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Summary 

 

Abundance index for Big Eye tuna (BET) in the Indian Ocean was derived from the European 

purse seiner CPUEs series (2010-2021) for fishing operations made on drifting FADs (Fishing 

aggregating Devices). By classifying sets to non-followed dFADs (i.e., dFADs randomly 

encounter for which the purse seiner has no previous information) and followed-dFADs 

(dFADs from which purse seiner has previous information and therefore it is not randomly 

encounter) we take into account the difference between them. The VAST methodology was used 

to standardized the BET CPUE. A GLMM approach has been also applied to compare the 

outputs when using an alternative modelling approach  
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1. Introduction 
 

Interpreting changes over time in CPUE series as a trend in abundance has always been a 

major challenge for scientists working in stock assessment. In the case of the tropical tuna purse 

seiner fishery operating in the Indian Ocean, there are several factors affecting the CPUE-

abundance relationship. One aspect of tropical tuna purse seine fisheries that has seen 

significant technological change over recent decades is fishing on fish schools associated with 

floating objects attached to instrumented buoys (FOBs) (ICCAT, 2016).  

In this paper, we estimate standardized catch per unit effort (CPUE) time series for Big 

Eye tuna (BET) to be provided to the IOTC as an input for the upcoming BET stock assessment. 

CPUE time series were standardized for BET caught during fishing operations on drifting FADs 

by the the European purse seiner fleet. A catchability covariate, “Is_fishing_owned dFAD” (i.e. 

if fishing occurred in tracked dFADS) , has been introduced in the model to take into account 

the difference between fishing operations made on dFADs followed by the vessel (or vessel´s 

company) and fishing operations made on the other dFADs randomly encountered (coded True 

or False, respectively). Indeed, in the case of non-followed dFADs sets, the purse seiner (nor 

the company) has no previous information for detecting the object nor on the corresponding 

aggregated biomass.  

The methodology for catched tuna schools associated to dFADs used in this paper is based 

on a spatio-temporal Delta generalized linear mixed models (GLMM) (Thorson, 2019). This 

model structure makes it possible to better take into account spatial and temporal variations and 

to better estimate the standard errors of the standardized CPUE.  

 

 

 

2. Materials and methods 
 

2.1 Conventional fishing data cleanning 
 

To derive European purse seiner standardized CPUEs for the BET stock assessment, T3-

processed logbook data from the French and Spanish purse seine fleets targeting tropical tunas 

in the Indian Ocean from 2010 to 2021 were analyzed. Raw logbook data (Level0) produced 

by the skippers were corrected in terms of total catch per set (to account for the difference 

between reported catch at sea and landed catch) and species composition (based on port size 

sampling and the T3 methodology – see (Pallarés and Hallier, 1997)) to generate the Level 1 

logbook database used in this paper. The Exploited Tropical Pelagic Ecosystems Observatory 

(IRD-Ob7) and the Spanish Institute of Oceanography (IEO), respectively provided logbook 

data for the French and the Spanish fleets.  

 

The analysis was restricted to: 

- The period 2010-2021. Data for 2010-2021 are for both the European purse seiner fleets, 

excepted for 2020, covered only French fleets and for 2021 covered only Spanish fleets. 

- Total number of sets per day per boat was filtered and days with unrealistic data (> 5 

sets) were removed 

- Entire days with at least one activity with problematic operations (e.g., equipment 

failures) were removed. 

- High-seas and all EEZs except for the Somali EEZ due to the effects of piracy were 

selected (Okamoto, 2011; Chassot et al., 2012; Guillotreau et al., 2012).  



 
 

- Only the area defined by all 5*5 degree grid cells where BET were fished for at least 

274 sets (0.5%) over the study period were selected to avoid areas that are not routinely 

fished.  

 
 

2.2 Sets classification 
 

 Sets to FADs were classified based on whether the vessel had access to buoy information prior 

to the set or not. On one side, for French dataset, the sets were classified according to the method 

presented in Wain et al. (2020). On the other hand, for Spanish dataset the following steps have 

been followed: 

- The daily GPS positions of the buoys have been considered. One position per day was 

available including information of the latitude, longitude, speed and ownership of the buoys (a 

unique purse seine vessel and/or vessel´s company). To have the GPS position of buoys at 

water, those having erroneous location, buoys on land positions; and on-board buoy positions 

have been removed from the database following the methodology described in Grande et al. 

