DEVELOPMENT OF THE SCAS (STATISTICAL-CATCH-AT-SIZE) SOFTWARE¹

October 2021

Tom Nishida^{1/}, Toshihide Kitakado^{2/} and Kazuharu Iwasaki^{3/}

1/ Fisheries Resources Institute, Japan Fisheries Research and Education Agency, Shizuoka, Japan (aco20320@par.odn.ne.jp)
 2/ Tokyo University of Marine Science and Technology, Tokyo, Japan
 3/ Environmental Simulation Laboratory Inc., Saitama, Japan

Abstract

We have been developing Statistical-Catch-At-Size (SCAS) software since 2019 to improve our previous joint Age Structured Production Model (ASPM)/Statistical-Catch-At-Age (SCAA) software because of problems of uncertainties in the estimated CAA and usage of model-free selectivity. SCAS is integrated age-structured stock assessment model based on abundance indices and size composition data, and implemented by an AD Model Builder like Stock Synthesis 3 (SS3) and the ASPM/SCAA software. This SCAS software uses simpler specifications than in SS3, i.e., the season aggregated model without spatial components, thus requires less numbers of inputs and parameters to be estimated. The SCAS software has two parts, [Part I] Point estimation and [Part II] Uncertainties and Risk assessments. In each Part, there are three menus, i.e., [Part I]: (a) Grid search, (b) Initial graphs, (c) Diagnoses (retrospective analyses) and [Part II]: (d) Markov Chain Monte Carlo (MCMC), (e) Diagnoses (hindcasting), and (f) Final graphs. As this software is based on the simpler specification than in SS3 and driven by menus thus no programming is required. Hence this software is suitable for those who wish to run the simpler integrated stock assessments. This document describes the progress on menus (a) and (b) and the plans for the remaining menus, which are due for completion in 2022.

Contents Abstract 01 1 INTRODUCTION 1.1 Backgrounds 02 1.2 Objectives 02-03 2. OUTLINE OF THE SOFTWARE 03-05 3 [PART I] POINT ESTIMATION 05-07 3.1 Input files Grid search, output and selection of the most plausible run 3.2 08-09 3.3 Initial graphs 10-15 Retrospective analyses 10 3.4 4. [PART II] UNCERTAINTIES AND RISK ASSESSMENTS 10 4.1 MCMC Projections and Hindcasting 4.2 Risk assessments (Kobe II strategic rusk matrix) 4.3 Final graphs 4.4 Acknowledgements 16 REFERENCES 16 ANNEX A. INPUT FILES (with samples inputs) A.1 Control file 1 control.inp 17-18 A.2 Parameter guess file 2 scas.pin 18 A.3 Biological data file 3_biological.inp 19 A.4 Index file 4 index.inp 19 A.5 Fishery file 5 fishery.inp 20-21 Projection file 6_projection.inp 21 A.6

¹ Submitted to the IOTC WPTT23 (AS) (October 25-30, 2021) (online)

1. INTRODUCTION

1.1 Backgrounds

The first IOTC Working Party of Method (WPM) took place in the IRD office, Sète, France in 2001. The WPM01 discussed what types of stock assessment models need to be applied for the most important IOTC tuna species such as yellowfin tuna and bigeye tuna under the biological data limit situation especially size data at the beginning stage of the Scientific Committee (SC) started in 1998. After the extensive discussion, the WPM01 recommended to apply Age-Structured Production Model (ASPM) as the assumed selectivity can be substituted without any size data.

Since then, ASPM was used for stock assessments of yellowfin tuna, bigeye tuna and albacore. Initially the FORTRAN implemented ASPM developed by Restrepo (1997) in ICCAT was used (2002-2009). Afterwards the AD Model Builder implemented ASPM software was developed by Rademeyer and Nishida (ver. 1 in 2010 and ver. 2 in 2012) driven by menus. Later we improved the software in ver. 3 (Nishida and Kitakado, 2014) to be able to execute Statistical-Catch-At-Age (SCAA) within the same software as more size data became available and CAA could be used. As a result, the ASPM/SCAA software was used in the past 18 years (2002-2019). To 2014, results of ASPM, SCAA, SS3 and/or MFCL were used as the management advices for bigeye tuna, yellowfin tuna, and albacore tuna. Afterwards, results of SS3 were used for the primary advices, while results of SCAA/ASPM and/or other models were utilized as the supporting information for SS3.

We had been recognizing the problems on the estimated CAA including biases and the model free selectivity in the SCAA part of the software. To solve these problems, we started to develop the size based SCAS software in 2019 incorporating models for selectivity, and plan to complete all functions in 2022. This document describes the progress of the development of the SCAS software to now.

1.2 Objectives

SCAS that we are currently developing is the annual based model without considering spatial components (movements), while SS3 is the quarterly based model incorporating spatial components such as movements. If the quarterly and movements information is less biased, SS3 will provide more plausible results than SCAS as such detail information are fully incorporated, unless otherwise, the situation will be vice versa. Therefore, it is important to compare results between two models to evaluate reliability of results. It is also ideal to compare with other stock assessment models with different specifications such as productions models for more meaningful evaluations. In fact, these comparisons have been recommended by the SC and taken place in various stock assessments in IOTC.

SS3 needs to estimate many parameters due to the quarterly and space-based (complex) model, while SCAS requires less parameters as it is the simpler integrated model. It is noted that the maximum number of information to be entered to the SCAS is 73 (> 200 for SS3) and the maximum number of parameters to be estimated is 7 (> 50). Hence, time (duration) for one SCAS run is much shorter than SS3, so that users can explore large numbers of grids in a short time.

Under such circumstances, the main objective of this menu driven SCAS software development is to provide to those who wish to run the simpler integrated age structured stock assessment model based on size with the simpler specifications and also to compare results of other stock assessments especially to SS3.

