Comisión Interamericana del Atún Tropical Inter-American Tropical Tuna Commission

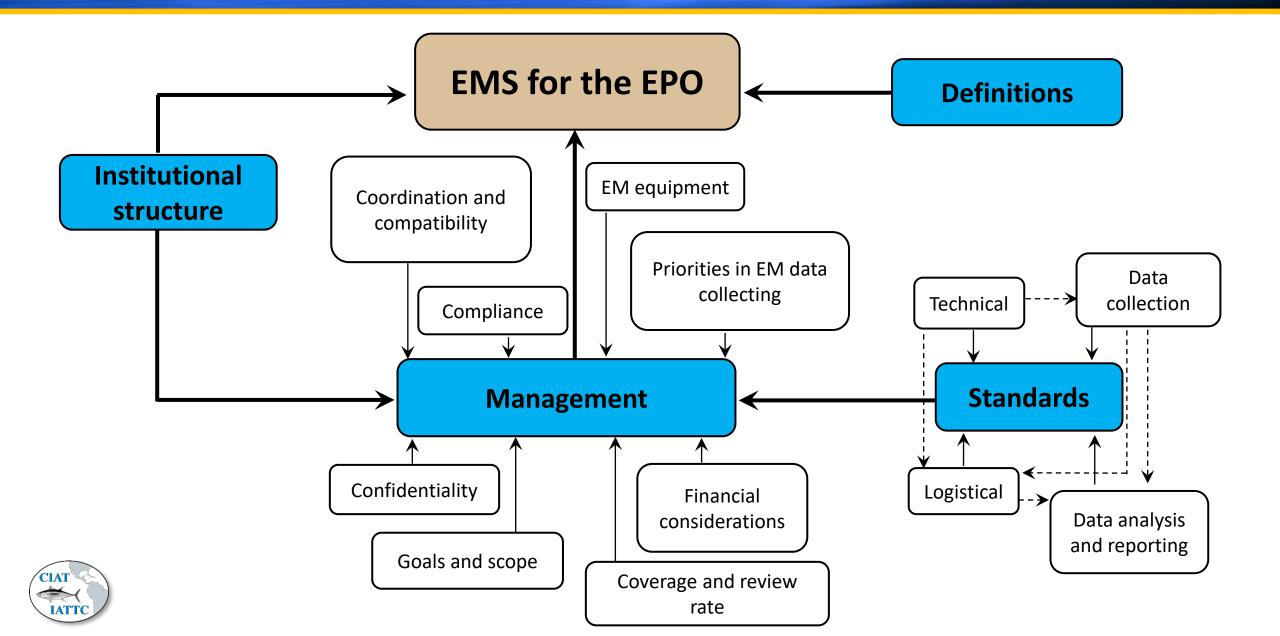
IOTC-2022-WGEMS02-INF08

AN ELECTRONIC MONITORING SYSTEM FOR TUNA FISHERIES IN THE EPO: STRUCTURE, IATTC WORKPLAN, AND PILOT EM STUDIES

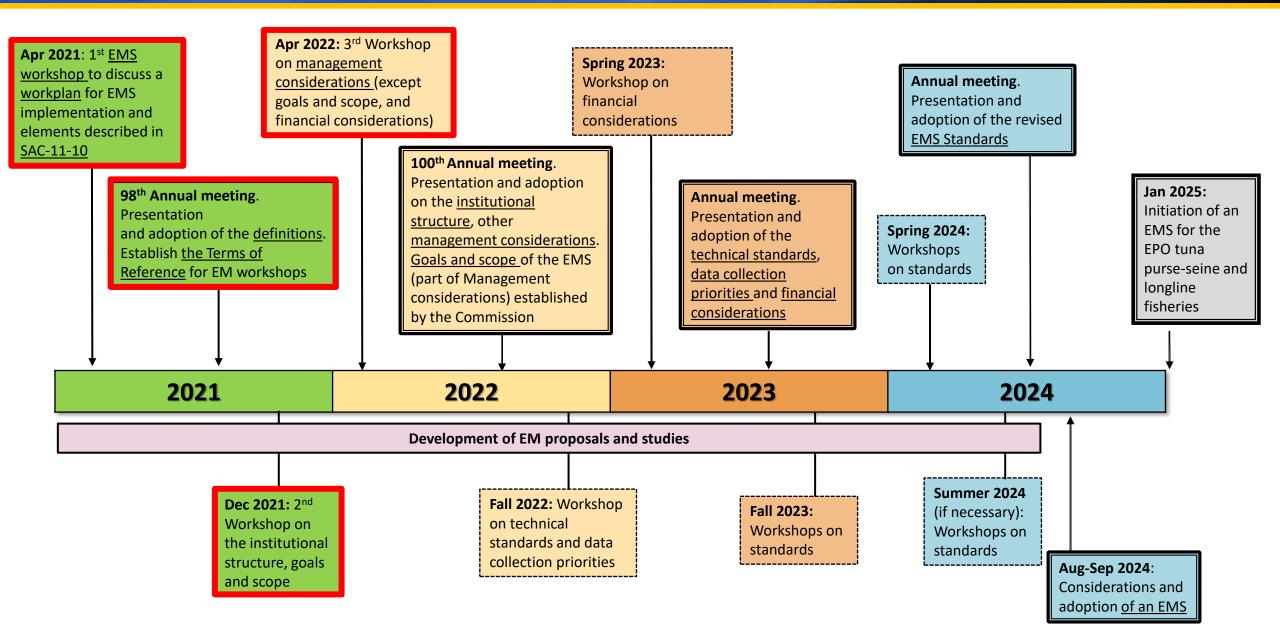
2nd AD HOC WORKING GROUP ON THE DEVELOPMENT OF ELECTRONIC MONITORING PROGRAMME STANDARDS (WGEMS)