(2019). 

- Daily buoy positions have been linearly interpolated to estimate hourly buoy positions. 

- Buffer areas of 4 km have been established around each set. 

- In order to discard new FAD deployments, buoys with GPS position at least two days prior to 

the set have been considered for set classification. 

- Each set was classified according to the buoys´ ownership present in the buffer area the same 

day of the set or the day before. If a buoy of the vessel was present in the buffer area, the set 

was classified as a set made to an owned buoy, from which the vessel is supposed to have the 

information prior to  setting. If a buoy belonging to the vessel was not present in the buffer area, 

but a buoy belonging to the company was present, the set was classified as made to a company´s 

buoy, from which the vessel could have the information prior to setting. The sets classified to 

be made to owned or corresponding company´s buoys were grouped as owned-sets.  If the buoy 

in the buffer area did not belong to the vessel nor to the company, the set was classified as made 

to a non_owned (I.e.,non-followed) buoy, from which it is supposed that the vessel did not have 

the information prior to the set.  

 

 

2.3 GLMM  
 

   A delta-GLMM was applied to standardize the CPUE time series for BET in Indian Ocean 

developed with the fishing operations made on drifting FADs. A stepwise regression was 

applied to each GLMM model component of the delta model with all the explanatory variables 

and interactions to determine those factors that significantly contributed to explain the deviance 

of the model. For this, deviance analysis tables was created. Final selection of explanatory 

factors was conditional to: a) the relative percentage of deviance explained by adding the factor 

in evaluation and b) The Chi-square (χ2) significance test. Those factors that explained less 

than 2% of the variability of the model were not considered. 

 

Interactions of the temporal component (year-quarter) with the rest of the variables were also 

evaluated. If an interaction was statistically significant, it was then considered as a random 



 
 

interaction(s) within the final model. The positive catch rate component was modeled with a 

lognormal error distribution. The most significant explanatory factors were incorporated in the 

following delta-GLMM (Table 1, 2 and 3). 

 

                                         Binomial component:                   y12 ~ yyqq +pays.   (1) 

            Positive catch rate component:     log(bet) ~ yyqq +area+(1|numbat)+(1|yyqq:area)      (2) 

 

where vessel (numbat) and the interaction quarter*area (yyqq:area) were incorporated as 

random effects. 
 

 

2.4 GLMM into spatio-temporal model (VAST methodology) 
 

Spatiotemporal models have been shown to be more accurate and less biased than 

equivalently structured delta-GLMs when fit to fisheries dependent data (Grüss et al., 2019). 

The VAST spatiotemporal modeling approach (Thorson, 2019) was used to generate relative 

standardized CPUE time series for Big Eye tuna in the Indian Ocean to be provided to the IOTC 

as an input for the upcoming IOTC BET stock assessment. In the VAST spatiotemporal 

modeling approach, the standardized CPUE is the spatial average of predicted abundance once 

catchability effects have been « standardized" out. Additionally, the spatial abundance 

distributions predicted from the VAST model can be used to calculate the regional weighting 

factors for the assessment regions. The model implemented by the VAST package (version 3.9), 

a spatiotemporal delta generalized linear mixed model (GLMM), is an extension of the delta-

GLMM described in the previous section. An interactive relationship between space and time, 

as opposed to an additive one, is specified using Gaussian random fields to define the spatial 

and spatiotemporal components of the model (Thorson et al., 2015). These Gaussian random 

fields are defined with a Matern covariance function. We applied the VAST methodology to 

estimate the model described in the last section regarding the GLMM. 