2. OUTLINE OF THE SOFTWARE

Fig. 1 shows the flowchart of the SCAS software including two parts, i.e. [Part 1] Point estimation and [Part II] Uncertainties and risk assessments. In each part, there are three menus to implement various tasks (Fig. 2). The outline of two parts of this software is described as below.

[Part I] Point estimation

This part will execute various SCAS runs typically for the base case and sensitivities, to estimate parameters using six input files. For this task, [a] the grid search menu automatically implements the batch job by following combinations of five parameters, i.e., steepness, M (natural mortality), depletion, σ (recruitment deviation) and/or CAS weight. All results (outputs) are stored in the excel file (for details, refer to Fig. 5, page 9). Users will select the most optimum run referring to the excel output file including criteria and references for selection, i.e., error messages, likelihood, r², and graphs made by [b] the initial graph (menu) including residuals, time series of various parameters, Kobe plot etc. The most optimum run selected may be the base case, one of sensitivities or the combined (integrated) one among them. Finally, users will conduct the diagnostics to evaluate results (robustness, accuracy and reliability of parameters estimated and fitness to the models) using Jitter analysis, residual analyses, [c] the retrospective analyses (menu), R0 likelihood profile and ASPM analyses for the integrated models if applicable. If results are not satisfied, users need to select the other optimum point estimation until diagnostic analyses satisfy the results.

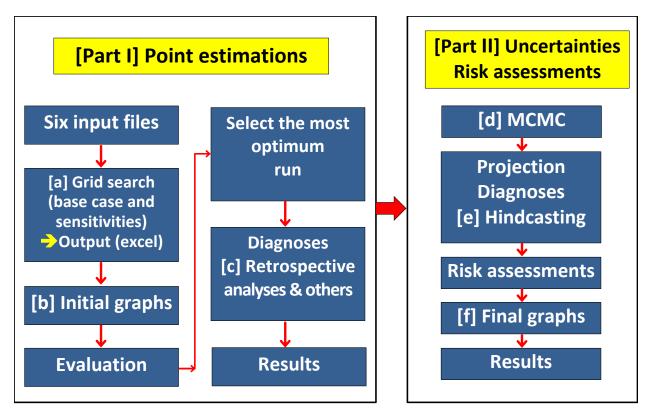
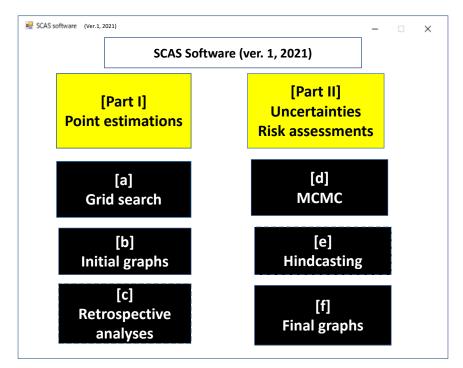
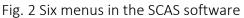




Fig. 1 The flowchart of the menu driven SCAS software

(Note) [a] & [b] has been completed, while others are partially completed. The whole software will be completed in 2022.

[Part II] Uncertainties and Risk assessment

Using the most optimum point estimation selected in [Part I], MCMC will be implemented to evaluate uncertainties around the point estimate, then future projections will be estimated on total biomass and F under the current catch level, then uncertainties around the projection are evaluated. Then hindcasting analyses will be conducted using [e] the hindcasting (menu) to evaluate the projection. Finally, risk assessments (Kobe II) will be implemented to estimate risk probabilities (%) violating MSY levels of biomass and fishing mortality (F) by different catch levels in the projection period. This will be the important source for management advice. Finally, final graphs for the report will be made using [f] the final graph (menu) to depict trends and show relevant parameters with uncertainties, so that results are easily understood.

3. [PART I] INPUT FILES

3.1 Input files

There are six input files to run the SCAS software as shown in Fig 3. The actual contents of files and detail descriptions are provided in Annex A using the sample data. Table 1 shows the list of the information to be entered to the 6 input files of the SCAS software.

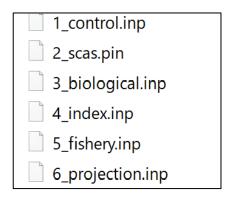


Fig.3 Six input files in the SCAS software

Table 1 List of input information (codes, values, and numbers) to be entered to the 6 input files of the SCAS software (max. 73 entries and max. seven parameters to be estimated).

(Note1) Yellow marker indicates default codes, numbers or values, while sky blue marker for parameters to be estimated. (Note2) If parameters need to be estimated, any positive integers will be assigned, while, for the non-estimation option, any negative integers.