Indian Ocean Tuna Commission Commission des Thons de l'Océan Indien Indian Ocean Tuna Commission - IOTC 13-15 June 2022 (videoconference)

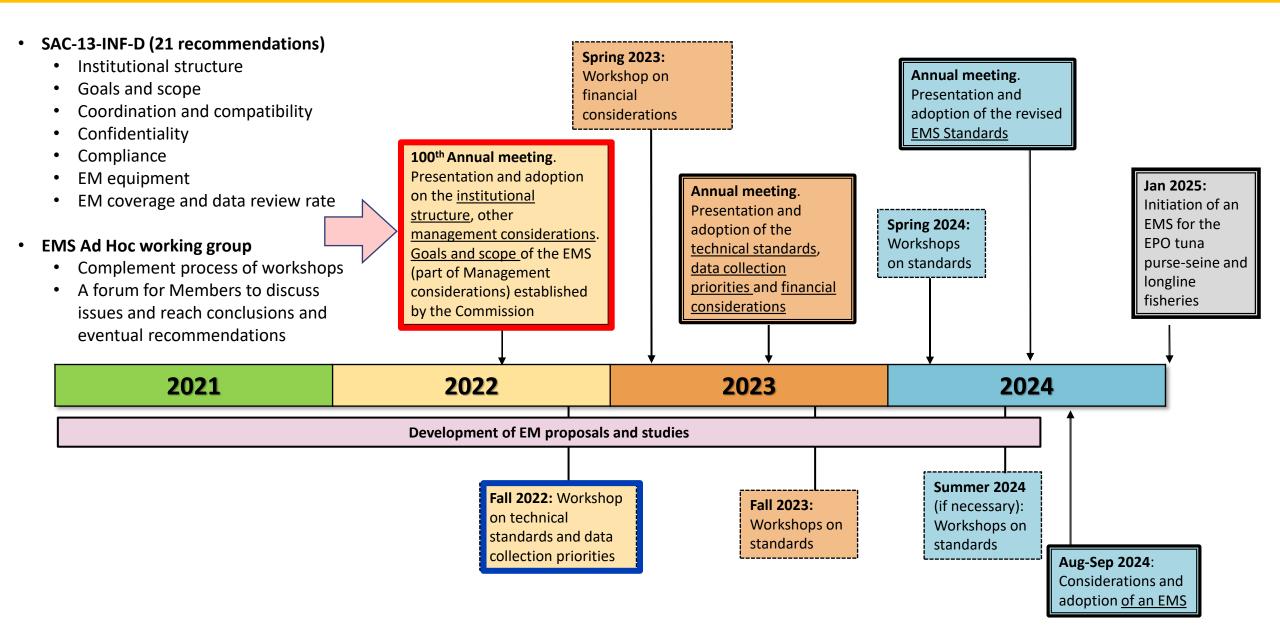
- Steps taken for the implementation of an EMS for the tuna fisheries in the EPO.
 - Proposed structure of the EMS.
 - Proposed workplan activities.


