17th Working Party on Data Collection and Statistics (WPDCS17) - 2021

Extraction of UK catch data from historic EU catch data

Charlotte Wicker and Marc Owen

Department for Environment, Food and Rural Affairs (Defra), London, United Kingdom

1. Purpose of this paper

- a) To outline the rationale and process for extracting 'metropolitan' United Kingdom (UK) catch data from historic European Union (EU) catch data in the Indian Ocean Tuna Commission (IOTC) databases.
- b) To request that the Working Party on Data Collection and Statistics (WPDCS) agrees to the re-labelling of historic UK catch data in the IOTC databases.

2. Introduction

Following its exit from the EU on 1 January 2021, the UK is now represented by a single seat in the IOTC. This new situation implies the need to extract and re-label historical 'EUGBR' catches as 'GBR' catches in order that the UK can demonstrate and evidence its historical interest and participation in IOTC fisheries. This will ensure IOTC records of historic catches for both the UK and EU are accurate, and that any processes relying on historic catch data are transparent and robust.

For example, catch data form the basis of IOTC fee calculations, so in order to calculate the correct fees for both the UK and EU, UK data will need to be extracted and re-labelled.

This data extraction exercise will not impact or change the historic catch data of any other IOTC members and will not result in any change to IOTC's total historical catch values.

3. Process

Historically labelled 'EUGBR' data would be amended as a new entry in the IOTC databases and labelled as 'GBR' data. This process would be undertaken by the Secretariat and apply to the following datasets¹: nominal catch, catch-and-effort, and size-frequency. An example of how this might look is provided in Table 1.

This extraction and re-labelling exercise will apply only to species fished by the UK in IOTC waters (FAO areas 51 and 57). Table 2 provides an example of historic UK nominal catch data which are currently labelled 'EUGBR' and would be re-labelled 'GBR'.

The WPDCS is requested to acknowledge the rationale and outputs of this re-labelling request and agree on updating the official nominal catches, catch-and-effort, and size-frequency data held by the IOTC Secretariat accordingly.

-

¹ https://iotc.org/data/datasets

Table 1: YFT catches in 2016, by IOTC Member, before and after re-labelling EUGBR data to GBR data. Changes shown in yellow. Data source: IOTC best scientific estimates of nominal catch data (last updated 14/10/2021)².

Before re-labelling

After re-labelling

Fleet Code	Catch/capture (t)	Fleet Code	Catch/capture (t)
AUS	66.71	AUS	66.71
BHR	1.04	BHR	1.04
CHN	1,812.17	CHN	1,812.17
COM	5,583.75	COM	5,583.75
DJI	55.40	DJI	55.40
EGY	15.00	EGY	15.00
EUESP	51,659.76	EUESP	51,659.76
EUFRA	33,718.82	EUFRA	33,718.82
EUGBR	41.85	EUITA	1,867.63
EUITA	1,867.63	EUMYT	88.50
EUMYT	88.50	EUPRT	116.22
EUPRT	116.22	EUREU	797.92
EUREU	797.92	GBR	41.85
GBRT	2.07	GBRT	2.07
IDN	22,635.64	IDN	22,635.64
IND	19,244.24	IND	19,244.24
IRN	45,110.48	IRN	45,110.48
JOR	25.80	JOR	25.80
JPN	3,389.00	JPN	3,389.00
KEN	108.41	KEN	108.41
KOR	11,721.14	KOR	11,721.14
LKA	33,734.61	LKA	33,734.61
MDG	735.93	MDG	735.93
MDV	53,705.45	MDV	53,705.45
MOZ	173.65	MOZ	173.65
MUS	7,585.12	MUS	7,585.12
MYS	155.80	MYS	155.80
NEICE	417.97	NEICE	417.97
NEIFR	692.54	NEIFR	692.54
OMN	20,983.16	OMN	20,983.16
PAK	25,560.43	PAK	25,560.43
QAT	140.69	QAT	140.69
SYC	43,261.03	SYC	43,261.03
TMP	3.58	TMP	3.58
TWN	16,957.83	TWN	16,957.83
TZA	4,012.94	TZA	4,012.94
YEM	21,253.48	YEM	21,253.48
ZAF	183.46	ZAF	183.46
Total	427,619.22	Total	427,619.22

² https://iotc.org/data/datasets/latest/NC-SCI

Table 2: EUGBR nominal catches from 2004-2020 by species code. Data source: IOTC best scientific estimates of nominal catch data (last updated 14/10/2021)³.

Year	EUGBR catch/capture(t) by species code											
	ALB	BET	BLM	BUM	MLS	SBF	SFA	SKJ	SWO	YFT		
2004	-	-	-	-	-	22.15	13.89	-	351.62	-		
2005	2.27	18.02	0.09	0.22	1.52	-	3.59	0.45	569.73	-		
2006	7.13	0.11	-	20.70	-	-	19.49	-	1117.58	4.94		
2007	18.43	-	-	22.86	-	-	13.95	-	1046.64	-		
2008	10.73	-	-	34.54	-	163.52	14.54	-	940.56	-		
2009	8.73	-	-	1.71	-	-	20.84	-	882.14	120.36		
2010	4.52	2.25	-	9.89	-	-	16.28	-	581.14	46.11		
2011	3.91	3.09	-	11.34	-	-	4.37	-	662.39	42.11		
2012	6.57	3.27	-	21.15	-	-	7.99	-	676.99	55.76		
2013	6.98	-	-	16.02	-	-	5.65	-	555.72	53.62		
2014	7.97	-	-	11.71	-	-	2.76	-	527.23	85.86		
2015	8.52	-	-	7.89	-	-	1.18	-	365.03	85.37		
2016	2.05	-	-	3.49	-	-	1.68	-	203.66	41.85		
2017	3.06	2.49	1.23	6.26	-	-	1.89	-	272.07	20.61		
2018	1.03	2.13	14.98	-	-	-	8.10	-	485.40	8.57		
2019	1.28	1.86	12.93	-	-	-	3.67	-	383.24	14.24		
2020	-	-	4.31	-	-	-	1.40	-	202.45	6.20		

³ https://iotc.org/data/datasets/latest/NC-SCI