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ABSTRACT 

Worldwide, the management of fish stocks is based on stock assessment models. One of the 

most critical inputs in most stock assessment models is a relative abundance index of the 

species of interest. The main problem in determining the abundance index occurs in a 

dependence survey where the catchability covariates are very influential on a species 

abundance index to cover the actual reality in nature. This study uses the Vector Autoregressive 

Spatiotemporal Model (VAST) on Albacore species in the Indonesian longline tuna fisheries 

in the Eastern Indian Ocean. The results indicate that the resulting abundance index is better 

with low residuals, excluded catchability, and included habitat covariates make the results 

better than the conventional GLM model. The population density is well illustrated in the 

VAST model, where the VAST model can impute the population density in unfished areas to 

obtain a weighted area index. It is a distinct advantage considering many unfished areas in our 

research survey. This information is expected to benefit stakeholders in decision-making in the 

field. 
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INTRODUCTION 

Indonesia plays a significant role in tuna fisheries, especially in fishing areas in the Eastern 

Indian Ocean. Indonesia's total production is 17.24% of the total production of tuna fisheries 

in the Indian Ocean, with an estimated landing of 190,319 tonnes (CCSBT, 2021; Fahmi, Z., 

Hikmayani, Y., Yunanda, T., Yudiarso, P., Wudianto & Setyadji, 2020; MMAF Indonesia, 

2021). Vessels in the Indonesian tuna fisheries use a variety of fishing gears, including gill 

nets, lines, longlines, purse seines, and others. In 2019, vessels using longlines landed 15,298 

tonnes of tuna, corresponding to 8% of the total longline catch in the Indian Ocean (Fahmi, Z., 

Hikmayani, Y., Yunanda, T., Yudiarso, P., Wudianto & Setyadji, 2020). 

In 2019, there were 283 vessels registered with the Indian Ocean Tuna Commission 

(IOTC), with gross tonnages (GT) ranging between 90 and 200 (Fahmi, Z., Hikmayani, Y., 

Yunanda, T., Yudiarso, P., Wudianto & Setyadji, 2020). The fishing grounds of the longline 

fleet in the Indian Ocean cover an extensive area, from 5 to 35°S latitude and from 70 to 125°E 

longitude. Landings of non-schooling tuna (bigeye tuna, yellowfin tuna, southern bluefin tuna, 

and albacore) are mainly destined to the export market in fresh products. Approximately 77% 

of catches were carried out outside Indonesia's exclusive economic zone (Setyadji, B. & 

Jatmiko, 2016). 

Total albacore production in the Indian Ocean in 2020 was 38,100 tonnes, a decrease of 

4% from 2019, and most of the catch is carried out by the longline tuna fishery (ISSF, 2022). 

Indonesia's albacore tuna fishery production is 5,850 tonnes, or about 15.35% of the total 

albacore catch in the Indian Ocean (MMAF Indonesia, 2021). The Indian Ocean albacore is 

estimated not to be overfished but is subject to overfishing. However, there is also some 

uncertainty related to the latest stock developments by IOTC (Indian Ocean Tuna Commission) 

(IOTC, 2021; ISSF, 2022). 

Data and information related to Indonesian albacore tuna fisheries are sourced from fishery-

dependent survey data (Indonesian onboard observer program) in the Eastern Indian Ocean. In 

the dependent survey, there are several weaknesses, including the very high bias value 

associated with the catchability covariates and many unfished areas in the survey area. An 

alternative method is needed to calculate the albacore abundance index in our survey area. The 

standardized abundance index values do not adequately reflect the actual abundance of the 

targeted species. Therefore, raw CPUE values cannot be used directly as indices of abundance, 

and they need to be standardized to account (at least partially) for these factors. A well-

standardized CPUE value is expected to be proportional to the population abundance value 

(Maunder, M. N. & Punt, 2004; Rochman, F., Setyadji, B. & Wujdi, 2017; Sadiyah, L., 

Dowling, N. & Prisantoso, 2012). Several approaches standardize CPUE values (Maunder, M. 

N. & Punt, 2004). The most common approach is to use generalized linear models (GLMs), 

but other methods exist, including the use of generalized additive models (GAMs) and 

generalized linear mixed models (GLMMs).   In recent years, standardization using VAST 

(Vector Autoregressive Spatiotemporal) models has been proposed as an alternative approach. 

VAST is a Spatio-temporal model that can explicitly account for changes in population 

densities over time and multiple locations (Thorson, J. T. & Barnett, 2017; Thorson, 2019b; 

Xu, H., Lennert-Cody, C. E., Maunder, M. N., Minte-Vera, 2019). 