- EM standards on data collection.
 - Tuna purse-seine vessels in the EPO.
 - Tuna longline vessels in the EPO.

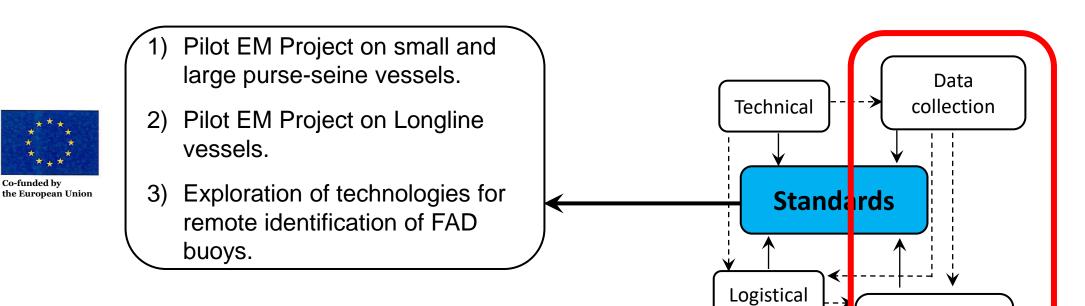
- SAC-10 → C-19-08, the IATTC staff was requested to draft minimum standards and data collection and reporting requirements for EMS for the EPO tuna fishery.
- Document SAC-11-10 was presented in SAC-11.
- 1st EM workshop on Implementation of an Electronic Monitoring System (EMS). (Apr 2021):
 - An overall structure of the proposed EMS framework was presented (SAC-11-10 and EMS-01-01).
 - Immediate actions recommended for adoption by the Commission:
 - Adopt the definitions of EMS-01-01. Adopted during 98th IATTC Meeting (Res. C-21-03).
 - Adopt the proposed workplan of document EMS-01-02. Adopted during 98th IATTC Meeting.
 - Establish Terms of Reference for the EM workshops. Adopted during 98th IATTC Meeting (Res. C-21-02).



Proposed structure of the EMS for the tuna fisheries in the EPO


Workplan of the EMS for the tuna fisheries in the EPO

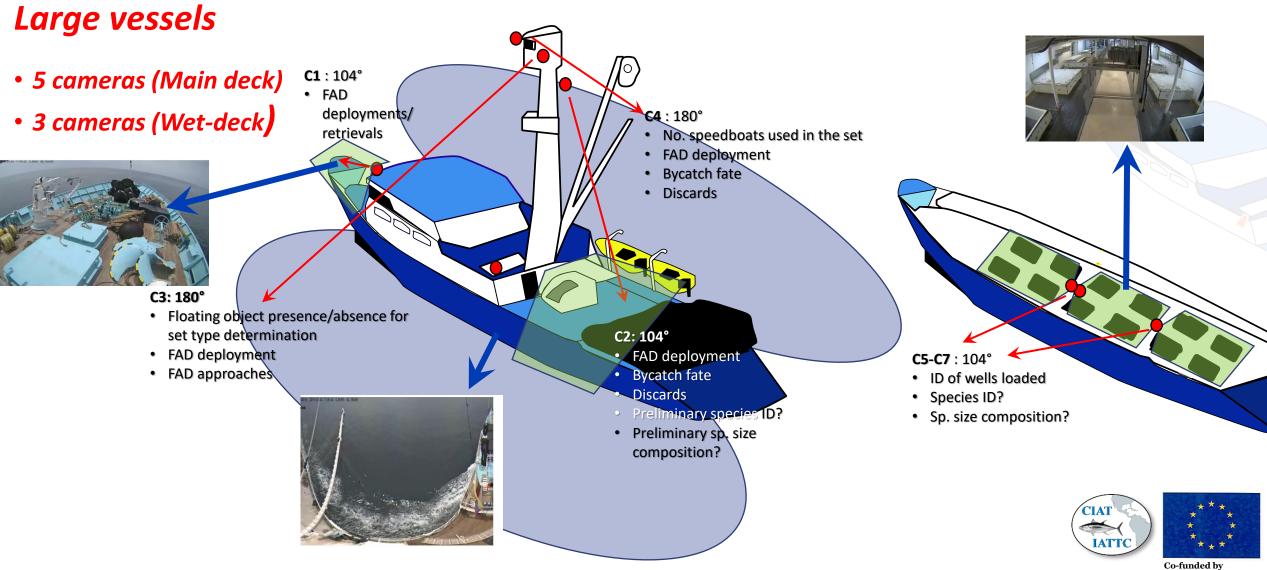
Workplan of the EMS for the tuna fisheries in the EPO