Input file	Section	Information	Info	rmation to be ente	red	Contents
name			Code	Default	No. of	
				value/example	entries	
1_Control.inp	0	Verbose	<mark>0</mark> or 1		1	# 1 to write out stuff while running or 0 not to write
	1	year, age,			7	# 1 st year, # Last year, # Min age, # Plus group age, #
		size & fleet				Min size (cm) =1, # Max size (cm) and # No. of fleets.
	2-1	S-R	<mark>1</mark> or 2		1	# SR relation 1=Beverton-Holt or 2=Ricker
		relation		1950 (e.g.)	1	# First year with recruitment residuals
				2020 (e.g.)	1	# Last year with recruitment residuals
				0.6	1	# Standard deviation for recruitment (sigma R)
				or estimated		Deterministic model if sigmaR=0
	2-2	Growth eq.	1 or 2		1	# Select growth function (1=VB, 2=Two-stanza)
	3	Initial	1 or 2		1	# Initial condition (1=pre or 2= after exploitation)
		population				[note] 1 means the virgin stock.
				8 (e.g.)	1	# If initial condition=2, the maximum age to estimate
	4	Error(catch)		0.2	1	# Sigma (standard deviation) for the catches
		Error		0.02	1	# Minimum proportion for CAS
		(CAS)	<mark>1</mark> or 2		1	# CAS error type: 1=adj log-normal (Punt-Kennedy)
						2=sqrt(p) (approximation of multinomial)
	5	Selectivity			1	# Fleet number
			1 or 2		1	# Shape (1=logistic, 2=double logistic),
					1	# Number of selectivity changes
					1	# Years selectivity changes for each fleet
			1 or 2		1	# Dynamic MSY (1=yes, 2=fixed) [Note] when 1 i
						selected, MSY by year will be estimated, while, for 2
						only one MSY for the last year will be estimated.
	6	Phase of			1	# Phase for estimation of M
		parameter			1	# Phase for estimation of steepness
		estimation			1	# Phase for estimation of TB0 if the initial condition =:
						(virgin) in Section 3.
					1	# Phase for estimation of the numbers-at-age in the
						first year (from age-at-recruitment+1 to mm)
					1	# Phase for estimation of phi (initial F) (see 2_scas.pin
					1	# Phase for estimation of indices additional variance
					1	# Phase for estimation of recruitment residuals
					1	# Phase for estimation of Bi (growth eq.)
					1	# Phase for estimation of commercial selectivity b
						fleet
	7	Weight			1	# Weight for CAS by fleet
		for CAS				[note] Small decimal (for example 0.1) is suggested.

(Table 1 continued) Input file information Information to be entered Contents No. of Code Value name entries тво # Log of virgin TB (tons) if the initial condition =1 2_scas.pin Guess value 1 (Log_e TBO) (virgin) in Section 3 and the positive integer in Section 6, 1_Control.inp file. Guess value 2 # Initial population size for age 0 and 1 (number) when Initial population size log_e TN (age 0) the initial condition=2 is selected in Section 3, log_e TN (age 1) 1_Control.inp file. [note] Log_e TN (age 0) < 20 Initial F Guess value 1 # Initial F <mark>0.1</mark> Additional variance 1 # add variance to CPUE CV (0.2) if the phase for (CPUE CV) estimation of indices additional variance is positive integer (Section 6, 1_Control.inp file) Additional variance <mark>0.2</mark> 1 # Add variance to sigma if phase for estimation of (Recruitment residuals) recruitment residuals is the positive integer (Section 6, 1_Control.inp file) Guess values Selectivity 1 # Selectivity: enter parameters of selectivity by fleet 3_Biological.inp <mark>0.7-0.9</mark> 1 # h value if # Phase for estimation of h is the positive Steepness (h) or estimated integer in Section 6, 1_control.inp. Natural mortality Fixed values 1 # M vector by age if # Phase for estimation of M is the or estimated (M) positive integer in Section 6, 1_control.inp. CAS (CV) 0.2 # Enter the value (0.2 for default) 1 Growth equation 1 or 2 1 or 4 # Parameters for VB (∞ and Kappa) if code=1 or (parameters) parameters for 2 stanza (∞,Kappa1, Kappa2, Alpha and Beta) if code=2 (refer to Section 2.2, Control.inp) 0 Fraction of mortality 1 # Fraction of mortality that occurs before spawning Maturity-at-age 1 # Maturity-at-age vector by age (%) LW relation # 2 parameters for the LW relation 1 CPUE 4_Indiex.inp 1 # Number of index series # Number of observations (years) for each index 1 # To which fleet the index corresponds to 1 1,2 or 3 1 # Units (1=numbers, 2=biomass, 3=spawning) # Timing (month in which index is taken) 1 1 # Minimum age indexed 1 # Maximum age indexed # Weight given to each index 1 1 or 2 7 # Compute sigma (=1), or use input CV (=2) 5_Fishery.inp Catch # Total catch in tons by fleet 1 CAS # Min and max length (cm) 4 # Length classes (cm) # Number of CAS series (fleet) # Number of CAS vector for each series (fleet) 6_Projection file Projection 1 # Number of years for projections # Future catch for each fleet for projection 1 Max no. of input to be entered 73

Max no. of parameters to be estimated

7

3.2 GRID SEARCH, OUTPUT AND SELECTION OF THE PLAUSIBLE RUN

Applying the grid search menu, users can search the most optimum parameters from the base case and the sensitivity scenarios by setting minimum, maximum and intervals values of five key parameters i.e., CAS weight, h (steepness), B1/K (depletion), σ value (standard deviation in the spawner - recruit relation) and M (natural mortality). The grid search menu will automatically make the batch jobs for number of combinations of five parameters assigned. Fig. 4 shows one example of the batch job set-up, i.e., in this case, 16 runs will be conducted with CAS weightings (2 different values), σ (2), h(2) and B1/K(2).

If users want to make no combinations for particular parameters, untick relevant boxes in the batch job window (below), so that the parameter values set up in the input files set, will be read in the batch job. If users want to make a single run without any combination, use the DOS prompt and just type 'scas' then enter to make a single run.

