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ABSTRACT

We perform a systematic study of aggregation times of tuna schools to drifting Fish Aggregating
Devices (dFADs), using the signal provided by the echo-sounder buoys attached to dFADs deployed
across all major oceans in the period 2018-2020. Tuna biomass estimation for each day in the time
series has been obtained by applying the TUN-AI Machine Learning model (Precioso et al., 2021),
which incorporates oceanographic information and hourly echo-sounder data in 10 depth layers on a
time window of 72 hours prior to the prediction. We preprocess the data collected from the buoys
to select around 10 000 series with daily estimations where no human intervention has occurred. A
statistical analysis of these time series with different smoothing techniques shows that Continuous
Residence Times (CRT) for tuna schools remaining aggregated to dFADs have median times of 3-9
days, and that the Aggregation Time (AT) and Disaggregation Time (DT) processes to the dFADs are
symmetrical.
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1 Introduction

Floating objects drifting on the ocean’s surface have been known to attract a number of fish species for centuries,
including tropical tunas such as skipjack tuna (Katsuwonus pelamis), yellowfin tuna (Thunnus albacares) and bigeye
tuna (Thunnus obesus) (Castro et al., 2002; Maufroy et al., 2015). As fishermen have noticed this behavior, they have
used both natural and man-made floating objects, or drifting Fish Aggregating Devices (dFADs), as a tool for finding
and catching tropical tunas. The use of dFADs in tuna purse-seine fisheries has gradually increased since the 1980s to
nowadays, where vessels using dFADs now contribute to 36% of the world’s total tropical tuna catch (Davies et al.,
2014; Wain et al., 2021; ISSF, 2021). These wide-spread changes in tuna purse-seine fisheries have highlighted the
need to better understand the potential ecological effects of dFADs on tuna ecology and the marine environment, in
order to ensure adequate management of fish stocks and dFAD usage.

The reasons driving tuna’s tendency to aggregate around dFADs are poorly understood. A number of hypotheses have
been suggested, but none have been universally accepted by the scientific community (for a comprehensive review, see
Fréon and Dagorn (2000); Dempster and Taquet (2004); Castro et al. (2002)). However, two hypotheses explaining tuna
aggregation to naturally floating objects and dFADs have gained traction in recent years: "indicator-log" hypothesis
(Hall et al., 1992) and the "meeting-point" hypothesis (Fréon and Dagorn, 2000). The "meeting-point" hypothesis
considers that dFADs facilitate the encounter between individuals or schools, thus constituting larger schools that could
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benefit survival rates (Castro et al., 2002). On the other hand, the "indicator-log" hypothesis suggests that some fish
displaying this behavior, including tunas, may be safeguarding the survival of their eggs, larvae and juvenile stages by
using drifting objects as indicators of convergence zones, thus obtaining short-term trophic benefits by helping them to
remain in areas where plankton and food is readily available.

Based on the "indicator-log" hypothesis, some authors have ventured that the massive use of dFADs in tuna fisheries,
especially in areas where natural floating objects are not usually present, could have detrimental effects on tuna
populations by creating a so-called "ecological trap" (Marsac et al., 2000; Hallier and Gaertner, 2008). This hypothesis,
postulates that tuna’s attraction to dFADs could lead them to remain associated to dFADs even as these drift into areas
that could negatively affect the tuna’s behavior and biology (Marsac et al., 2000; Hallier and Gaertner, 2008). However,
after reviewing the scientific literature available on the "ecological trap" hypothesis in the context of dFADs and tuna,
Dagorn et al. (2012) state that no conclusion can be made as to whether or not the "ecological trap" is taking place.
Small scale studies using acoustic or electronic tags to monitor tuna movements around floating objects (both anchored
and drifting) have shown that the time tunas remain associated, though variable, is generally less than 10 days, and tunas
alternate between associated and non-associated phases (Ohta and Kakuma, 2004; Schaefer and Fuller, 2005; Dagorn
et al., 2007; Schaefer and Fuller, 2010; Robert et al., 2014; Govinden et al., 2021), contrasting with the perception that
the association of tuna to floating objects is "fast, strong and long-lasting" as the "ecological trap" hypothesis would
imply (Marsac et al., 2000).