 

VAST potentially includes two linear predictors (because it is designed to support delta-models, 

which include two components). The first linear predictor 𝑟1(𝑖) represents encounter probability 

in a delta-model, or zero-inflation in a count-data model: 
 

𝑝1(𝑖) = 𝛽1(𝑐𝑖 , 𝑡𝑖)⏟    
Temporal variation 

+ 𝜔1
∗(𝑠𝑖 , 𝑐𝑖)⏟      

Spatial variation 

+ 𝜀1
∗(𝑠𝑖 , 𝑐𝑖 , 𝑡𝑖)⏟      

Spatio-temporal variation 

+ 𝜂1(𝑣𝑖 , 𝑐𝑖)⏟      
Vessel effects 

+ 𝜁1(𝑖)⏟
Catchability covariates 

(3)
 

where 𝑝1(𝑖) is the predictor for observation 𝑖, arising for category 𝑐𝑖 at location 𝑠𝑖 and time 𝑡𝑖. 
Similarly, the second linear predictor 𝑝2(𝑖) represents positive catch rates in a delta model, 

where all variables and parameters are defined similarly except using different subscripts 

(Thorson and Barnett, 2017). The vessel effects are random effects represented the catches 

distribution of each commercial vessel in the database. 

There are different user-controlled options for observation models for available sampling data. 

VAST distinguish between observation models for continuous-valued data (e.g., biomass, or 

numbers standardized to a fixed area), and observation models for count data (e.g., numbers 

treating area-swept as an offset). If using an observation model with continuous support (e.g., 

a log-normal, gamma distribution,…), then data 𝑏𝑖 can be any non-negative real number, 𝑏𝑖 ∈
ℛ and 𝑏𝑖 ≥ 0. The VAST model implemented in this paper is the alternative "Poisson-link 



 
 

delta-model" using log-link function (ObsModel[2]=1) in the R VAST packages) and gamma 

distribution. 

ObsModel[2] = 1 corresponds to a "Poisson-link" delta-model that approximates a Tweedie 

distribution: 

𝑟1(𝑖) = 1 − exp⁡(−𝑎𝑖 × exp⁡(𝑝1(𝑖)))    (4) 

where 𝑟1(𝑖) is the predictor encounter probability and 1− exp⁡ (−𝑎𝑖 × exp⁡(𝑝1(𝑖))) is a 

complementary log-log link of 𝑝1(𝑖) + log⁡(𝑎𝑖), and: 

𝑟2(𝑖) =
𝑎𝑖×exp⁡(𝑝1(𝑖))

𝑟1(𝑖)
× exp⁡(𝑝2(𝑖))                (5) 

where 𝑟2(𝑖) is the predicted biomass given that the species is encountered.  

In that case, the expectation for sampling data is: 

𝔼(𝐵𝑖) = 𝑟1(𝑖) × 𝑟2(𝑖)             (6) 

VAST calculates the probability of these data as: 

Pr⁡(𝑏𝑖 = 𝐵) = {
1 − 𝑟1(𝑖)  if 𝐵 = 0

𝑟1(𝑖) × 𝑔{𝐵 ∣ 𝑟2(𝑖), 𝜎𝑚
2 (𝑐)}  if 𝐵 > 0

         (7) 

where 𝑔{𝐵 ∣ 𝑟2(𝑖), 𝜎𝑚
2 (𝑐)} is the probability density function used for positive catch rates. 

the product of  𝑟1(𝑖) and  𝑟2(𝑖) is predicted biomass-density 𝑑(𝑔, 𝑐, 𝑡) at every extrapolation-

grid cell 𝑔, category 𝑐, and time 𝑡. By default, density is used to predict total abundance for the 

entire domain (or a subset of the domain) for a given species: 

𝐼(𝑐, 𝑡) = ∑  
𝑛𝑥
𝑥=1 (𝑎(𝑔) × 𝑑(𝑔, 𝑐, 𝑡))                        (8) 

where 𝑎(𝑔) is the area associated with extrapolation-grid cell 𝑔 and 𝑛x the number of knots. 

To apply VAST for estimating BET tuna annual and seasonal standardized CPUE, we used a 

55 km x 55 km grid cell aggregated in 100 knots (Figure 1 and 2). We estimated a yearly-basis 

and quarterly-basis models.  