This study aims to model the abundance index of albacore in the Indonesian longline tuna 

fishery using a VAST model and perform a density prediction of albacore in the Eastern Indian 

Ocean. 
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MATERIALS AND METHODS 

 

Data Collection 

This study uses fishery-dependent data from the Indonesian tuna longline fishery collected 

by the Research Institute for Tuna Fisheries (RITF) scientific onboard observer program. The 

data includes tuna longline fishing operations in the Eastern Indian Ocean, both in Indonesian 

and international waters (high seas) between Australia and Indonesia. Locations of the catches 

ranged between 0-35°S and 70-135°E. 

The data for this study consists of 2,951 longline sets deployed in the period 2006-2018. 

The information from each set includes vessel (trip), operational (setting and hauling), time, 

coordinates, species, size (length or weight), catch number, catch per unit effort, depth of catch, 

fishing strategy, and environmental data. Catch per unit of effort (CPUE) was calculated using 

the number of fish per 100 hooks (Rochman, F., Setyadji, B. & Wujdi, 2017) 

 

Standardized Index Using VAST (Vector-Auto Regressive Spatio-Temporal) model 

This study used the Vector-Autoregressive Spatio-Temporal (VAST) model. We used the 

R package VAST (https://github.com/James-Thorson-NOAA/VAST)(Thorson, 2019b). VAST 

uses a Gaussian random field to model the auto-spatial correlation with anisotropy (i.e., the 

auto-correlation relationship at velocity is not the same in all directions) and an interactive 

relationship between space and time (i.e., Spatio-temporal correlation). The Gaussian random 

fields are defined by the Matern covariance function (Thorson, 2019a).  

VAST is a delta-generalized linear mixed model, where the distribution of the catch data is 

decomposed into two components: a) the probability of encounter (binomial model) and b) the 

expected catch rate is given that the species is encountered. The predicted logarithm of the 

albacore abundance p(s,t), in knots s and year t, is predicted as: 

𝑝(𝑠, 𝑡) = 𝛽(𝑡) + 𝜔(𝑠) + 𝜀(𝑠, 𝑡) + ∑ 𝛾𝑗𝑥𝑗(𝑠, 𝑡) + ∑ 𝜆(𝑘)𝑄(𝑘)𝑛𝑘
𝑘=1

𝑛𝑗
𝑗=1  (3) 

Where, 𝛽(𝑡) is the intercept for each year t as a fixed effect, 𝜔(𝑠) is time-invariant spatial 

autocorrelated variations for knot s, and 𝜀(𝑠, 𝑡) is a time-varying spatial-temporal autocorrelated 

variation for knot s and in Year t. 𝛾𝑗  represents the impact of covariate j  with value xj(s,t) on 

density for knot s and year t, and 𝜆 is the coefficient for the catchability covariates 𝑄(𝑘) (i.e., 

fleet, nk=1). 

VAST requires the definition of a network of points or knots, s where the correlation of 

spatial and Spatio-temporal effects are estimated. Each observation in the data set is then 

connected to the closest node using k-means. In this study, we used a total of 3480 nodes 

(Figure 1, upper two figures), based on a regular grid with an input of 100 knots (Figure 1, red 

dots) and a resolution of 50 km and bounded by a concave hull surrounding the locations of the 

longlines in the data (Figure 1).  

The model included fish depth, sea surface temperature, chlorophyll, sea depth, and 

distance to the 1000 m isobath as covariates.  
Residual histograms were used to assess normality for GLM and VAST and quantile-quantile 

standard probability plots (Normal Q-Q plots) for both. 
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Figure 1. A grid comprising 3480 nodes marks the spatial coverage of the data and the 

surrounding bounds (upper figures) that were used to fit the VAST models. One hundred knots 

were specified, which the model places geographically to minimize the distance between data 

and knots over the study area (lower figure). 

 

RESULT AND DISCUSSION 

 

Distribution of Fishing Efforts 

The overall distribution of longlines sampled by the Indonesian scientific observer program is 

shown in Figure 2. Fishing areas include the Eastern Indian Ocean, West of Sumatra, South of 

Java-Bali-Nusa Tenggara, Northwest-West Australia, and the Banda Sea.  
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Figure 2. The study area of the Indonesian tuna longlines scientific observer program in the 

Eastern Indian Ocean 2006-2018. 

In general, fishing efforts ranged from 500 to 2,500 hooks per set, with most sets between 

1,000-1,500 hooks per set (Figure 3). However, the effort was higher in fishing areas far from 

the Indonesian coastline. The effort was higher (~1500-2500 hooks per set) in sets by the deep-

sea tuna longline fishing off Western Australia (15-30°S and 75-110°E).  

 

Figure 3. Spatial distribution of fishing effort defined as the mean number of hooks used per 

set per 1°x1° grid cell during 2006-2018. 

Standardized Index Using VAST (Vector-Auto Regressive Spatio-Temporal) model 

The Vast model uses several covariates as explanatory variables in determining the 

abundance index and predicting the density of albacore in the Longline Fishery Indian Ocean. 