Today, the dFADs used by tropical tuna purse-seine fisheries are generally deployed with satellite-linked instrumented
buoys equipped with one or more echo-sounders, which provide fishermen with dFAD geolocation as well as estimates
of aggregated tuna biomass (Davies et al., 2014; Wain et al., 2021). Given the number and large-scale distribution
of dFADs in recent years, the information provided by these buoys has caught the attention of several authors, who
highlight their potential to provide insights in tuna migration and behaviour on a global scale (Santiago et al., 2016;
Baidai et al., 2020a; Orue et al., 2019a; Lopez et al., 2016). Recent studies have begun to model and process the
echo-sounder data provided by these buoys as a means to remotely assess tuna presence or absence, or investigate
patterns in tuna aggregation around dFADs (Baidai et al., 2020b; Precioso et al., 2021; Orue et al., 2019b).

In this context, the current study aims to complement the small scale studies carried out on tuna aggregation (for
example, Schaefer and Fuller (2010); Govinden et al. (2021)) by using one such model (Precioso et al., 2021) and a
historic database of biomass estimates provided by echo-sounder buoys of the AGAC2 tuna purse seine fleet, deployed
across all major oceans. Through our analysis, we will assess temporal patterns in aggregation and disaggregation
processes of the tuna school to a dFAD, but also study the Continuous Residence Time they remain under this device.
We will also examine the nature of these processes, to evaluate whether these processes occur gradually or suddenly.

The rest of this paper is organized as follows. Section 2 outlines the sources of information and the data preprocessing
performed and describes the algorithm followed to estimate time spent by school tunas associated to dFADs. Subse-
quently, Section 3 reports the resulting time distributions for the raw and smoothed biomass estimation series. Finally, it
concludes with some final remarks in Section 4.

2 Material and methods

2.1 Database description

Our study draws from three sources of information: activity data on FADs, echo-sounder buoy data, and oceanography
data.

2.1.1 FAD logbook data

The first database is the FAD logbooks of the Spanish tropical tuna purse seine fleet operating in the Atlantic, Indian and
Pacific Oceans (2018 - 2020, AGAC ship owner’s association data). These logbooks contain almost 66 000 interactions
between fishing boats and Satlink echo-sounder buoys. Every interaction within the data set is linked to a specific buoy,
via the ID and model of the buoy attached to each dFAD. Each record contains information about the date, time and
GPS coordinates where the interaction occurred, as well as the kind of interaction. These interactions are listed and
described in Ramos et al. (2017). For this study we will only consider disruptive interactions, understood as those that
affect the echo-sound recording process or the fishes’ behaviour. Disruptive events are: deployments, sets, retrievals at
sea or at port, and dFAD losses. Interactions of non-disruptive nature, such as visits and modifications over previous
objects, are ignored for the purposes of this work.

2Asociación de Grandes Atuneros Congeladores
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2.1.2 Echo-sounder buoy data

The echo-sounder buoy data was collected from 15 497 Satlink buoys3 for which there were registered interactions in
the FAD logbook data (see Section 2.1.1). There were over 68 million records contained in this database, reported by
buoys attached to dFADs scattered over the Atlantic, Indian and Pacific Oceans. Each record corresponds to a specific
buoy ID and timestamp, ranging from 2018 to 2020, and contains biomass estimates and GPS coordinates of the dFAD’s
last known position at the time of measuring. Buoy positions are generally sent every 24 hours, though transmission
intervals can be modified by the buoy owner. Thus, the temporal resolution of the GPS coordinates is variable, and the
last available position was used. This study used three buoy models (ISL+, SLX+ and ISD+), the details of which are
described in Table 1. The observation range of the echo-sounder is from 3m to 115m depth, split into ten layers, each
with a resolution of 11.2m (see Figure 1). Biomass estimates (in metric tons, t) are obtained from acoustic samples
taken periodically throughout the day (see Table 1). The average back-scattered acoustic response is converted into
estimated tonnage, based on the target strength of Skipjack tuna (Katsuwonus pelamis). Out of all the records registered
within an hour, only the one with the highest estimated tonnage is sent to the satellite, reducing the amount of data
transmitted. Thus, the final temporal resolution of echo-sounder records for each buoy is 1h. The buoys have an internal
detection threshold of 1t, which means that a biomass estimation below 1t is not transmitted, and interpreted as a
zero-reading.

