation has shown that mortality estimates from Brownie models can be very sensitive 

to model misspecification around issues such as the spatial and seasonal patterns (Lauretta & 

Goethel 2017), and these issues were certainly present in the IO and WCPO tagging experiments.  

Time at liberty of tagged tunas has also been used to support assumptions about natural mortality. 

For recaptured yellowfin tuna, the longest periods at liberty in 2015 were lower than the maximum 

ages from otoliths, at 6.5 years in the WCPO, 7.5 years in the EPO, 9.1 years in the Atlantic, and 6.0 

years in the Indian Ocean (Fonteneau & Hallier 2015) for fish mostly tagged at about age 1 year. 

However, these lower times at liberty are expected due to tag loss, effects of tags on fish survival, 

and low tag reporting rates in the longline fisheries that take the largest fish.  

In general, WCPO assessments have used the same approach to modelling natural mortality as 

IATTC, combining (for a model that does not distinguish between sexes) the Hennemuth (1961) 

estimate of 0.8 per year for males, along with a higher estimate for females that is sufficient to 

account for the reduced proportion of females observed at larger sizes (see further discussion 

below). These WCPO assessments have used either the IATTC combined-sex natural mortality ogive 

or a version calculated for the WCPO (Hoyle et al. 2009). These approaches are still being used (e.g. 

Hampton et al. 2005; Langley et al. 2011; Davies et al. 2014; Tremblay-Boyer et al. 2017; Vincent et 

al. 2020b), with the shape of the WCPO ogive recalculated in 2020 to allow for changes in the 

growth curve (Vincent et al. 2020a). The 2020 assessment (Vincent et al. 2020b) continued this 

approach in the diagnostic model but explored alternatives based on a meta-analysis of life-history 

and empirical relationships (Vincent et al. 2020a), with lower annual rates of 0.44-0.6.  

In the Atlantic, natural mortality in the 2016 yellowfin assessment (Walter & Sharma 2017) was 

determined according to Lorenzen-scaled M-at age functions for the Gascuel et al. (1992) growth 

curve for ages 0-10, with average M of 0.54 based on maximum age of 11 years. The subsequent 

update of the maximum age to 18 years resulted in lower M of 0.35 at age 5 in the 2019 assessment 

(Walter et al. 2020).  
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In the Indian Ocean, a range of values has been used. In 2005 an ad hoc working group 

recommended M=2 at length 35 cm, declining linearly to 0.6 at 70cm and remaining constant 

thereafter (IOTC 2005, Appendix IV). In 2007, ASPM and SS2 assessments (Nishida & Shono 2007; 

Shono et al. 2007) assumed M=0.8 at age 0, declining to 0.6 for ages 1+, as did the 2008 SS2 

assessment (Shono et al. 2008).  

In 2008, preliminary runs of the first Indian Ocean yellowfin assessment using MULTIFAN-CL (Langley 

et al. 2008) assumed the same natural mortality ogive used in WCPO yellowfin assessments, with 

base adult M of 0.8 and with increased M for a period representing higher natural mortality for 

mature females (for the combined-sex model). However, IOTC-WPTT 2008 recommended lower 

levels of natural mortality based on the preliminary results of tagging analyses using Brownie models 

(later provided as Bousquet et al. 2012; Eveson et al. 2012), and the lower base rate of 

approximately 0.36 was used in final runs for management advice, with average M across all ages of 

0.4. The 2010 MFCL assessment (Langley et al. 2010) applied 3 alternatives, with high (base M=0.8), 

low (0.36) and estimated (approximately 0.54) levels of natural mortality; the low M option was 

selected for management advice by the WPTT. Shono et al. (2010) similarly assumed the lower base 

natural mortality of about 0.36. The 2015 Stock Synthesis assessment (Langley 2015) used the base 

M estimated in 2012 of about 0.54 from age 1.5 (with higher M for younger ages, and a period of 

higher M for mature females), with a sensitivity analysis at the lower level of about 0.36. The 2018 

assessment (Fu et al. 2018) retained these options as base case and sensitivity, and introduced an 

ogive based on the shape of the Lorenzen (1996) model as a sensitivity analysis.  