EMS standards on data collection

EMS standards on data collection

Data analysis and reporting


Co-funded by

EMS standards on data collection

- For the IATTC to carry out the functions established by the AC: high-quality data from fisheries e.g., catch composition and CPUE are required for science-based fisheries management.
- Small purse-seine vessels (Class 1-5): current sources of detailed data
 - <u>Vessel logbooks</u>: limited information on non-target species, none on discards of target species. Information present is not debriefed.
 - Port sampling: species and size composition data is for target species only.
 - Observers: mostly large vessels (Class-6), rarely on small vessels.
- Large purse-seine vessels (Class 6):
 - EM complementing observers' data: observers might be unaware of activities occurring in different places at the same time. EM could assist them/take over activities so observers could perform others.
- Evaluate if EM can be used to collect information on set type, FAD deployments, catches, and bycatches.
- A preliminary evaluation of EM performance by comparing it to human observer is required.

Participating vessels – Class-6 purse-seiners

the European Union

Participating vessel – Class-2

Small vessel

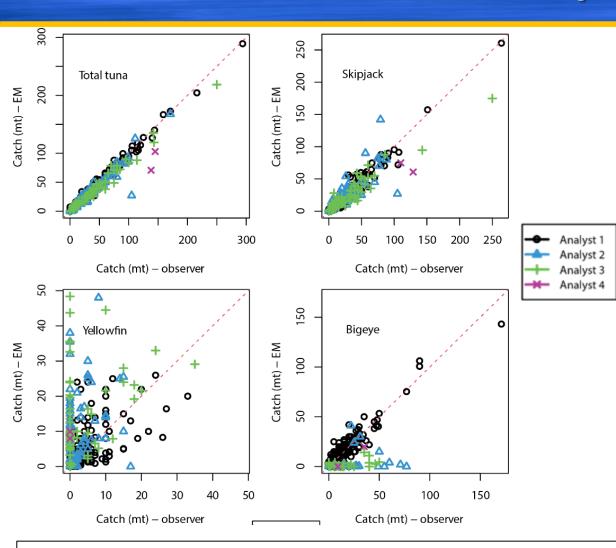
• 4 cameras (Main deck)

- Floating object presence/absence for set type determination
- FAD deployment

- **C3** : 104°
- FAD deployment
- Preliminary species ID?
- Preliminary sp. size composition?
- Bycatch fate
- Discards

C2: 104°

set


- Species ID?Bycatch fate
 - Discards
- No. speedboats used in the

Co-funded by the European Union

Results EM-observer comparison

- 1. Observer and EM data similar for total tuna catch, and for catch of SKJ.
- 2. Relationship degrades for YFT. Although slope for one Analyst is close to 1.0, SE is large.
- 3. Poor relationship for BET, except for one EM analyst, despite the fact that the model fit to the data is acceptable.

tmp.gamobj<-gam(em_BETTotalCT~(-1)+reviewer.fac+obs_BETTotalCT:reviewer.fac,data=frm) Results (first 3 rows are intercepts; next 3 are slopes) Total tuna

 Estimate Std. Error t value Pr(>|t|)

 reviewer.2
 0.31284
 0.67636
 0.463
 0.64393

 reviewer.3
 0.37896
 1.06334
 0.356
 0.72173

 reviewer.1
 1.35884
 0.48039
 2.829
 0.00489 **

 reviewer.2:obsTotcatch
 0.87728
 0.01637
 54.838
 <2e-16 ***</td>

 reviewer.3:obsTotcatch
 0.87024
 0.01723
 50.504
 <2e-16 ***</td>

 reviewer.1:obsTotcatch
 0.97371
 0.00931
 104.583
 <2e-16 ***</td>

 R-sq.(adj) = 0.975
 Deviance
 explained = 98.7%

 GCV = 31.261
 Scale est. = 30.833
 n = 438

SKJ

 Estimate Std. Error + value Pr(>|t|)