Model Echo-sounder Freq.
(kHz)

Beam
Angle (◦)

Measuring rate

ISL+ ES12 190.5 20 Every 15 minutes
SLx+ ES16 200 23 From sunrise to sunset:

every 5 minutes
From sunset to sunrise: every 60
minutes

ISD+ ES16x2 200 and 38a 23 and 33 From sunrise to sunset:
every 5 minutes
From sunset to sunrise:
every 60 minutes

a Biomass estimates are calculated according to the acoustic response registered by the 200kHz echo-sounder,
allowing data to be comparable across all buoy models.

Table 1: Buoy models and characteristics

2.1.3 Oceanography data

Oceanographic data was downloaded from the global ocean model (products GLOBAL-ANALYSIS-FORECAST-PHY-
001-024, 1/12◦ resolution; and GLOBAL-ANALYSIS-FORECAST-BIO-001-028, 1/4◦ resolution) provided by the
EU Copernicus Marine Environment Monitoring Service4 (Global Monitoring and Forecasting Center, 2018). For each
record contained in the echo-sounder buoy data (see Section 2.1.2), we downloaded several oceanographic variables at
surface level (depth = 0.494 m). This data set will be used by the model from Section 2.2.1 to estimate the size of the
tuna school aggregated under each dFAD.

2.2 Data preprocessing

2.2.1 TUN-AI estimations

We will use the estimations of tuna schools from the TUN-AI model (Precioso et al., 2021). This model is based on
a Gradient Boosting (GB) algorithm (Friedman, 2001). TUN-AI uses information from the acoustic records, buoy
location, and oceanography, to estimate the tuna biomass below the dFAD, with an average error of ±8.54 tons. The
model is trained using set and deployment events from the FAD logbook. Set events include the amount of tuna caught,
which was assumed to be the whole biomass under the dFAD. On the other hand, for deployment events it is assumed
that no tuna had yet associated to the dFAD. For a detailed explanation of TUN-AI, please refer to Precioso et al. (2021).

To predict the size of the tuna school for a given day, TUN-AI requires an input echo-sounder window of the previous 3
days, containing one acoustic record per hour. By decreasing the frequency of the biomass estimations from hourly

3SATLINK, Madrid, Spain, www.satlink.es
4http://marine.copernicus.eu/
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Figure 1: Left: Depth layer configuration and set-up of the Satlink echo-sounder buoys. Right: example of the biomass
estimates (in metric tons) and echogram display available to buoy users. Raw acoustic backscatter is converted into
biomass estimates based on the target strength of skipjack tuna (Katsuwonus pelamis) using manufacturer’s algorithms.

to daily, the day-night oscillations on the biomass are avoided, thus making the results more robust. Also, TUN-AI
has proven to be more accurate when estimating the tuna under the dFAD than simply aggregating the raw acoustic
signal (Precioso et al., 2021). We applied TUN-AI to each dFAD in our data set, sliding the echo-sounder window
sequentially to obtain one biomass estimation per day for each buoy in the data set.

2.2.2 Generating splits

Many buoys from the echo-sounder data set are involved in multiple events along the historical series of acoustic data,
which may disturb the biomass under the buoys. Moreover, it sometimes happens that a buoy does not emit any signal
for several days in a row, so it is uncertain to determine the aggregation times in these situation. Therefore, to properly
study these time distributions, it is necessary to divide the complete series into smaller partitions where echo-sounder
data is available for the most part of the interval and no human activity was performed during this range. Only in this
situation where tuna schools receive no external interaction makes sense to estimate the aggregation times.