M for mature females 
Many natural mortality ogives used in stock assessments for yellowfin, bigeye and albacore tuna 

assume higher natural mortality for mature females. This assumption is driven by the observation 

that the sex ratio is close to 1:1 until at least the size when females become sexually mature but 

becomes increasingly male-dominated at larger sizes (Everett & Punsly 1990; Itano 2000). This trend 

in sex ratio at length may be caused by natural mortality of females increasing after maturity. It 

should be noted that the change in sex ratio occurs above the size of sexual maturity, and this was 

estimated by assuming that M for females increased 1.5 years after maturation for EPO yellowfin 

(Harley & Maunder 2003), and with a similar lag in the WCPO (Hoyle et al. 2009).  

However, alternative explanations may contribute to observed changes in sex ratio at length: female 

growth rates may become slower than males after maturity, and/or mature females may become 

less catchable than males due to changes in their behaviour or spatial distribution. In the Atlantic, 

females have been shown to grow to smaller sizes than males (Pacicco et al. 2021), to a greater 

extent than the small differences observed in the EPO (Wild 1986), but differences between sexes 

have not been found in the WCPO (Farley et al. 2020). Large sex differences in growth were 

observed in the Indian Ocean, though based on limited data (Shih et al. 2014). Reduced vulnerability 

of large females due to behaviour change appear unlikely because sex ratios change with age in both 

longline and purse seine fisheries (Everett & Punsly 1990; Maunder & Aires-da-Silva 2012). In the 

WCPO there is considerable spatial variation in the size at which sex ratio at length changes (Hoyle et 

al. 2009), and also spatial variation in the EPO (Everett & Punsly 1990), so there is some evidence 

that spatial distribution may affect availability by sex. There are also large spatial differences in size 

at maturity and growth curves between the EPO and WCPO, and within the WPCO. These complicate 

our attempts to understand the issue, as do the limited spatial and temporal coverage of ageing, sex 

ratio and maturity data. Understanding these spatial patterns and their causes will require more 

widespread sampling.  
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The assumption of higher natural mortality for mature females was supported by yellowfin tuna 

ageing observations that showed only small differences in growth rate by sex, and large declines in 

the sex ratio at age (Wild 1986; Schaefer 1998). Farley et al. (2020) similarly observed low 

proportions of females older than 5 years in the WCPO. However, females appear to live longer than 

expected given their assumed natural mortality. In the Atlantic the oldest male and female were 18 

and 17 years respectively (Pacicco et al. 2021), in the WCPO 15 and 13 years (Farley et al. 2020), 

while in the Indian Ocean the differences (based on limited sampling) were larger at 9.5 and 6.5 

years (the sex of the oldest fish at 10.5 was unknown) (Shih et al. 2014). These Indian Ocean 

estimates have now been updated to 10.9 and 10.0 for males and females (Farley et al. 2021). There 

is not uniform consensus about the reliability of these maximum ages, which although consistent 

with the results of bomb radiocarbon analyses (Andrews et al. 2020), and consistent with the 

weights of the otoliths (Farley et al. 2021), have not yet been validated with oxytetracycline marking 

(Farley et al. 2019; IATTC 2019).  

Maunder & Watters (2001) estimated female and total natural mortality as follows: they assumed 

the same growth rate for both sexes and estimated the increase in female natural mortality at age 

that would account for the observed differences in sex ratio at length, given constant natural 

mortality at age for males. Similar approaches were followed in the EPO for bigeye tuna (Watters & 

Maunder 2001; Harley & Maunder 2003), and in the WCPO for yellowfin (Hoyle et al. 2009), bigeye 

(Hoyle & Nicol 2008) and albacore tunas (Hoyle 2008). For details of the calculations see Maunder & 

Aires-da-Silva (2012) and Hoyle et al. (2009).  

These models did not account for potential/likely growth differences between males and females. 

Allowing for growth differences by sex in the models would reduce the estimates of female natural 

mortality, because growth differences would account for some of the change in sex ratio at length. 

Such growth differences are now becoming apparent for many Thunnus species and stocks (e.g., 

Farley et al. 2006; Shimose et al. 2009; Chen et al. 2012; Williams et al. 2012; Farley et al. 2014; 

Pacicco et al. 2021), with development of ageing methods that count annual increments in otoliths.   