Parameters					Option of batch job	
Name CAS weight (1_control.ir	ip)			no. of combinations	Start Pause Termination	
CAS weight 0	☑ 0.1	0.01 0.001	0.0001	2	31 0.13758 -1.3350e-005 32 0.80540 4.1843e-006 33 0.15214 -3.0423e-006 34 0.53806 -2.4728e-006 35 0.24206 4.6158e-006 36 -0.97104 4.0376e-009	
Name σ (1_control.inp)	minimum	maximum	class value	no. of combinations	37 0.39888 1.9969e-006 38 -0.71287 4.2870e+001 Intermediate statistics: 38 variables; iteration 10; function evaluation 16; phase 5 Function value -8.8723702e+002; maximum gradient component mag 3.3695e+001	
σ	0.4	0.6	0.2	2	Var Value Gradient Var Value Gradient Var Value Gradient 1-0.99855-8.9027e-004 2-0.34170-3.6172e-001 3 0.99852 1.3471e-004 4-0.99690 9.5211e-004 5 0.99774 3.6475e-004 6 0.99884 -6.6725e-005 7 0.0004 4.7009 0.0004 5 0.99774 3.6475e-004 6 0.99884 -6.6725e-005	
h (steepness) (3_biologi			-		7 0.99891 -1.3782e-004 8 0.99873 -1.2593e-004 9 0.99832 -8.8070e-005 10 0.99764 -5.6188e-005 11 0.99656 -3.6875e-005 12 0.99488 -2.5614e-005	
✓ h (steepness)	0.7	0.8	0.1 🜩	2	13 0.99227 -1.7378e-005 14 0.98821 -1.1599e-005 15 0.98193 -7.7217e-006 16 0.97895 -6.8288e-006 17 -0.00155 -7.1667e-001 18 11.50850 7.3065e-003	
B1/K (2_scas.pin)					19 0.21635 1.0578e-007 20 0.15305 7.3347e-008 21 -0.57909 -4.0382e-006	
☑ B1/K	0.9	1.0	0.1	2	22 0.73299 -24144e+001 23 0.25446 1.6744e+001 24 0.73029 2.0290e+001 25 0.27790 -1.4330e+001 26 0.52193 4.3410e+000 27 0.34272 -2.7228e+000 28 0.61394 -7.5808e+000 29 0.08525 -2.3018e+000 30 0.75743 -2.0979e+001	
M (3_biological.inp)					31 0.13743 3.7759e+000 32 0.80550 -5.4374e+000 33 0.15197 1.3780e-001	
□ M	0.0	5.0 ‡	0.1	1	34 0.53826 1.7977e+001 35 0.24205 -4.9892e+000 36 -0.97104 9.3644e-006 37 0.39899 7.7638e+000 38 -0.76848 3.3695e+001	

Fig. 4 Batch job window showing the sample set-up of five parameters and the actual runs.

The output (results) in all batch job runs will be stored in one excel file composed of two sheets, i.e., (a) results with convergences and (b) results without convergences and/or errors (Fig. 5). Estimated parameters and results in the output are shown in Fig. 5. Non conversion results in the lower Table 5, are indicated by *'Warning -- Hessian does not appear to be positive definite'* in the error message. Yellow markers in Error Message indicate that estimated parameters are out of ranges. For example, extreme values, MSY > SSB (current) etc. Using the converged results (the upper panel in Table 5), users will evaluate and select the most optimum run by referring to likelihood, and parameters values estimated.

	A	В	С	D	E	F	G	Н	1	J	К	L	M	N	0	Р	Q	R	S	Т	U
	Time	00h30m	No. of jobs	10	Average	3.1	min/job														
			Ra	inge (step) of !	5 parameters																
		CAS weight	Sigma (SR)	h (steepness)	depletion (B0/K)	м	Likelihood components				1,000 tons										
		0,0.1,0.01	0.3-0.6 (0.1)	0.7-0.9 (0.1)	fixed	fixed															
	Run no.	CAS weight	Sigma (SR)	h (steepness)	depletion (B0/K)	м	Total	Indices	CAS	SR_fitS	CT_fits	r2	SSBO	SSBmsy	SSB (current)	MSY	Catch (current)	Depletion	SSB /SSBmsy	F/Fmsy	Error Message
	16	0.1	0.4	0.7	0.82		-1019	-4	-867	5	-153		585	164	205	38	34	0.35	1.25	0.78	
	19	0.1	0.5	0.7	0.82		-1004	-4	-868		-153		614	142	227	47	34	0.37	1.59	0.54	
	24	0.1	0.6	0.9	0.82		-991	-5	-867	33	-153		672	92	262	63	34	0.39	2.84		
	25	0.01	0.3	0.7	0.82		-262	-6	-85	-18	-153		538	168	142	31	34	0.26	0.85	1.27	
	28	0.01	0.4	0.7	0.82		-243	-8	-85		-153		537	160	132	33	34		0.83		
	29	0.01	0.4	0.8	0.82		-243	-8	-85		-153		537	160	132	33	34	0.25	0.83		
	31	0.01	0.5	0.7	0.82		-228	-10	-85		-153		544	155	124	35	34	0.23	0.80		
	32	0.01	0.5	0.8	0.82		-228	-10	-85	19	-153		545	155	125	35	34	0.23	0.80		
	35	0.01	0.6	0.8	0.82		-216	-11	-84		-153		570	157	122	38	34		0.78		
	34	0.01	0.6	0.7	0.82		-214	-11	-83	32	-153		466	106	89	36	34	0.19	0.83	0.99	
(n	ote) M Va	alues in 3_bio	logical.in	p were used a	s they were not assign	ned in the	batch job, l.	e. 0.4000 0.	3552 0.3	104 0.265	5 0.2207 0	.2207 0.	2207 0.220	7 0.2207 0	0.2207 0.22	07 0.2207	0.2207 0.22	07 0.2207 0.	2207		
-	Con	verged No	t conver	ged or Errors	(+)																

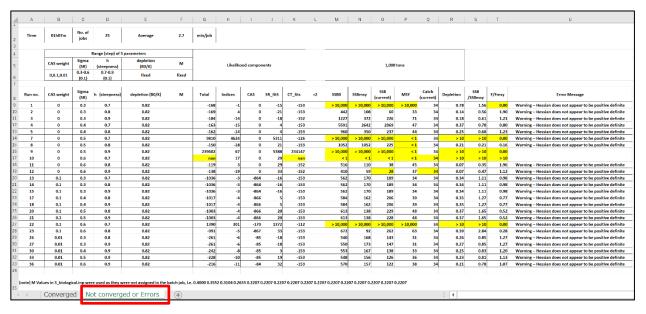


Fig. 5. Sample output of the batch jobs stored in one excel file composing of two sheets, i.e., (above) converged results, and (below) results with errors including non-convergences and/or errors (out of ranges) heighted by yellow markers.