As we have previously stated, generating the splits from historical series of a buoy requires both the echo-sounder
and the FAD logbook data sets, since the logbook contains the disruptive events (human interactions with the dFADs)
that can be used to divide the series. We first merge both data sets using the date, the buoy ID and the event that took
place as columns to join on. Figure 2a shows the complete historical acoustic series of a buoy together with human
interactions, depicted in coloured dashed lines. There are 10 values of acoustic records per hour (one for each layer
depth) but we need a single biomass estimation, so we aggregate them by using the maximum value (Figures 2a to 2c).
In this paradigmatic example, it is shown that long time intervals without any acoustic signal recorded may happen as
we pointed out before, so special treatment needs to be developed for this casuistry.

At this point, we are able to divide each historical series using as disruptive events the non-acoustic observations that
appear now in the merged data set. Moreover, we also split the series when there were no echo-sounder data for 6 days
in a row, even if there was not any human activity. These empty intervals are either caused by the absence of tuna, or
by buoy inactivity. Without a method to discriminate between these two causes, the study drops wide periods of no
echo-sound signal. Lesser empty intervals (up to 5 days) are expected to happen, specially after a disruptive event,
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(a) Historical biomass series under a sample dFAD (in blue),
together with the disruptive events that happen within this
interval (marked as dashed lines whenever they happen).
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(b) The series is sliced when a disruptive event happens,
or after a long period without acoustic records. Each color
represents an individual split.
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(c) Splits shorter than 40 days are dropped.
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(d) TUN-AI is applied to estimate the corrected biomass.

Figure 2: Biomass evolution under a sample dFAD.

because it has been observed that tuna takes at least 5 days to aggregate under a FAD (Orue et al., 2019b), and thus are
allowed within the series. Therefore, a partition of the global series of acoustic data may have as a triggering event one
of the following: a human activity collected on the FAD logbook, a sequence of missing echo-sounder values during
more than 6 days in a row or an unknown event (since it can happen that acoustic data is available in the echo-sounder
data set with no previous event recorded in the FAD logbook). Figure 2b shows the splits defined on the sample dFAD
biomass evolution series, where each split is plotted in a different colour for better visualization.

In many situations, series are truncated during the process of aggregation to the dFAD. This may happen if, for example,
a vessel sets on the dFAD and captures the biomass. Therefore, to safely compute the time a tuna school is aggregated
to a dFAD and not being influenced by the events that happen at the edges, we will not consider the first and the last 20
days of a given split. This large time interval is a safe choice and, although we lose some valid splits to include in the
following studies, this approach ensures that no external interaction is produced and still remains a large sample of
biomass estimation series to perform the forthcoming analyses. This decision constrains the splits we computed to last
at least 40 days, so every division shorter than that is removed from the data set. Figure 2c shows the biomass evolution
of the sample dFAD once the shortest split (which is shorter than 40 days) is dropped.

To end the split generation process, we apply the TUN-AI model to each series. As the model returns daily estimations
of the tuna biomass, the new splits end up having daily frequency, which is preferable for our study. This bundling
meets the need of computing properly the elapsed time which tuna is aggregated to a dFAD and, as some authors have
pointed out before, the presence of tuna depends strongly on solar time (Escalle et al., 2019). Thus, having hourly
frequency may cause undesired effects since, in general, biomass measurements are very low at night. Figure 2d shows
the sample dFAD biomass estimation of TUN-AI, showing that the noise is reduced and most points are greater than
zero, contrary to what happened before.
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2.2.3 Smoothing the signal and detecting peaks

To compute the amount of time a tuna school remains associated to a dFAD, we need to define the events when we
consider the aggregation begins and ends. The approach we propose is to focus on locating local maxima of the biomass
series and then finding the left and right points where the signal has decayed from the maximum to a certain proportion
of its value.