 reviewer.2
 1.36480
 1.00639
 1.356
 0.1758

 reviewer.3
 2.90927
 1.41864
 2.051
 0.0409 *

 reviewer.1
 -0.40231
 0.67150
 -0.599
 0.5494

 reviewer.2:obs_SKJTotalCT
 0.84421
 0.03519
 23.993
 <2e-16 ***</td>

 reviewer.3:obs_SKJTotalCT
 0.71302
 0.02861
 24.919
 <2e-16 ***</td>

 reviewer.1:obs_SKJTotalCT
 0.94291
 0.01917
 49.193
 <2e-16 ***</td>

 R-sq.(adj) = 0.893
 Deviance
 explained
 93.5%

 GCV = 71.106
 Scale est. = 70.132
 n = 438

YFT

 Estimate Std. Error t value Pr(>|t|)

 reviewer.2
 5.14955
 0.75505
 6.820
 3.08e-11 ***

 reviewer.3
 10.96698
 1.07803
 10.173
 < 2e-16 ***</td>

 reviewer.1
 2.25204
 0.53335
 4.222
 2.95e-05 ***

 reviewer.2:obs_YFTTotalCT
 0.96742
 0.19967
 4.845
 1.77e-06 ***

 reviewer.3:obs_YFTTotalCT
 0.64035
 0.09422
 6.796
 3.58e-11 ***

 R-sq.(adj) = 0.274
 Deviance explained = 51.9%
 GCV = 55.723
 Scale est. = 54.96
 n = 438

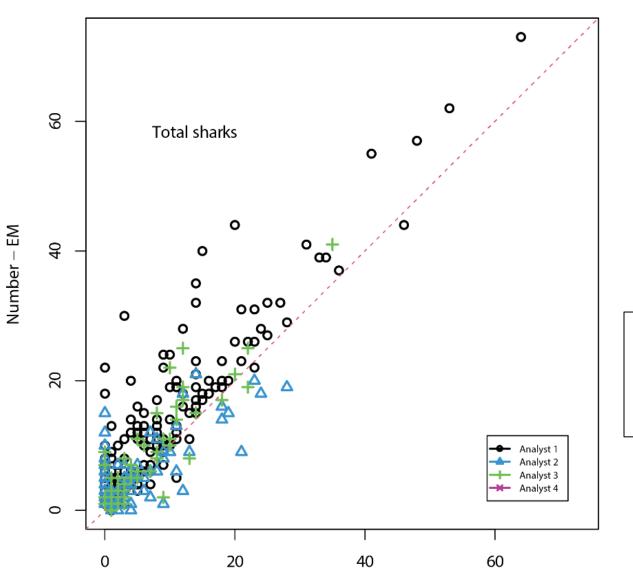
BET

 Estimate Std. Error t value Pr(>|t|)

 reviewer.2
 0.27089
 0.49179
 0.551 0.582042

 reviewer.3
 -0.14796
 0.80258
 -0.184 0.853819

 reviewer.1
 1.61860
 0.36501
 4.434 1.17e-05 ***


 reviewer.2:obs_BETTotalCT
 0.10774
 0.03044
 3.540 0.000444 ***

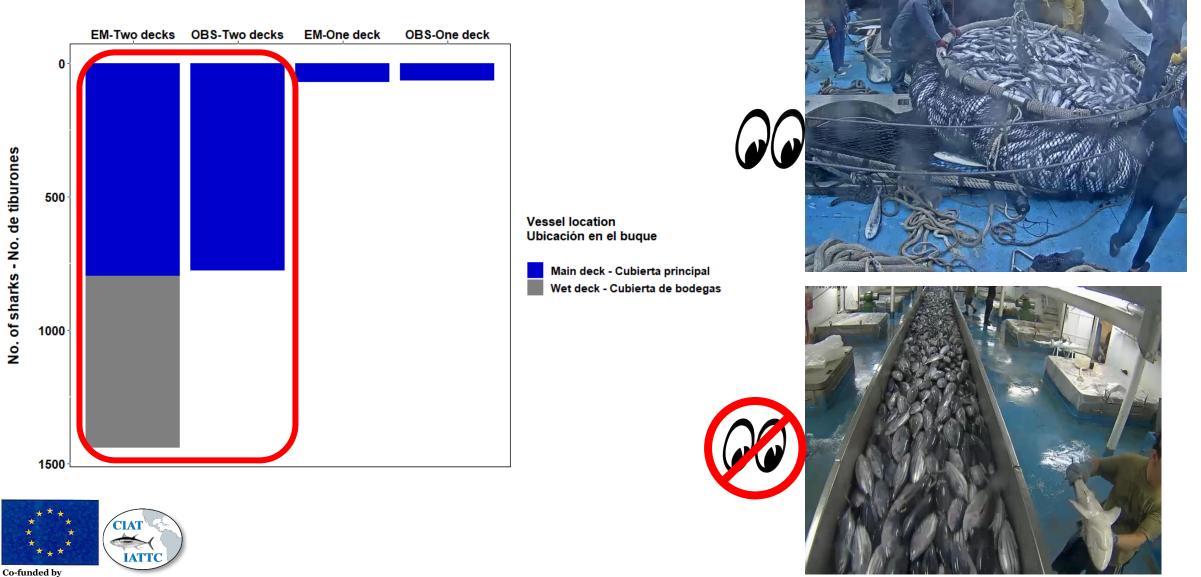
 reviewer.3:obs_BETTotalCT
 0.11020
 0.05032
 2.190 0.029064 *