3.3 Initial graphs

After users select the most plausible run, they can quickly check the key results by the graphs using [b] the initial graph menu. This menu will read key results available in the scas.rep (output) file containing all the results and produce relevant graphs automatically. Figs. 6-10 show five types of graphs to be produced by this application, i.e., "Basic results 1 (catch by fleet, catch vs. MSY, F vs. Fmsy and depletion)", "Basic results 2 (SSB vs SSBmsy, Spawner-Recruit relation and Kobe plot)", "Selectivity by fleet", "Fitness of CPUE" and "Fitness of the size frequency distribution", respectively. If users find unplausible trends of parameters and/or unplausible behaviors, then users need to re-select the optimum and plausible run.

3.4 Retrospective analyses

To evaluate the consistency of the point estimation, retrospective analyses can be conducted by its menu. This menu will be completed in 2022. Other relevant evaluation methods such as Jitter analysis, residual analyses, R0 likelihood profile and ASPM analyses (if applicable) can be done separately by users. Residual analyses can be conducted refereeing to graphs of residuals made by [b] initial graphs menu. If results are not satisfied, users need to consider other specifications to obtain reasonable point estimation until the results of the diagnostic analysis are satisfactory. If users want to make addition menus for other methods (Jitter analysis, residual analyses, R0 likelihood profile and ASPM analyses), we will consider to add these in the future.

4. [PART II] UNCERTAINTIES AND RISK ASSESSMENTS

- 4.1 MCMC
- 4.2 Projections and Hindcasting
- 4.3 Risk assessments (Kobe II strategic rusk matrix)
- 4.4 Final graphs

These four functions (menus) have been nearly completed and will be terminated in 2022.

Fig. 6 Basic results 1 (example) (catch, catch vs MSY, F vs. Fmsy and TB/TB0)

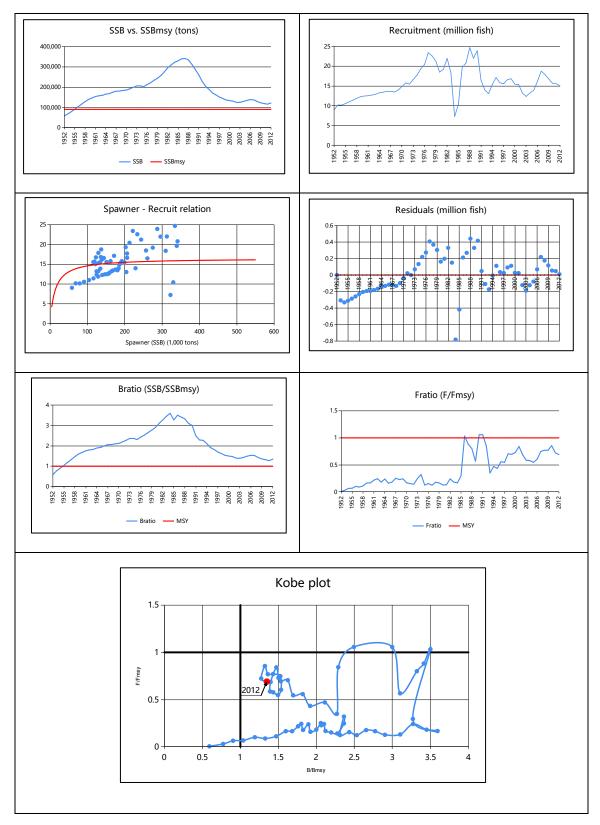


Fig. 7 Basic results 2 (example) (TB vs TBmsy, recruitment, Spawner-Recruit relation, TB/TBmsy, F/Fmsy and the Kobe plot)

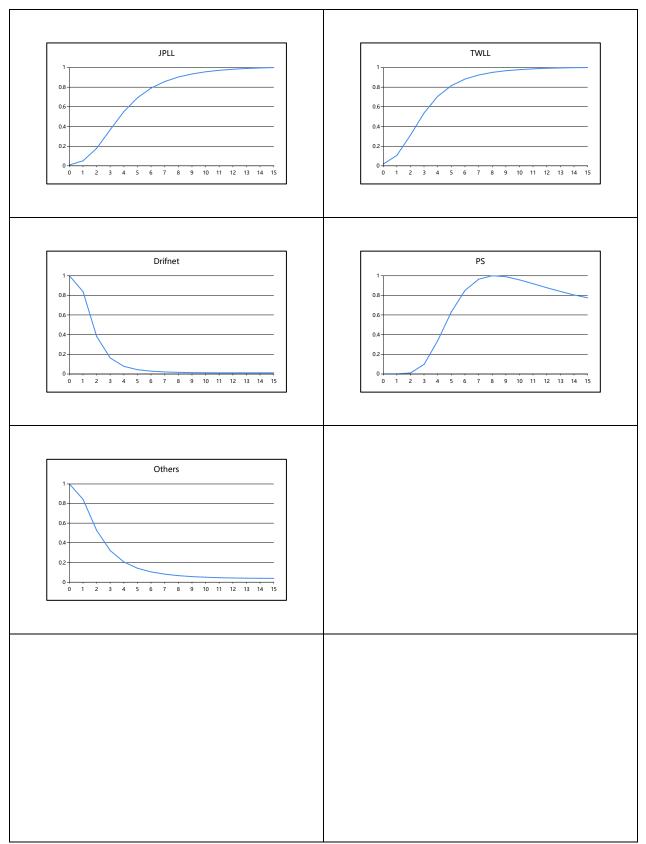


Fig. 8 Selectivity by fleet (examples)