As shown in Figure 2d, the time series of biomass estimates from TUN-AI (Precioso et al., 2021) may present very
steep peaks, which could represent sudden changes in the size of tuna schools present at the buoy, or be due to other
external noise-generating factors (for example, presence of other non-tuna species). Nonetheless, as the aim of the
current study is to identify general trends in the process of tuna school aggregation, we have chosen to overlook these
small-scale changes in biomass estimation. To do this, these series are smoothed using both a rolling mean algorithm
and a more sophisticated penalized regression smoothing splines approach to reduce the noise and properly estimate
the trend of the data. In particular, P−splines (Eilers and Marx, 1996) are used to smooth the data due to its good
numerical properties and computation efficiency. Figure 3 shows the rightmost split shown in Figure 2d together with
the smoothed signals. Clearly, both smoothings are less influenced by steep behaviour of the acoustic signal and better
estimate the trend of the data, making them more appropriate to estimate the aggregation time distributions under the
dFADs.
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Figure 3: Biomass estimation by TUN-AI model (Precioso et al., 2021) (in pink), together with a rolling mean (in
green) and a P−splines (in blue) smoothings. 5 days were used in the rolling mean calculation and 40 interior knots
were employed in the P−splines smoothing.

After smoothing the acoustic series, we proceed by finding the maximum and determining the amount of time tuna
schools remain aggregated to the dFADs. The procedure described above can be applied both to the raw biomass series
and the smoothings performed and it is illustrated in Figure 4, where the process is carried out for the P−splines
smoothing.

The algorithm to find peaks is the one implemented in scipy.signal.find_peaks5 (Virtanen et al., 2020), where
they are defined as any sample whose two direct neighbours have a smaller amplitude. This is shown in Figure 4a. For
a sample to be classified as a peak, it needed to reach a minimum biomass estimation of 10t. This cutoff point was
chosen to avoid including small peaks in the final statistics, and to focus the study on large schools of tuna. Once all the
relevant peaks are located, we compute the aggregation times following the steps below:

• Compute the peak prominence, given by the vertical distance between the peak and its lowest contour line.
The peak prominences are depicted in light blue solid lines in Figure 4b.

• Calculate the evaluation height, defined as the difference between the peak height and the peak prominence
multiplied by 0.5. The evaluation heights on the split used to illustrate the process are marked as green × in
Figure 4b.

5Documentation: https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.find_peaks.html
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(a) Peaks on the biomass series are found provided that they
are over 10t.
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(b) For each peak, the peak prominence and the evaluation
height at a relative height of 0.5 are computed.
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(c) The peak width is calculated sketching an horizontal line
from the evaluation height of the peak.
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(d) Edge peaks are dropped to avoid facing truncated series.

Figure 4: Procedure used to estimate the time tuna school remains aggregated to a dFAD.

• Subsequently, an horizontal line at the evaluation height is drawn from the peak’s position until reaching a
slope or a signal border. The time we consider the tuna school to be aggregated to the dFAD is given by the
width between the two intersecting points. These widths are plotted as solid green lines in Figure 4c.

• Finally, to avoid undesired effects due to the human interaction that may occur at the edges of the split series,
peaks found in the first and the last 20 days are removed from the statistics used to estimate the distribution of
the elapsed times tuna school remains aggregated. These 20-day intervals are coloured as grey rectangles in
Figure 4d.

This procedure enables us to define three temporal variables:

• Continuous Residence Time (CRT): amount of time tuna schools remain associated to the dFADs (green lines
in Figure 4). This definition has been adapted from Ohta and Kakuma (2004), considering here the entire
school as opposed to individual tunas.

• Aggregation time (AT): elapsed time from the point when the biomass signal has reached the evaluation height
to the point of maximum biomass (red dot in Figure 4c).

• Disaggregation time (DT): elapsed time from the peak biomass to the point when the biomass signal has
decreased to the evaluation height.

We emphasize that, for each peak, CRT is equal to the sum of AT and DT, but these two are relevant variables by
themselves since they lead to study whether the aggregation and disaggregation processes are symmetrical or not.
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3 Results

The data preprocessing detailed in Section 2.2.2 reduces the initial data set to 1 069 063 daily biomass estimations that
are divided in 9696 splits. As we previously stated, the biomass estimation on each of these splits is now smoothed
using two smoothing techniques: rolling mean and cubic P−splines.