 reviewer.1:obs_BETTotalCT
 0.92826
 0.01812
 51.232 < 2e-16 ***</td>

 R-sq.(adj) = 0.878
 Deviance explained = 90.5%
 GCV = 24.49
 Scale est. = 24.155
 n = 438

Results EM-observer comparison

Model:	
tmp.gamobj<-gam(em_tsharks~reviewer+s(obs_tsharks,	
by=reviewer.fac,k=3),data=frm,family=nb(link="identity"))	
Results:	
Parametric coefficients:	
Estimate Std. Error z value Pr(> z)	
(Intercept) 7.6676 1.0384 7.384 1.53e-13 ***	
Reviewer2 0.8801 1.2875 0.684 0.4942	
Reviewer1 2.8870 1.1429 2.526 0.0115 *	
Approximate significance of smooth terms:	
edf Ref.df Chi.sq p-value	
s(obs_tsharks):reviewer.2 1.805 1.962 26.63 2.57e-05 ***	
s(obs_tsharks):reviewer.3 1.000 1.000 42.49 < 2e-16 ***	
s(obs_tsharks):reviewer.1 1.000 1.000 188.22 < 2e-16 ***	
R-sq.(adj) = 0.817 Deviance explained = 63.4%	
-REML = 944.84 Scale est. = 1 n = 336	


- 1. Significant positive relationship between the observer counts of sharks between Observer and EM.
- 2. Relationship varies among EM analysts.
- 3. Spike at 0 (observed count) for all reviewers and a high proportion of the data are above the 1-to-1 line (EM total counts are often greater than observer counts).

Shark sightings by deck location

Observer type - Decks accessibility - Tipo observador - acceso a cubiertas

the European Union

Some conclusions on EM analysis

- EM can collect key data fields for the tuna purse-seine fishery.
 - EM seems to be ready to collect 83.4% of PS data. 16.4% require extra work or is not possible.
 - Useful for collecting data in different vessel areas occurring at the same time.
- EM analysis costly and time consuming.
 - Optimize the time of analysis (AI).
 - Define priorities for EM data to be collected-analyzed.
- Some data not ready to be collected by EM.
 - Exploring technologies for remote FAD Id.
 - Explore technologies for accurate electronic measuring.
- Data analysis and reporting standards: necessary adequate experience/training of EM analysts.

Pilot EM Project on longline vessels

- February 2021 to May 2023
- Three vessels participating

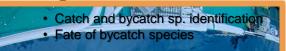
Co-funded by the European Union

Pilot EM Project on longline vessels

- Four-camera EM system installed
- Currently collecting EM records at sea

D G D G

Catch & bycatch sp. identification and bycatch fate Catch processing


- Date & time of hauling start
- Date & time of hauling end
- No. hooks used by set and basket
- · Catch enumeration and its location by hook
- Catch & bycatch sp. identification and bycatch fate

- Date & time of set start
- Date & time of set end
- No. hooks used by set and basket
- Bait species id

Co-funded by the European Union

Pilot EM Project on longline vessels

Next steps

- Generate EM data.
- EM data will be compared with observer data.
- Results will indicate whether EM could be reliably used in the LL fishery of the EPO.

Co-funded by the European Union

Thank you!