We examined four catchability covariates that may affect variation in catchability or 

detectability variation of BET schools: fishing_country, Is_fishing_own_fad, storage_capacity 

and (dFADs) density (See Table 1 for more details). We test numerous models from the null 

model with no catchability covariates to the full model. The best model, based on AIC criterion, 

was the delta model with Is_fishing_own_fad (followed dFADs) and (dFADs) density as 

catchability covariate for the encounter probability component and Is_fishing_own_fad, 

fishing_country and (dFADs) density as catchability covariates for the catch rate of positive 

sets component. 

Binomial component = ~ Is_fishing_own_fad+bs(log(density+2), degree=2, intercept=FALSE)   



 
 

Catch rate component = ~ fishing_country+Is_fishing_own_fad+ bs(log(density+2), degree=2, 

intercept=FALSE).  

bs(log(density+2), degree=2, intercept=FALSE) is a basis-spline with 2 degrees of freedom to 

model a nonlinear effect of log-transformed dFADs density 

 

 
 

3. Results and discussion 

 

       In this paper, we used VAST to get a standardized CPUE which enables to account for an 

interactive relationship between space and time. The results of the GLMM approach are 

provided for the sake of continuity and to evaluate differences in the output derived to the 

modelling approach applied. 

 

Standardized and nominal CPUEs are presented by year-quarter as well as by year (Figure 3, 

4, 5 and 6, and Table 4 and 5). The recent version of VAST package allow probability integrate 

transform (PIT) residuals for delta-models, using DHARMa for plotting tools. The DHARMa-

style residuals are then used to assess if model fit to the data. DHARMa-stlye residuals take 

advantage of this approach by defining the residuals based on where the observations fall in the 

distribution of simulated samples (Dunn and Smyth, 1996). In addition to accounting for the 

random effects, another advantage of this approach is that it allows the entire model structure, 

both components of the delta model, to be evaluated using a quantile-quantile (QQ) plot of the 

uniformly distributed model residuals.  

 

The models appear to fit the data well (Figure 8, 9, 10 and 11) without indicating non-

uniformity. Visualizing the residuals spatially and temporally, we see evidence that the model 

indicates a better fit to the data.  

 

The influence plot shows that there seems to be a problem for the last two years (2020 and 

2021) (Figure 13). We feel the changed in the standardized CPUE may be tainted by the fact 

that we do not have data for the two fleets. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



 
 

Table 1. Candidate variables for the CPUE standardization models.  

 

Variable (in the model) description 

BET Capture of BET per positive set 

year Year at which the fishing set took place 

yyqq A quarter of the year at which the fishing set took place 

area 5x5-degree grid cells where SKJ were fished for at least 150 sets. 

numbat Unique vessel identifier. 

fishing_country Fleet country: France and Spain 

Is_fishing_own_fad TRUE if the dFAD where the set takes place is owned by the vessel’s 

company or FALSE otherwise. 

storage_capacity Vessel storage capacity in m 

density dFADs monthly average density in a 1x1-degree grid 

 

Table 2. Analysis of Deviance Table [GLMM Lognormal for the catch rate component] 
 

Variable Variable Deviance Resid..Df Resid..Dev F Pr..F. Dev..Exp 

NULL NA NA 42075 51003 NA NA NA 

yyqq 47 5392 42028 45611 129 0 10.57 % 

area 26 2271 42002 43340 98 0 4.45 % 

fleet_country 1 655 42001 42685 736 0 1.28 % 

storage_capacity 3 123 41998 42561 46 0 0.24 % 

density 3 61 41995 42500 23 0 0.12 % 

numbat 28 427 41967 42073 17 0 0.84 % 

Is_fishing_own_fad 1 102 41966 41971 115 0 0.2 % 

yyqq:fleet_country 914 5415 41052 36556 7 0 10.62 % 

 

The proportion of deviance explained by the best model of this component was 28.33%. 