Approaches for estimating M 
In June 2021, an online meeting on the estimation of natural mortality 

(http://capamresearch.org/Natural-Mortality-Workshop) was hosted by the Center for the 

Advancement of Population Assessment Methodology (CAPAM). The primary goal of the workshop 

was to provide advice and guidance on practices for modeling natural mortality in fishery 

assessments. The focus was on model specification, parameter estimation, and management 

consequences.  

In this working paper we use the presentations and conclusions of the workshop to develop some 

advice on approaches for implementing natural mortality in stock assessments for Indian Ocean 

tropical tunas.  

Punt et al. (2021) (see also https://www.youtube.com/watch?v=Br_IbN1Krqo) found in a series of 

simulations that estimating M performed better than pre-specifying M. They recommended 

estimating M in the model, with a prior distribution that reflects information on M from sources not 

included in the model likelihood. This combined approach uses all available information about M, 

and also allows uncertainty in M to be propagated into model advice. Punt et al. (2021) also 

recommended using diagnostics to check for model misspecification and contradictory data (residual 

analysis, retrospective analysis, ASPM method, R0 profiles). They recommended examining the final 

estimates of M output from the model to see if they are plausible, acknowledging that this final step 

is inherently subjective. It may nevertheless be argued that a final estimate that is very far from the 

https://www.youtube.com/watch?v=Br_IbN1Krqo
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prior indicates inconsistency between the prior and the information in the model. If they are 

inconsistent then both cannot be true at the same time, so it is reasonable to reject the estimate 

that includes both. Punt et al. (2021) also noted that estimating steepness may help to alleviate 

problems with mis-specifying M, since the two parameters appear to be correlated.  

We should note that Punt et al. (2021) used simulations to show that M was estimable, but 

conducted these simulations using informative simulated data, including age compositions, that 

were quite dissimilar to those available for tuna. Indian Ocean tuna data are likely to be considerably 

less informative and more conflicted, with lower likelihood of successfully estimating M inside the 

model. Punt et al. (2021) recommend using simulation to explore the potential to estimate natural 

mortality in the context of each stock assessment.  

Various approaches are available for developing priors, including those based on life history theory, 

derived from empirical analyses, estimated from tagging data, and estimated from catch at age data. 

There was general agreement at the CAPAM workshop that of the empirical analysis methods, 

empirical meta-analyses of maximum age (Amax) had the lowest residual variance and were 

considered to have the best predictive power.  

Hamel and Cope (in press) presented a method that used a large database of fish species (Then et al. 

2015) and argued that their approach improved on the Then et al. (2015) analysis by fitting the 

regression of observed M versus maximum age on the log scale. Hamel and Cope (in press) justified 

this theoretically, based on the fact that mortality is a multiplicative process (Hamel 2014), so the log 

scale is appropriate.  

The resulting model was loge(M) ~ N(log(5.4/Amax), 0.4382), so M = 5.4/Amax. A simple explanation of 

this is that in an unfished population with natural mortality M, the proportion of fish remaining at 

age t is 
𝑁𝑡

𝑁0
= 𝑒−𝑡𝑀. This transforms to −log (

𝑁𝑡

𝑁0
) /𝑡 = 𝑀 , or −log (

𝑁𝑡

𝑁0
) /𝑀 = 𝑡. As t increases, there 

are fewer and fewer fish. For example, if M was constant then the age at which the numbers was 1% 

of N0 would be -log(0.01)/M, or 4.605/M and, similarly for 0.1% of N0 is, -log(0.001) = 6.91. The 

relationship M=5.4/Amax implies that the expected proportion remaining in the oldest observed age 

class is 0.45%. In practice, the oldest observed age class will depend upon the proportions of fish 

remaining alive, the age selectivity of the fisheries, the age selectivity of the process used to select 

fish for ageing, and the number of fish aged.  

Hamel and Cope (in press) argued that standard deviation of 0.438 included two components: 

individual stock variance around the relationship between maximum age and M, and observation 

error in both the maximum age and M estimates. They estimated the first component as 0.31 and 

proposed that this should be used as the standard deviation of the prior. Maunder et al (personal 

communication) argued that we cannot separate these components so should use a standard 

deviation of 0.438 for the prior distribution.  