This study used several habitat covariates, including fish depth, sea surface temperature, 

chlorophyll-a, sea depth, and distance to 1000 m isobath. VAST models the resulting residuals, 

both observational and predictive residuals, and looks an excellent fit (Figure 4). The 
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abundance index of the VAST model is presented in Figure 5, and density prediction is 

presented in Figure 6. 

 
Figure 4. A plot of the residual model of VAST with habitat covariates on albacore in longline 

tuna fisheries in the Eastern Indian Ocean 

Quantile residual diagnostic suggested that the VAST spatiotemporal model has well fitted 

for the number of catch and effort data in the longline tuna fisheries data set (Figure 14). 

Meanwhile, previous research using conventional GLM obtained that the quantile residuals for 

the standardized GLM model indicate underestimation at the beginning and overestimation at 

the end of the study periods (Rochman, F., Setyadji, B. & Wujdi, 2017; Sadiyah, L., Dowling, 

N. & Prisantoso, 2012). The conventional GLM index includes catchability covariates in the 

model such as fishing strategy and operational variables such as time, type longline, hook 

between float, the vessel, which are positively correlated with the catch rate and the resulting 

index of abundance. The result was an under-estimated value at the beginning and an over-

estimate at the end of the study period, as shown in the diagnostic quantile residual. The VAST 

model seems to be a better reference than the conventional GLM model. We also found good 

residual levels in previous studies using the VAST model, including research on yellowfin tuna 

in purse seine fisheries in the Eastern Pacific Ocean 1975-2016 (Xu, H., Lennert-Cody, C. E., 

Maunder, M. N., Minte-Vera, 2019), pacific blue marlin in Taiwan tuna longline fisheries in 

the Pacific Ocean 1971-2019 (Hsu, J. & Chang, 2020) and the on-going investigation of 

Japanese longline CPUE of yellowfin tuna in the Indian Ocean 1975-2020 (Satoh, K., 

Matsumoto, T., Yokoi, H. & Kitakado, 2021).  

Other advantages are obtained from the VAST spatiotemporal model compared to the 

conventional GLM model. The VAST model can estimate the population density for the 

species for multiple locations and multiple times, explicitly including association with 

environmental variables and changes in space and time (Figure 6). The VAST model is a state-

space model that incorporates variability and measurement error in the fisheries model but is 

further expanded to consider geographical aspects. Geographically, there is a tendency for the 

calculation error process tends to occur in locations that are close together compared to 

locations that are very far away. This function is called the "common currency" model, bringing 

together the different stock, ecosystem, and climate assessment approaches (Thorson, 2019). 
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From the log density population generated by the VAST model, several areas have a very high 

population density compared to other areas, especially the area around the West coast of 

Sumatera, the Banda Sea, and the high seas area West of Australia at latitude 75- 100°E. The 

population density prediction showed that the general population trend decreased from 2006 to 

2008 and slightly increased from 2009 to 2011. In 2012 the population slightly decreased and 

began increasing from 2013 to 2016; moreover, a slight decrease in 2017 to 2018 (Figure 6). 

 

 

Figure 5. The abundance index of albacore in tuna longline fisheries using the VAST model 

with habitats covariates. 

The VAST model has predicted density, both spatial and temporal variation across the 

fishing area in the Eastern Indian Ocean. The predicted log density in the VAST model uses 

habitat preferences to calculate population density spatiotemporally. Meanwhile, catchability 

preference is not used in model fitting so that the index and population density generated by 

the VAST model is pure without underestimating or overestimating residuals. The VAST 

model will automatically predict unfished areas not included in the survey via imputation and 

implement the area weighting scheme by referring to the nearest node. Besides that, the VAST 

model can predict population density based on habitat covariates and the accompanying spatial-

spatiotemporal random effect. Furthermore, these covariates inform the random effect's value 

in the VAST model. The VAST model can substantially improve the population density 

predictions by conditioning the model based on the previously known residual pattern using 

geostatistical methods through kriging (Thorson, 2019). 
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Figure 6. Spatiotemporal distribution of predicted log density of albacore in tuna longline fishery in the Eastern Indian Ocean 2006-2018 using 

the VAST model (dark green: high density, yellow: low density).
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The VAST model's abundance index does not have the initial underestimation, the 

overestimation at the end, and has less noise due to catchability covariates. This study is crucial 

for identifying the best methods for estimating the abundance of fish resources correctly and 

precisely without bias due to catchability factors, fishing tactics, fishing strategy, and 

technology. The assessment of fish stocks can be obtained correctly and reliably. 
 

CONCLUSION 

The spatiotemporal VAST model gives a better abundance index than the previous nominal 

and conventional GLM index. The VAST model can estimate the population density of species 

in the fishing area annually and quarterly and has a suitable mechanism for population 

weighting, especially in areas that are not surveyed or unfished. It is very compatible with 

dependent survey research. In the future, we will refine the research results by filling the 

unfished area with research surveys and try to implement them for another target species in the 

longline tuna fishery. 
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