Table 3. Analysis of Deviance Table [GLMM binomial for the binomial component] 
 

Variable Df Deviance Resid..Df Resid..Dev Pr..Chi. Dev..Exp 

NULL NA NA 44149 16734 NA NA 

yyqq 47 394 44102 16340 0.000 2.36 % 

area 26 241 44076 16098 0.000 1.44 % 

fleet_country 1 796 44075 15302 0.000 4.76 % 

storage_capacity 3 48 44072 15254 0.000 0.29 % 

density 3 1 44069 15253 0.773 0.01 % 

numbat 29 293 44040 14960 0.000 1.75 % 

Is_fishing_own_fad 1 46 44039 14914 0.000 0.27 % 

yyqq:fleet_country 39 179 44000 14735 0.000 1.07 % 

 

The proportion of deviance explained by the best model for this component was 11.91%. 



 
 

 

Figure 1: Spatial distribution of the fishing operations made on drifting FADs by the European 

purse seiner (Q1 2010 – Q4 2021) in the Indian Ocean (after data cleaning). 

 

 

Figure 2 : Spatial distribution of the extrapolation grid cell (55km x 55km, black points) 

aggregated in 100 knots (red points). 



 
 

 
 

Figure 3: Standardized CPUE for spatio-temporal model (VAST results) 

  
 

 

Figure 4: GLMM results (topleft: binomial GLMM; topright: log-normal GLMM and bottom: 

delta lognormal). 



 
 

 

Figure 5: Relative standardized CPUE (scaled) (red line for the VAST model) compared to 

nominal CPUE (black). Time series on a year basis. 

 

 

 

Figure 6: Relative standardized CPUE (scaled) (red for the VAST model and blue for the 

GLMM model), and compared to nominal CPUE (black). Time series on a quarterly basis. 



 
 

Residuals vs Fitted 
 

 

Fitted Values 

Normal Q−Q Plot 
 

 

Theoretical Quantiles 
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Figure 7. Diagnostics of the lognormal-GLMM analysis (catch rate): residuals vs fitted, Normal 

Q-Q plot and frequency distributions of the residuals. 
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Figure 8: Uniform Quantile-Quantile (QQ) (left panel) and residuals against the predicted value 

plot of the DHARMa calculated residuals for the annual VAST model (right panel). 

 

 

 

Figure 9: Spatiotemporal aggregated quantile residuals from the VAST model. Time series on 

a year basis 



 
 

 

Figure 10: Uniform Quantile-Quantile (QQ) (left panel) and residuals against the predicted 

value plot of the DHARMa calculated residuals for the quarterly model (right panel). 

 

 

Figure 11: Spatiotemporal aggregated quantile residuals from the VAST model. Time series on 

a quarterly basis. 



 
 

 

 

Figure 13: Influence plot (VAST model) for each covariate and each model component, 

showing the effective correction in the standardized CPUE as a result of a change over time of 

some associated factors. Time series are on a quarterly basis. 

A) 

 

B) 

 

Figure 12: Estimated effective area occupied [which measures the area (in units square km) 

required to contain a population given its average population density (kg km−2)] of BET caught 

by the European purse seiner for fishing operations made on dFADs in indian ocean. Each panel 

shows the estimate (circle) and confidence interval (±1 s.e.; y-axis) against time (x-axis). Figure 

A is in an annual basis and figure B (from Q1-2010 to Q4-2021) in a quarterly basis. For the 

modelling, an extrapolation grid of 55km x 55km (~0.5-degree square) was considered for the 

population density estimate.  



 
 

A) 

 

B) 

 

Figure 14: Predicted estimates of spatiotemporal relative catch rate per positive dFAD set. 

Figure A is on a yearly basis and figure B on a quarterly basis. 

 

 

 

Table 4. Standardized CPUE (VAST) vs Nominal CPUE per year 

 

  Results from the VAST model 

Year Standardized CPUE (scaled) Nominal CPUE (scaled) SE (log estimated) 

2010 1.1344165 1.2215807 0.08523399 

2011 0.9992612 1.0853140 0.08278903 

2012 0.7500243 0.8496061 0.08556966 

2013 1.3841212 1.4392343 0.08469594 

2014 1.0083260 1.0039907 0.09105005 

2015 1.0806511 0.9514046 0.08871008 

2016 1.0196105 0.9310314 0.08631635 

2017 1.0883718 0.9278100 0.08817954 

2018 0.9942481 0.9435132 0.08595264 

2019 0.8385044 0.8317681 0.08900572 

2020 0.6654051 0.5463094 0.09467189 
2021 1.0370598 1.2684376 0.09667843 

 