A new approach for modelling natural mortality has been implemented in Stock Synthesis 3.30.17 

(Methot et al. 2021), based on proposals by Maunder et al (personal communication), a 

development of Maunder et al. (2010) and Maunder (2011). It is described by Rick Methot in the 

CAPAM workshop (https://www.youtube.com/watch?v=pY77VQ9i5QM), and in the updated SS user 

manual. It was also applied in the 2021 South Pacific albacore stock assessment (Castillo-Jordan et 

al. 2021).  

The new model starts with high natural mortality for younger fish which declines with age, since 

mortality is assumed to be caused mainly by processes that are functions of size (e.g., 

https://www.youtube.com/watch?v=pY77VQ9i5QM
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predation). Mortality increases after individuals become reproductively mature, and this 

increase is linked to the proportion mature which follows a logistic curve. Senescence is 

assumed to be either small or to occur at an age when too few fish alive to affect dynamics. The 

new model is specified as follows: 

𝑀𝑠,𝑎 = 𝑀𝑗𝑢𝑣 (
𝐿𝑠,𝑎

𝐿𝑚𝑎𝑡 ∗
)

𝜆

+
𝑀𝑚𝑎𝑡,𝑠 − 𝑀𝑗𝑢𝑣 (

𝐿𝑠,𝑎

𝐿𝑚𝑎𝑡 ∗
)

𝜆

1 + 𝑒𝑥𝑝[𝛽𝑠(𝐿𝑠,𝑎 − 𝐿50,𝑠)]
(1)

 

The maturity parameters βs and L50s can be obtained from the logistic maturity curve. 

The following values are proposed by Methot et al. (2021) as defaults: The rate of decline in natural 

mortality with size λ =-1.5 (Gulland 1987). Natural mortality for mature adults is based on the 

analysis by Hamel and Cope (in press): Mmat,s = 5.4/tmax.s if tmax is available, otherwise Mmat,s = 4.118 

Ks
0.73 Linfs

-0.33 (Then et al. 2015). Mjuv = 3Wmat
-0.288 (Lorenzen 1996). The parameters Lmat* and Wmat* 

are the length and weight of a fish when they first become mature for either sex, and could be set to 

the minimum length at which 5% of fish (both sexes) are mature, but this is flexible.  

Yellowfin tuna are large fish and the expected value of natural mortality implied by the Lorenzen 

(1996) equation M=3Wmat
-0.288 for fish of such a size at maturity is lower than the estimates derived 

from current observations of Amax. This results in higher natural mortality for mature than for 

immature fish, which may or may not be realistic. It also results in natural mortality for juveniles that 

is unaffected by the observed value of Amax.  

An alternative approach to estimating M preserves the shape of the Lorenzen curve across the life 

span, and adjusts the entire curve based on the observed value of Amax.  The parameter a in the 

relationship M=a.W-0.288 is adjusted so that the average natural mortality for mature fish is equal to 

the value implied by Amax.  

Application to yellowfin tuna 
Implementing these approaches for Indian Ocean yellowfin tuna requires estimates of maximum 

age. Ageing of yellowfin tuna has been relatively limited, and mostly restricted to daily age estimates 

of younger individuals. A maximum age of 10.5 years has been observed for Indian Ocean yellowfin 

tuna (Shih et al. 2014), based on relatively limited ageing. This has now been updated to 10.9 years 

(Farley et al. 2021). A maximum age of 18 years has been obtained in the Atlantic Ocean (Andrews et 

al. 2020; Pacicco et al. 2021), and 15 years in the WCPO (Farley et al. 2020). We calculated natural 

mortality for mature fish based on two alternatives: the maximum age observed in the Indian Ocean 

(10.9 years), and the maximum age observed for yellowfin tuna in all oceans (18 years).  

Natural mortality for mature fish was calculated as Mmature=5.4/Amax. Uncertainty in the prediction 

was assigned using a SD of 0.31 on the log scale (Hamel and Cope, in press).  

Following the advice in the SS manual to calculate the juvenile component of natural mortality, the 

Lorenzen (1996) equation was used, assuming  that Mjuv = aWb, with weight (W) measured in grams. 