In this setting, choosing the right parameters in both procedures is essential for properly determining the aggregation
time distributions. Indeed, a very long period in the moving average or a low number of interior knots in P−splines
may underfit the data, which entails a major problem due to the steep behaviour of the tuna estimation series. Therefore,
we analyse the time distribution for a variety of parameters: the period for the moving average calculation is set as 2, 5
and 8 days and the number of equidistant interior knots in the P−splines algorithm is fixed as 20, 40 and 60. Finally,
P−splines also requires to select the smoothing parameter, which has a crucial effect on the quality of the fit. In this
study, the smoothing parameter is chosen based on minimizing Generalized Cross-Validation (GCV) (Golub et al.,
1979) over the set 2n with n ∈ {−15,−13,−11, . . . , 5, 7}.
Table 2 contains the number of peaks found using the procedure described in Figure 4 by each type of smoothing.
Moreover, many statistical indicators describing the distribution of the elapsed time that a tuna school was aggregated
to a dFAD are added in each case. Results show that the maximum number of peaks is attained when no smoothing is
performed and that the amount of peaks found decreases as the time period (number of knots) increases (decreases) in
the rolling mean (P−splines) algorithm, as expected. In addition, we observe that even in the most extreme case for
P−splines with 20 interior knots (when data may be underfitted, and therefore the peak widths is overestimated), the
time difference between the 5th and the 95 percentile is slightly above a month.

Smoothing Parameter Nr. of peaks Median (days) IQR (days) 5th-95th percentile dist. (days)

No smoothing - 128 276 1 2 9

Rolling mean 2 days 86 311 2 3 13
5 days 61 586 3 5 18
8 days 52 939 2 7 21

P−splines 60 knots 46 214 4 6 19
40 knots 37 497 5 7 23
20 knots 22 748 9 10 34

Table 2: Number of peaks for the distribution of the CRT. The median, the interquartile distance and the difference
between the 5th and the 9th percentile of the distribution (in days) are included.

To better illustrate the CRT distributions, Figure 5 represents the violin plot of this time distribution for the three
smoothings performed using P−splines. Violin plots are similar to box plots, but additionally they contain a rotated
kernel density plot on each side which will improve the understanding of the statistical indicators shown in Table 2. We
chose to plot P−spline results since they reported the largest records of these indicators. From Figure 5, we see the
kernel density plots associated to P−splines smoothings with 40 and 60 interior knots are really similar and present a
high level of positive skewness, while the remaining density show the same behaviour but not so left-tailed.

Finally, we address the issue of determining the AT and DT distributions, that is to say, the times between the moment
when it is considered that tuna start to be aggregated to the dFAD and the maximum value the biomass estimation
attains, and from this point and the moment when it is deemed that the tuna school disaggregates from the buoy,
respectively. Although we have determined using a wide range of smoothings the time distribution that tuna schools
remains associated to a dFAD, it is not straightforward that these temporal variables should be equally distributed.

To explore this question, we estimate the AT and DT for each peak on the P−splines smoothings, which yield wider
distributions as is shown in Table 2. The resulting distributions are displayed in Figure 6. From this figure, we can
conclude that the distribution of both processes are mostly symmetrical and no remarkable differences are appreciated.

4 Discussion

The current study contributes to improving our knowledge on the temporal aggregation dynamics of tropical tuna
around dFADs, through the data provided by echo-sounder buoys deployed across all major oceans. In general, our
results show that the process of aggregation of tunas to dFADs is symmetrical, with ATs within the range of DTs, and
that both of these processes tend to occur gradually, taking several days (Figure 6). Even with the most conservative
smoothing method (P−splines, 20 knots), the median CRT of tunas at dFADs was less than 10 days, while other less
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Figure 5: Violin plot of the CRT using P−splines smoothing for different values of the number of knots. For each
distribution, dashed lines show the position of the quartiles.
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Figure 6: Violin plot of the AT (in red) and DT (in blue) distributions. Vertical dashed lines depicted the position of the
quartiles of the distributions
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conservative methods showed even shorter time ranges, with a median of 5 days or less (Table 2). Considering IQR we
see similar results, with CRT between 2 and 10 days (Table 2).