 
 

Table 5. Standardized CPUE (VAST and GLMM) vs Nominal CPUE per quarter 
 

Year-quarter 
Standardized CPUE VAST 

(scaled) 

Standardized CPUE GLMM 

(scale) 

Nominal CPUE  

(scaled) 

SE –VAST Model 

(log estimated) 

01_2010 2.3912617 2.3926357 1.7800725 0.10718255 

02_2010 0.8554831 1.1309412 0.8546890 0.13669376 

03_2010 1.1580918 1.4164945 1.2359629 0.13357479 

04_2010 0.9470250 1.0858538 1.0723328 0.11417947 

01_2011 2.7337084 2.5684764 2.4401529 0.09977252 

02_2011 0.7219564 0.7033628 0.8292707 0.11460051 

03_2011 0.8280859 0.7349239 0.7291863 0.15335909 

04_2011 0.6555184 0.7890287 0.7514273 0.11926712 

01_2012 0.9338857 0.9558520 1.0262622 0.11694288 

02_2012 0.6718561 0.8641743 0.9063198 0.11850700 

03_2012 0.6949066 0.8243472 0.8046468 0.12316755 

04_2012 0.7611949 0.8634229 0.9015539 0.10348782 

01_2013 1.8166480 1.7907195 1.6958745 0.10014078 

02_2013 0.8902765 0.9798986 1.1215807 0.11967784 

03_2013 1.3020443 1.4322750 1.3153949 0.11650557 

04_2013 1.4004921 1.6411798 1.6299459 0.10487773 

01_2014 1.5354059 1.4322750 1.1946582 0.11581048 

02_2014 0.6849574 0.7191433 0.6990021 0.12421595 

03_2014 1.1541753 1.0377607 1.0461202 0.12072047 

04_2014 0.8488299 0.8333646 0.9087028 0.11881406 

01_2015 1.9223790 1.5893293 1.6569528 0.10231040 

02_2015 0.5822623 0.5109900 0.6648463 0.12133278 

03_2015 0.9741689 0.6740560 0.6203644 0.15760296 

04_2015 0.7342370 0.7942889 0.8395969 0.10936256 

01_2016 1.0685326 1.0377607 1.0127588 0.10474172 

02_2016 0.6587914 0.6500094 0.6584918 0.10981438 

03_2016 0.9401538 0.8964869 0.9682768 0.10837934 

04_2016 1.1359227 1.0204772 1.0310281 0.10242568 

01_2017 1.2265567 1.0122112 1.1438217 0.10233248 

02_2017 0.6547465 0.6026677 0.6076553 0.12277562 

03_2017 0.8482285 0.7274094 0.7172715 0.12793560 

04_2017 1.1152554 1.1114033 1.0770987 0.10977826 

01_2018 1.2218763 1.2601916 1.3233381 0.09707752 

02_2018 0.8298591 0.7927860 0.6918532 0.10821409 

03_2018 0.7863820 0.7266579 0.7156829 0.10615672 

04_2018 0.8065244 0.6763104 0.7824058 0.10160661 

01_2019 1.0387387 0.9626151 1.0540634 0.09695608 

02_2019 0.6658895 0.6424948 0.6275133 0.11768695 

03_2019 0.7170781 0.9115161 0.8030581 0.11895265 

04_2019 0.6188398 0.6079279 0.6005064 0.12958323 

01_2020 0.5437211 0.5372910 0.4583230 0.13076626 

02_2020 0.4045084 0.3915085 0.2621258 0.13371472 

03_2020 0.7646108 0.9363141 0.9301494 0.13526918 

04_2020 0.6172200 0.5673492 0.6823214 0.12069898 

01_2021 1.4782711 1.4871313 2.2979695 0.11868032 

02_2021 0.9066583 1.0099568 1.1763888 0.12441402 

03_2021 0.7534477 0.8303588 0.8443628 0.16820648 

04_2021 0.9993368 0.8363705 0.8086184 0.14906678 
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