Uncertainty was assigned as follows. Lorenzen gives median and 90% CI for parameter a (3.00, 2.70, 

3.30), or 3 +- 0.3. Assuming a normal distribution gives SD of 0.182. Similarly, for parameter b (-

0.288, -0.315, -0.261), assuming a normal distribution gives SD of 0.0164. Residual variance was not 

reported so we assumed the same residual SD as the mature component of M, or 0.31 on the log 

scale.  
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Equation 1 requires a maturity ogive using the logistic equation, but maturity in the yellowfin tuna SS 

assessment (Fu et al. 2018) is assigned as maturity at age (Table 1, maturity ogive 1). A maturity at 

length ogive (Table 1, maturity ogive 2) was calculated for this purpose using the equation 

𝑚𝑎𝑡𝑙𝑒𝑛𝑔𝑡ℎ = 1/exp (𝛽(𝐿𝑎 − 𝐿50)) that gave similar maturity at age to ogive 1 (Figure 1). 

Parameters were  = -0.1, and L50=74.721 (length at age 9 quarters). Sex differences are known to 

occur in both maturity-at-length and length-at-age but were not considered in this case.  

To develop 80% confidence intervals, 100,000 values were sampled at random from the uncertainty 

distributions of parameters a, b, and Mmature. The rate of decline in natural mortality with length,  = 

-1.5 (Gulland 1987) was also sampled from a distribution with mean -1.5 and SD of 0.31. Each set of 

samples was used to calculate a natural mortality ogive using equation 1. The 80% prediction 

interval was calculated by taking the 10th and 90th percentiles of the distribution for each age class.  

Estimates of natural mortality are provided in Table 1 for both values of maximum age (10.9 and 18 

years). For each value of Amax, natural mortality estimates for maturity ogives 1 and 2 were almost 

identical. The base estimates and 80% confidence intervals for the natural mortality curves are 

provided in Table 3 and Figure 2.  

An alternative approach was applied based on scaling the entire natural mortality ogive according to 

the Lorenzen equation M=aWb, with b set to -0.288. Weights at age W were calculated based on the 

Richards growth curve provided by Farley et al. (2021) and the length-weight relationship from Fu et 

al. (2021). The scaling parameter a was adjusted so that the mean natural mortality for mature fish 

was equal to MAmax, the value of M implied by Amax, as follows.  

𝑀𝑎
𝐿𝑜𝑟 = 3. 𝑊𝑎

−0.288 

𝑚𝑒𝑎𝑛𝑀𝐿𝑜𝑟 = ∑(𝑀𝑎
𝐿𝑜𝑟. 𝑚𝑎𝑡𝑎)

𝑎

∑ 𝑚𝑎𝑡𝑎

𝑎

⁄  

𝑀𝑎
𝐴𝑚𝑎𝑥 

= 𝑀𝑎
𝐿𝑜𝑟. (

𝑀𝐴𝑚𝑎𝑥

𝑚𝑒𝑎𝑛𝑀𝐿𝑜𝑟) 

Maximum ages for males and females in the Atlantic are similar (18 and 17 respectively), suggesting 

mature male and female natural mortality of 0.3 and 0.32 year-1 respectively. The WCPO Amax 

observations of 15 for males and 13 for females suggest 0.36 and 0.42 year-1.  

Discussion and recommendations 
This paper has developed a proposal for several alternative natural mortality ogives to consider as 

prior distributions and fixed values in the yellowfin tuna stock assessment. The proposal is mostly 

based on an empirical meta-analysis of the relationship between the maximum observed age and 

natural mortality estimates from a database of over 200 stocks. The proposed mean level of natural 

mortality is lower than that of the base ogive used in the 2018 assessment (Fu et al. 2018), and even 

somewhat lower than the lower natural mortality ogive used as a sensitivity analysis in that 

assessment.  

That lower natural mortality ogive, based primarily on preliminary results from Brownie models of 

tag attrition, was considered by assessment scientists to be inconsistent with other data in the 

model. They preferred instead to use the level of natural mortality estimated in a previous 

assessment (Langley 2015).  
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However, given the additional support provided by the present analysis for lower levels of natural 

mortality, it is recommended that assessment scientists reconsider this lower rate of natural 

mortality. There may be alternative explanations for the inconsistency of low M with other model 

assumptions. Changing other aspects of the model structure may allow the model to include both 

the lower M and the existing data. There are many uncertainties in the SS model of Indian Ocean 

yellowfin tuna, given the large spatial domain, the difficulty of estimating movement rates between 

regions, uncertainty about the stock structure, the strong assumptions required when fitting to 

tagging data, the possibility that growth varies between locations, years and sexes, and uncertainties 

about reliability of catch, size and CPUE data.  