One notable aspect to consider when examining our results, is the fact that the current study investigates the associative
patterns of tuna on an entire school basis. This differs from other small-scale studies, which generally work with
individually tagged tuna to evaluate their movements around FADs (Ohta and Kakuma, 2004; Schaefer and Fuller,
2005; Dagorn et al., 2007; Robert et al., 2014; Govinden et al., 2021). One such study found that tagged fish at a dFAD
typically departed in small groups, while others remained at the dFAD, concluding the tuna associated to dFADs were
generally composed of multiple "sub-schools" rather than one single cohesive unit (Dagorn et al., 2007). Our results
would seem to indicate similar patterns, as peak biomass isn’t suddenly registered by the echo-sounder buoys, but rather
increases over the course of a few days, as occurs for AT (Figure 6). In addition, it is possible that the "smoothing"
of the time-series data of TUN-AI biomass estimates (Precioso et al., 2021) further minimized small fluctuations in
school size which could evidence the departure or arrival of these smaller "sub-schools". These results could support
the "meeting point" hypothesis (Fréon and Dagorn, 2000), by which dFADs allow tuna to encounter other individuals of
their same species and form larger schools, providing temporary protection from predators.

Despite differences in methodology, the general trends in CRT observed in the current study are in accordance to those
found in several small scale studies on tuna behaviour around floating objects. For instance, Govinden et al. (2021)
studied the associative behaviour of tuna species around dFADs in the Indian Ocean, and found that the tagged bigeye
tuna showed the longest CRT, at 7.59 days, followed by yellowfin (6.64 days) and skipjack (4.58 days). Others have
found mean CRTs of 5 to 8 days for yellowfin and bigeye (Dagorn et al., 2007). These results are in the range of the
current study’s findings, where median CRT was between 1 and 9 days according to the processing applied to the
TUN-AI biomass estimates (Precioso et al., 2021). Likewise, the maximum CRT found by Govinden et al. (2021) was
26.72 days, which would fall within the ranges of our most conservative analysis (P−splines, 20 knots), with 5th-95th
percentile distance of 34 days. The symmetry observed in AT and DT distributions seem to indicate that association of
tuna to the dFAD is circumstantial, and that there are no specific drivers favouring either process over the other. If an
"ecological trap" (Marsac et al., 2000) were occurring we would expect to see longer DTs, compared to ATs, as the tuna
remain at the dFAD regardless of external factors.

Although our research provides some insight into the associative behaviour of tuna around dFADs at a temporal scale,
future studies should look into these processes on a spatial scale. This would help identify differences between oceans,
but also provide further insight into whether dFADs in areas with favorable oceanographic conditions show a prevalence
of tuna aggregation, versus those in areas with non-favorable conditions, as would be expected if the "indicator-log"
hypothesis were true (Hall et al., 1992). Studying the permanence of those aggregations as the dFADs drift out of
favorable conditions could also serve to further evaluate whether an "ecological trap" (Marsac et al., 2000; Hallier and
Gaertner, 2008) occurs at dFADs.

It is worth noting that the biomass estimates used in the TUN-AI model (Precioso et al., 2021), based on measurements
provided by the echo-sounder buoys, are calculated using the target strength of skipjack tuna, so differences in the
associative behaviour of the three main tropical tuna species are not evident. However, recent buoy models, such as the
ISD+ buoy included in this study, use multiple echo-sounders to distinguish species composition as well as tonnage
estimation. Though this technology isn’t yet predominant, it holds potential for studying species-specific behavioural
patterns in the future. This new technology, combined with publicly available data on oceanographic conditions could
further our knowledge on these pelagic species in a way that was not previously possible. Indeed, collaboration between
the fishing industry and scientists has proven that the data collected by echo-sounder buoys deployed across all major
oceans represents an unprecedented, and cost-effective, resource for furthering research on pelagic species such as tuna
(Orue et al., 2019a; Santiago et al., 2020; Baidai et al., 2020a).
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