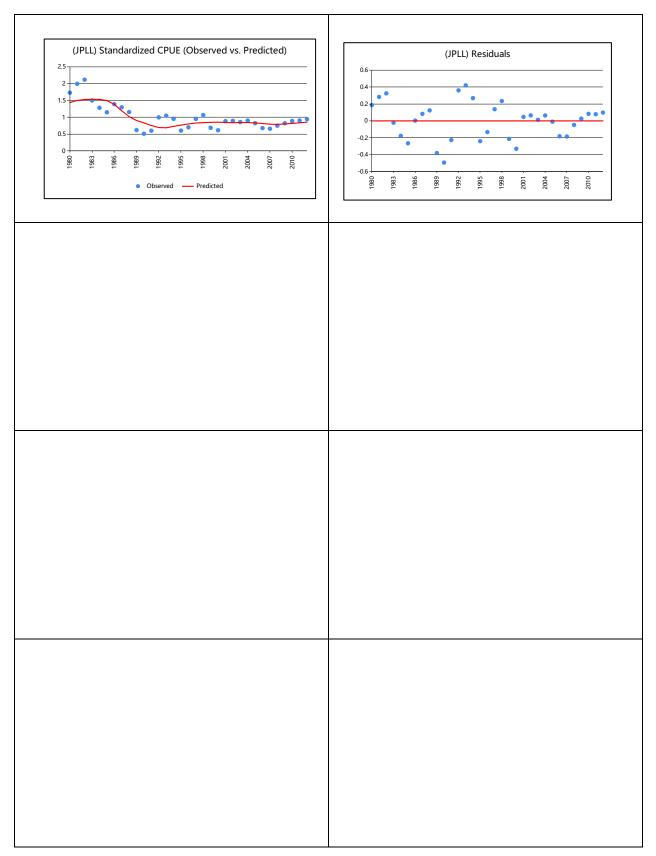


Fig. 9 Fitness of CPUE (example)

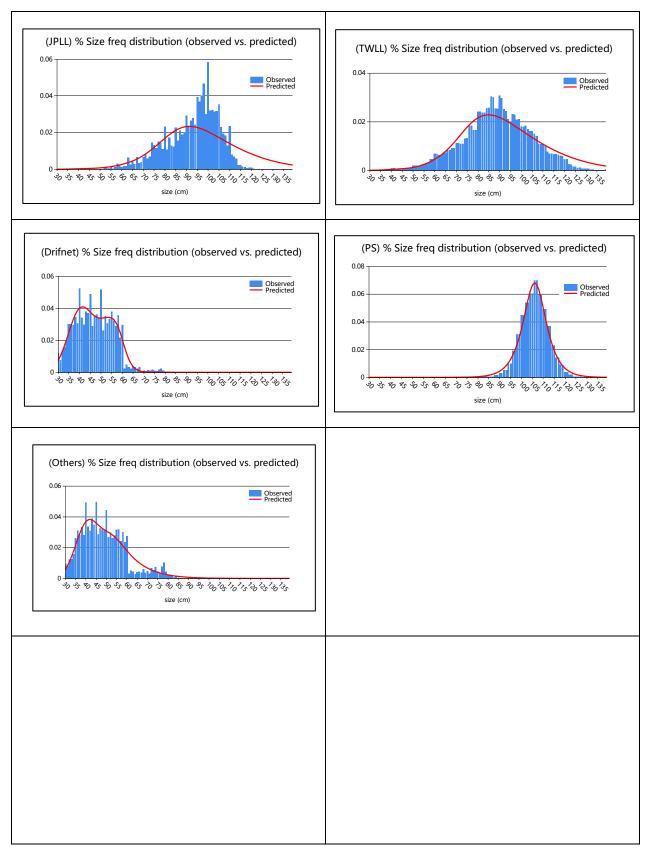


Fig. 10 Fitness of the size frequency distribution (examples)

ACKNOWLEDGEMENTS

We sincerely appreciate Fisheries Resources Institute (*formerly National Research Institute of Far Seas Fisheries*), Japan Fisheries Research and Education Agency, to provide the fund for the SCAS software development project.

REFERENCES

- IOTC (2001) Report of the IOTC ad hoc working party on methods, Sète, France 23-27, April, 2001.
- IOTC (2018) Report of the 20th Session of the IOTC Working Party on Tropical Tunas, Seychelles. IOTC-2018-WPTT20-R[E].
- Nishida, T., Rademeyer, R., Ijima, H., Sato, K., Matsumoto, T., Kitakado, T. and Fonteneau, A. (2012) Stock and risk assessments on yellowfin tuna (*Thunnus albacares*) in the Indian Ocean based on ADMB implemented ASPM and Kobe I + II software (IOTC-2012-WPTT14-40 Rev_2).
- Nishida, T, Kitakado, T, Iwasaki, K. and Itoh, K. (2014) User's manual for AD Model Builder Implemented ASPM/SCAA joint software (Version 3, 2014) (IOTC-2014-WPTT16-54 REV_1).
- Nishida T. and Kitakado, T. (2019) Preliminary stock assessments of albacore (*Thunnus alalunga*) in the Indian Ocean using Statistical-Catch-At-Age (SCAA) (IOTC-2019-WPTmT07(AS)-17).
- Nishida, T. (2020) Stock assessment software for capacity buildings (CPUE standardization, ASPIC, Kobe plot and Risk assessment) *http://ocean-info.ddo.jp/kobeaspm/all(2020)*
- Rademeyer, R. and Nishida, T. (2010 and 2012) Uses' Guide for AD Model Builder Implemented Age-Structured Production Model (ASPM) software. Ver. 1 (IOTC-WPTT13-2010-46 (rev 1)) and Ver.2 (IOTC-2012-WPM04-06).
- Restrepo, V. (1997) A stochastic implementation of an Age-structured Production model (ICCAT/ SCRS/97/59), 23pp. with Appendix

ANNEX A SIX INPUT FILES (Example using the sample data)

A.1 Control file (1_control.inp)

In this control file, basic information controlling the SCAS run will be entered. There are seven sections as follows:

	'1control.inp"
 # Sectior	1 0: Just for pre-setting
	1: Year, age, length, and number of fleets
	12: Recruitment
	a 3: Dynamics
	1 4: Setting regarding quality/distribution of data
	5: Selectivity
	16: Phase (negative phase values mean "non-estimated" parameters
	n 7: Likelihood setting
#	
# Sectior	
0	# Verbose (=1 to write out stuff while running)
#	
ш	
	1 Basic information
1952	# First year
2012	# Last year
0	# Minimum age
15	# Overall plus group age
1	# Minimum length considered
300	# Maximum length considered
5	# Number of fleets
#	
	2-1 SR relation
1	# Which stock-recruit shape (1=Beverton-Holt, 2=Ricker)
1953	
2012	
0.6	# Standard deviation for recruitment (sigma R). Deterministic model if sigmaR=0
# Sectior	2-2
1	# Which growth function shape (1=VB, 2=Two-stanza)
#	
	3 Initial population
1	# initial condition (1=at pre-exploitation/virgin level, 2=estimate N)
1	# if initial condition=1 then enter either the positive integer to estimate or the negative integer to fix.
	# If initial condition=2, then enter the maximum age to estimate
#	
#	
" # # Sectior	4 Errors for catch and CAS
" # # Sectior 0.2	4 Errors for catch and CAS # Sigma for the catches (0.2 for default)
" # # Sectior	4 Errors for catch and CAS

H H Sactio	n 5 selecti	 vitv				
		4	5 # Fleet			
1	1 2	2	2 # Shape (1=1	ogistic. 2=double	logistic)	
0	0 0	0	0 # Number of	f selectivity change	es ,	
		952 1952		tivity changes for		
1				1SY for Bratio and		es, 2=fixed)
#			·			
			imate or fix			
		e for estim				
			ation of steepness			
			ation of SSB0			
3				ers-at-age in the f	irst vear (fror	n age-at-recruitment+1 to mm)
4			ation of phi		not year (nor	
5			ation of indices ad	ditional variance		
6	# Phas	e for estim	ation of recruitme	nt residuals		
-1000	# Phas	e for estim	ation of SSBi			
# Phase	for estimation	ation of cor	nmercial selectivity	/		
1	1			#	1952	JPLL
1	1			#	1952	TWLL
1	1	1	1	#	1952	Driftnet
1	1	1	1	#	1952	PS
1	1	1	1	#	1952	Others
#						
	n 7 Weigh					
	0.1 0.1 0.1					
#						
#						
" # Sectio						
	# for c	hock1				
11111						

A.2 Parameter guess file (2_scas.pin)

This input file is to enter guess values of the initial population size, F, and selectivity.

#											
# File 2: "2_scas.pin" file for initial values											
#											
# Log of virgin TB and initial N-distribution (by "maxNsyr_age" set in control file)											
13.0 # InTBO (if estimated in the control file)											
16.5 16.0 # InNO (AgeO) and InN1(Age1) (in numbers)											
0.2 # Initial F											
0.10 # Additional variance (0.10 for default)											
# Selectivity											
4.5 2.0	#	1952	JLL								
4.5 2.0	#	1952	TWLL								
4.0 2.0 4.0 1.0	#	1952	Driftnet								
4.5 1.0 -2.0 2.0	#	1952	PS								
4.0 2.0 -5.0 2.5	#	1952 Others									
#											
22222 # Check2											

A.3 Biological data file (3_biological.inp)

¥										
# File 3: "3_biological.inp" file for biological parameters										
#										
# Steepness										
0.7										
# Natural mortality (age-specific, given)										
#0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15										
0.4000 0.3552 0.3104 0.2655 0.2207 0.2207 0.2207 0.2207 0.2207 0.2207 0.2207 0.2207 0.2207 0.2207 0.2207 0.2207										
# For length-at-age and growth										
0.20 # CV										
124.10 -2.239 0.164 #GR=1: Linf, to, Kappa										
#124.10 -2.239 0.164 0.164, 3, 20 #GR=2: Linf, to, Kappa1, Kappa2, Alpha, Beta										
# Fraction of mortality that occurs before spawning										
0.0										
# Maturity-at-age										
#0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15										
0.4000 0.3552 0.3104 0.2655 0.2207 0.2207 0.2207 0.2207 0.2207 0.2207 0.2207 0.2207 0.2207 0.2207 0.2207 0.2207 0.2207 0.2207										
0 0 0 0.09 0.47 0.75 0.88 0.94 0.97 0.99 0.99 1.00 1.00 1.00 1.00										
1.3718E-5 # Length-weight parameter A										
3.0973 # Length-weight parameter B										
#										
33333 # Check3										

A.4 Index file (4_index.inp)

<mark># File 4: "</mark>	4_index.in	p" file for CP	
#1 33 1 1 6 1 9 1 2 #			<pre># Number of index series # Number of observations for each index # To which fleet the index corresponds to # Units (1=numbers, 2=biomass, 3=spawning) # Timing (month in which index is taken) # Minimum age indexed # Maximum age indexed # Weight given to each index # Compute sigma (=1), or use input CV (=2)</pre>
# #Fleet 1 1 1 1 1	year 1980 1981 1982 1983 1984	CPUE 1.7311 1.9958 2.1189 1.5011 1.284	CV 0.20 0.20 0.20 0.20 0.20 0.20
	(omitted))	
1 1 1 1 1 1 1	2006 2007 2008 2009 2010 2011 2012	0.6799 0.6607 0.7508 0.8234 0.8895 0.9043 0.9447	0.20 0.20 0.20 0.20 0.20 0.20 0.20

44444 #check4

A.5 Fishery file (5_fisherey.inp)

This input file is to enter catch and CAS by fleet.