It should be noted that the relationship M=5.4/Amax was determined by fitting to data from 

populations that were mostly unfished or lightly fished, with heavily exploited populations excluded 

(Then et al. 2015). The Indian Ocean yellowfin tuna population was assessed in 2018 as overfished 

and experiencing overfishing, which would considerably reduce the expected value of Amax. The 

WCPO and AO populations have also been fished more heavily than the stocks in the Then et al. 

(2015) database. This suggests that applying the M=5.4/Amax method to Indian Ocean yellowfin tuna 

would tend to upwardly bias the estimate of M.  

Estimates are provided for both the Hamel and Cope (submitted) method and the Then et al (2015) 

method. Although the Hamel and Cope method claims to have identified a statistical error in the 

approach used by Then et al (2015), peer review of this claim is not yet complete (to my knowledge) 

and the paper is currently unpublished.  

The models used to estimate higher natural mortality for mature females based on sex ratio at 

length should be updated to account for the reduced female growth rate after sexual maturity, for 

stocks where the difference is supported by data. This would estimate female natural mortality to be 

more like male natural mortality than currently assumed. Offsets for female natural mortality in the 

IO ogives could not be developed in the available time, but this should be done in future. Data on 

sex ratio at length is needed to support this analysis. In the interim it may be reasonable to assume 

the same ogive for both sexes.  

The natural mortality ogives developed here should be applied in the yellowfin stock assessment, 

both as fixed values, and as priors with M estimated in the model. As recommended by Punt et al 

(2021), a range of diagnostics should be used to check models in which M is estimated, and the 

balance of evidence carefully considered.  

The natural mortality proposed for immature fish of 1.5-2.5 years is lower than the proposal for 

adult fish and does not vary for different values of Amax. The method applied for this stage may need 

more work, (for example) given the uncertainty about the sizes at which the Lorenzen (1996) M 

prediction should be applied. Natural mortality for the youngest fish can often simply scale 

recruitment and have little or no effect on assessment outcomes, but fish aged 1.5-2.5 are caught in 

large numbers and their natural mortality rate can be influential.  

A simulation study is recommended to test the feasibility of reliably estimating M in the Indian 

Ocean YFT assessment, and to explore what kinds of datasets and model configurations might work 

best. A suitable simulation model has been developed (Dunn et al. 2020) and could be adapted for 

this purpose. This simulation approach could be used to explore the potential to obtain further value 

from the RTTP tagging dataset, such as by completing the Brownie-Petersen analyses (Bousquet et 

al. 2012; Eveson et al. 2012).  
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Reliable estimates of Amax are important for developing natural mortality prior distributions. 

Natural mortality is such an important parameter for determining stock status that it warrants giving 

a high priority to age sampling across the population. Better data could also give us insights into 

issues such as spatial patterns in growth, sex ratio, and maturity, and their causes.    

This new approach for developing priors for natural mortality is applicable to all Indian Ocean tuna 

and billfish species for which reliable ageing is available, either in the Indian Ocean or other 

populations. Further work is recommended to develop suitable priors for all species assessed by 

IOTC, and to aim to age at least 200 length-stratified and spatially distributed samples of all such 

species for which ageing is reliable. Ageing samples should come primarily from fisheries that catch 

the largest fish, which are usually the longline fisheries. The recommended number of samples 

comes from the Hoenig’s (1983) advice that maximum age tends to increase slowly above a sample 

size of about 200. Nevertheless, fish sampling and ageing require efficient resourcing, and multiple 

objectives must be considered when developing such programmes.  

Finally, in the medium to long term the development of close-kin mark-recapture for yellowfin tuna 

is recommended (Bravington et al. 2016; Kolody & Bravington 2019). This technique offers the 

prospect of estimating natural mortality more effectively than other methods. Telomere shortening 

rate can be a general predictor of species life span (Whittemore et al. 2019) and could be used to 

provide information about senescence, which is potentially related to natural mortality rates.  
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Tables 
Table 1a:Table of two alternative natural mortality ogives, based on the new natural mortality function in Stock Synthesis. 
The two alternatives assume Amax is either 10.9 or 18 years. Two versions of each alternative are provided, using either the 
age-based maturity implemented in the 2018 assessment, or a similar maturity curve fitted as a logistic function of length.  