#	"5_fishery.ii	an" file for c	atch and C	AS data								
	5_IISHELY.II											
# Total c	catch in tons	by fleet										
# Total c	catch in tons	by fleet										
#year	JapLL	TawLL	Drift	PS	OTHERS							
1952	61	0	0	0	19							
1953	1094	0	0	0	20							
1954	2734	90	0	0	23							
1955	3059	276	0	0	23							
1956	5075	530	0	0	24							
1957	4662	656	0	0	23							
1958	6285	991	0	0	23							
1959	10410	1228	0	0	23							
		(omitted)									
2004	4155	24259	0	232	1288							
2005	4413	23575	0	164	1147							
2006	6489	20347	0	1548	1307							
2007	5504	30688	0	725	1653							
2008	4965	27352	0	1424	2137							
2009	3988	31648	0	392	2105							
2010	4454	37139	0	207	2119							
2011	2845	27779	0	725	2203							
2012	3234	27672	0	1297	1650							
#												
# Comm 30 139	ercial catch	-at-length		# data n	nin and max	length						
1				# data min and max length # length classes								
5					# Number of CAS series							
61 59 10	1 30 61					ctor for eac	h series					
#	Longline	-Japan		n namb			II Series					
NO	Year	L039	L040	L041	L042	L043	L044	L045	L046	L047		
	L048	L049	L050	L051	L052	L053	L054	L055	L056	L057		
	L058	L059	L060	L061	L062	L063	L064	L065	L066	L067		
	L068	L069	L070	L071	L072	L073	L074	L075	L076	L077		
	L078	L079	L080	L081	L082	L083	L084	L085	L086	L087		
	L088	L089	L090	L091	L092	L093	L094	L095	L096	L097		
	L098	L099	L100	L101	L102	L103	L104	L105	L106	L107		
	L108	L109	L110	L101	L102	L113	L114	L105	L116	L117		
	L118	L105 L119	L110 L120	L121	L112	L113 L123	L114 L124	L115 L125	L110 L126	L127		
	L118 L128	L119 L129	L120 L130	L121 L131	L122 L132	L123 L133	L124 L134	L125 L135	L120 L136	L127		
	L128 L138	L129 L139	LIJU	LIJI	LIJZ	LIJJ	LTJ4	LIJJ	LIJU	LT3/		
#	Longline											
# 1	1952	О	0	0	0	0	0	0	0	0		
Ŧ	0	0	0	0	0	0	0	0	0	0		
	0	0	0	0	0	0	0	0	0	0		
	0	0	0	0	0	0	0	0	0	0		
	U	U	U	U	U	U	U	U	U	U		

0.0383588	49	0	0	0	1.3524050	15	1.3524050	15	0	
5.4096200	59	2.7048100	3	2.7048100	3	0	0	4.0572150	44	
13.562409	8.1144300	189	10.895957	82	25.695695	28	36.821806	19	42.001273	16
55.640399	85	84.155981	71	97.564955	31	143.89195	55	128.74698	83	
134.07989	07	147.68065	86	138.25218	23	209.81457	15	111.01228	78	
151.66115	59	120.40240	52	125.77366	64	159.69886	83	102.78278	11	
121.71645	13	129.94595	8	73.183306	2	120.51748	17	48.686580	53	
31.182033	04	16.305577	88	5.4096200	59	12.210003	98	4.0572150	44	
8.1144300	189	5.4096200	59	4.0572150	44	4.0572150	44	0	1.3524050	15
4.0955738	93	0	2.7048100	3	1.3524050	15	0	2.7048100	3	0
0	0	0	0	0	0	0	0	0	0	
1953	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0

(Omitted¥)

#

Others

1

5	2012	5133.576431	3461.324598	5916.83326	55	6666.868715	8452.591753
	13129.573	31 13672.3	3331 132	28.38603	15364.0256	13483.	96062
	23261.496	17 15264.4	7858 134	94.51269	17136.4055	4 16367.	86208
	22056.613	78 13002.9	5869 156	10.99573	15830.2178	8 14937.	83926
	22313.573	2 11851.5	3609 151	23.55159	13297.21	14348.34398	16509.57106
	14466.076	25 12444.8	5684 153	49.43284	9892.29445	4 13532.	51465
	1299.6243	9 2361.54	1176 202	0.861857	1114.95176	7 1979.0	33473
	2086.2275	59 1725.61	1978 302	3025.008803 1		5 2468.0	04769
	1560.3025	67 3552.07	1126 277	5.064582	3899.19745	3 2345.1	84366
	2063.613637		9996 551	8.929886	2410.90371	2 1273.8	21486
	1273.8214	86 988.134	3476 599	.6310759	893.983963	1 116.97	74197
	175.91794	5 175.917	945 97.9	9703382	97.9703382	164.58	78722
	164.58787	22 162.071	0352 162	.0710352	67.8425752	1 67.842	57521
	264.73706	64 264.737	0664 140	.1024341	140.102434	1 321.46	44799
	321.46447	99 203.691	3437 203	.6913437	448.022255	4 448.02	22554
	727.85999	36 727.859	9936 388	.3913973	388.391397	3 638.22	57697
	638.22576	97 205.466	7301 205	.4667301	214.943557	6 214.94	35576
	430.85603	97 430.856	0397 19.8	38901018	19.8890101	8 203.58	78518
	203.58785	18 24.1392	0668 24.2	L3920668	29.3004492	6 29.300	44926
	54.228422	37 54.2284	2237 0.59	9523214	0.59523214	28.154	07003
	28.154070	03 0	0 1.19	97653868	1.19765386	8 0.3012	10864
	0.3012108	64 0	0				
#				-			

55555 # Check5

A.6 Projection file (6_projection.inp)

#-----# File 6: "6_projection.inp" file for projection spec
#-----# Number of years for projections
10
Future catch for each fleet for projection (normally current catch by fleet to be entered)
3234 27672 0 1297 1650
#-----666666 #check6