Age Natural Mortality  
with Amax = 18 

Natural Mortality  
with Amax = 10.9 

Maturity 
ogive 1 

Maturity 
ogive 2 

M juvenile 
component 

Qtr Yr Mat 1 Mat 2 Mat 1 Mat 2    

1 0.25 0.911 0.915 0.912 0.915 0 0.005 0.915 

2 0.5 0.447 0.450 0.451 0.450 0 0.019 0.450 

3 0.75 0.353 0.354 0.359 0.354 0 0.034 0.354 

4 1 0.305 0.305 0.315 0.305 0 0.052 0.305 

5 1.25 0.270 0.271 0.285 0.290 0.1 0.077 0.268 

6 1.5 0.245 0.248 0.267 0.277 0.15 0.111 0.238 

7 1.75 0.228 0.232 0.258 0.271 0.2 0.155 0.215 

8 2 0.214 0.218 0.264 0.277 0.3 0.259 0.183 

9 2.25 0.223 0.223 0.321 0.321 0.5 0.500 0.146 

10 2.5 0.254 0.246 0.400 0.383 0.7 0.747 0.119 

11 2.75 0.279 0.280 0.455 0.456 0.9 0.897 0.100 

12 3 0.290 0.300 0.477 0.495 1 0.955 0.087 

13 3.25 0.295 0.300 0.486 0.495 1 0.978 0.079 

14 3.5 0.297 0.300 0.490 0.495 1 0.988 0.073 

15 3.75 0.298 0.300 0.492 0.495 1 0.992 0.069 

16 4 0.299 0.300 0.493 0.495 1 0.995 0.066 

17 4.25 0.299 0.300 0.494 0.495 1 0.996 0.063 

18 4.5 0.299 0.300 0.494 0.495 1 0.997 0.061 

19 4.75 0.299 0.300 0.494 0.495 1 0.998 0.060 

20 5 0.300 0.300 0.495 0.495 1 0.998 0.059 

21 5.25 0.300 0.300 0.495 0.495 1 0.998 0.058 

22 5.5 0.300 0.300 0.495 0.495 1 0.999 0.057 

23 5.75 0.300 0.300 0.495 0.495 1 0.999 0.056 

24 6 0.300 0.300 0.495 0.495 1 0.999 0.056 

25 6.25 0.300 0.300 0.495 0.495 1 0.999 0.055 

26 6.5 0.300 0.300 0.495 0.495 1 0.999 0.055 

27 6.75 0.300 0.300 0.495 0.495 1 0.999 0.055 

28 7 0.300 0.300 0.495 0.495 1 0.999 0.055 
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Table 2 

Age Natural Mortality  
with M=5.4/Amax 

Natural Mortality  
with Then et al 2015 

Qtr Yr Amax=10.9 Amax=18 Amax=10.9 Amax=18 

1 0.25 1.738 1.053 1.928 1.217 

2 0.5 1.353 0.820 1.501 0.948 

3 0.75 1.119 0.677 1.240 0.783 

4 1 0.963 0.583 1.068 0.674 

5 1.25 0.853 0.516 0.946 0.597 

6 1.5 0.772 0.468 0.856 0.541 

7 1.75 0.711 0.430 0.788 0.498 

8 2 0.663 0.401 0.735 0.464 

9 2.25 0.625 0.378 0.693 0.438 

10 2.5 0.594 0.360 0.659 0.416 

11 2.75 0.569 0.345 0.631 0.398 

12 3 0.548 0.332 0.608 0.384 

13 3.25 0.531 0.321 0.588 0.372 

14 3.5 0.516 0.312 0.572 0.361 

15 3.75 0.504 0.305 0.558 0.353 

16 4 0.493 0.298 0.547 0.345 

17 4.25 0.484 0.293 0.536 0.339 

18 4.5 0.476 0.288 0.528 0.333 

19 4.75 0.469 0.284 0.520 0.329 

20 5 0.463 0.281 0.514 0.324 

21 5.25 0.458 0.277 0.508 0.321 

22 5.5 0.454 0.275 0.503 0.318 

23 5.75 0.450 0.272 0.499 0.315 

24 6 0.446 0.270 0.495 0.313 

25 6.25 0.443 0.269 0.492 0.311 

26 6.5 0.441 0.267 0.489 0.309 

27 6.75 0.439 0.266 0.486 0.307 

28 7 0.437 0.264 0.484 0.306 
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Table 3: Table of two alternative natural mortality ogives, based on the new natural mortality function in Stock Synthesis, 
with 80% confidence intervals for each curve.  

Age 
Natural Mortality  
with Amax = 10.9 

Natural Mortality  
with Amax = 18 

 Estimate 10% 90% Estimate 10% 80% 

0.25 0.915 0.558 1.496 0.915 0.558 1.496 

0.5 0.450 0.290 0.695 0.450 0.290 0.695 

0.75 0.354 0.229 0.545 0.354 0.229 0.545 

1 0.305 0.197 0.471 0.305 0.197 0.471 

1.25 0.290 0.204 0.428 0.271 0.185 0.406 

1.5 0.277 0.201 0.400 0.248 0.174 0.366 

1.75 0.271 0.201 0.385 0.232 0.167 0.338 

2 0.277 0.209 0.387 0.218 0.162 0.311 

2.25 0.321 0.236 0.455 0.223 0.167 0.314 

2.5 0.383 0.270 0.556 0.246 0.177 0.353 

2.75 0.456 0.311 0.674 0.280 0.192 0.412 

3 0.495 0.333 0.736 0.300 0.202 0.446 

3.25 0.495 0.333 0.736 0.300 0.202 0.446 

3.5 0.495 0.333 0.736 0.300 0.202 0.446 

3.75 0.495 0.333 0.736 0.300 0.202 0.446 

4 0.495 0.333 0.736 0.300 0.202 0.446 

4.25 0.495 0.333 0.736 0.300 0.202 0.446 

4.5 0.495 0.333 0.736 0.300 0.202 0.446 

4.75 0.495 0.333 0.736 0.300 0.202 0.446 

5 0.495 0.333 0.736 0.300 0.202 0.446 

5.25 0.495 0.333 0.736 0.300 0.202 0.446 

5.5 0.495 0.333 0.736 0.300 0.202 0.446 

5.75 0.495 0.333 0.736 0.300 0.202 0.446 

6 0.495 0.333 0.736 0.300 0.202 0.446 

6.25 0.495 0.333 0.736 0.300 0.202 0.446 

6.5 0.495 0.333 0.736 0.300 0.202 0.446 

6.75 0.495 0.333 0.736 0.300 0.202 0.446 

7 0.495 0.333 0.736 0.300 0.202 0.446 
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Figure 1: Maturity at age as implemented int eh 2018 yellowfin stock assessment, and a similar maturity ogive fitted as a 
logistic function of length.  
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Figure 2: Two alternative ogives for yellowfin natural mortality at age, calculated from maximum observed age Amax, and 
the two ogives applied in the 2018 IO yellowfin assessment. The ogives using Amax are based on a new natural mortality 
function in Stock Synthesis, and assume Amax is either 10.9 or 18 years. The shaded areas represent the 80% confidence 
interval for each natural mortality curve.  
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Figure 3: Six alternative ogives for yellowfin natural mortality at age, calculated from maximum observed age Amax, and the 
two ogives applied in the 2018 IO yellowfin assessment. The ogives assume that Amax is either 10.9 or 18 years. The ogives 
labelled ‘Mj Lor’ are based on a new natural mortality function in Stock Synthesis and use the Lorenzen equation to define 
juvenile natural mortality. The ogives labelled ‘scaled’ use the Lorenzen equation M=a.Wb to define the entire ogive, with 
b=-0.288 and a adjusted so that the mean M for mature fish is equal to the value implied by Amax, according to either 
M=5.4/Amax, or the Then et al (2015) equation M=4.899.Amax-0.916. 
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Figure 4: Four alternative ogives for yellowfin natural mortality at age, calculated from maximum observed age Amax. The 
ogives assume that Amax is either 10.9 or 18 years. The ogives use the Lorenzen equation M=a.Wb to define the entire ogive, 
with b=-0.288 and a adjusted so that the mean M for mature fish is equal to the value implied by Amax, according to either 
M=5.4/Amax, or the Then et al (2015) equation M=4.899.Amax-0.916. 

 


