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Introduction

This document presents the process of conditioning and the current state of the Operating Model (OM) for
Indian Ocean albacore. The OM is being used for the initial evaluation of Management Procedures for the
stock following the guidelines providing by recent meetings of the TCMP (IOTC 2021b). The OM is based on
a grid of alternative runs based on the stock assessment for albacore (Langley 2019) carried out and accepted
by WPTmT in 2019.

Three system characteristics of the Operating Model and the Observation Error Model are likely to have the
greatest in�uence in the performance of an MP: scale, noise and trend. The strategy for development of an
MP described here tries to ensure that a realistic range of options for those three quantities are present in the
OM set.

Model runs have been selected based on four criteria related to their �t to the data, prediction skill, and ability
to explain recent catches. A large proportion of model runs did not pass these tests. Finally, the remaining
runs were resampled using sampling weights based on their prediction skill for the two CPUE indices to be
used in future projections.

The WPTmT 2019 SS3 albacore stock assessment

The last session of the IOTC Working Party on Temperate Tunas, WPTmT (IOTC 2019), reviewed and approved
a new stock assessment (Langley 2019) for the albacore stock. The model has been constructed using the
Stock Synthesis platform (Methot and Wetzel 2013), version 3.30. This is a seasonal, two-sex model, where
catch data and indices of abundance are split across four areas (Figure 1), mostly to account for di�erences in
the sizes of �sh caught in the Northern and Southern areas.

Data is available from the beginning of the industrial �sheries (Figure 2), but their quality, and the amount of
information contained, has varied over time through changes in the activities of some of the �eets, and lack
of sampling in others.

Longline CPUE indices by area have been incorporated that are the result of a collaborative study across all
longline �eets (Hoyle et al. 2019). The standardised indices were derived from operational-level longline data
from the three �eets (Japan, Taiwan and Korea), and using cluster analyses to consider the e�ects of target
change, vessel e�ects and spatial e�ects. Indices have been included for the period 1979–2017 (Figure 3, as
trends in years earlier than 1979 cannot be explained with the catches taken in those years.
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Figure 1: Spatial structure of the Indian Ocean albacore SS3 stock assessment model.

Figure 2: Temporal coverage and sources of catch, relative abundance and length composition data employed
in the stock assessment model.

The 2019 stock assessment resulted in estimates of biomass that were approximately one third lower than
those obtained by the 2016 model. Four main changes in the new assessment con�guration ((Langley 2019))
might be behind those di�erences:

• Re�nements to the spatial distribution of catches from the longline �shery. Catches for the LL1 and
LL2 �sheries have increased, while those for LL3 and LL4 have decreased.
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Figure 3: Indices of abundance employed in the SS3 stock assessment model in the later period.

Figure 4: Time series (recruitment, SSB, catch and �shing mortality) for the three stock assessment runs used
for advice by WPTmT (IOTC, 2019).

• The main CPUE index in the assessment (LL3) has been revised and extended, and now shows a greater
decline in stock abundance.

• A new set of growth parameters, obtained from work carried out on sampled from the Indian Ocean,
are now used in the model.
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• Changes in the con�guration of the longline length composition data, which altered the estimates of
both biomass and depletion level.

Figure 5: Stock trajectories for the three 2019 base case runs, compared with the WPTmT 2016 (SA2014) stock
assessment.

Model diagnostics

An initial set of model diagnostics, following (2020), are being explored to (i) assess the quality of �t of each
run in the grid, and (ii) use to provide weights to use in the resample procedure. Convergence is assessed by
the value of the gradient at the solution, which is checked to be smaller than 1e-4 (Carvalho et al. 2020).

Retrospective analysis

Retrospective analysis is a form of hindcasting commonly used to assess the stability of a model formulation
to updates in the data. An statistic, for example Mohn’s rho (Mohn 1999), is then used to quantify the strength
of the retrospective pattern. A subjective rule might be established where model runs with values larger than
a certain limit are deemed invalid. For example, (2014) proposed that values outside the -0.15 to 0.20 range,
should indicate an undesirable retrospective pattern for longer lived species.

The retrospective pattern for the estimated SSB from the base case model is shown in Figure 6. This plot
also includes a one-step ahead projection of SSB based on the known total catches. The usefulness of a
retrospective statistic is less clear in an operating model context, but has value at signalling models for which
future bias could be a cause of instability in the application of an MP.

Runs tests

Runs tests on the CPUE and length-frequency data sources are common diagnostics of goodness of �t (Carvalho
et al. 2017). The Wald-Wolfowitz runs test, a non-parametric statistical test that checks the randomness
hypothesis for a data sequence, can be used to identify residuals patterns that should not be considered random.
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Figure 6: Five year restrospective runs with a one step ahead forecast of SSB according to total catch.

The runs test for the CPUEs and for the length-frequency data sources in the base case stock assessment
(Figures 7 and 8) indicate that the model �t to most data series (those in red) present signi�cant patterns.
Model �ts where the �t to the chosen CPUE does not pass the Wald-Wolfowitz runs test could be identi�ed
and not incorporated to the base case OM.

Figure 7: Runs tests of the four ongoing CPUE series.

Hindcasting cross validation

A proposed model-free hindcasting technique (HCXval) uses cross-validation to compare observations to their
predicted future values (Kell, Kimoto, and Kitakado 2016). The prediction skill of a model is then computed
from the prediction residuals. A robust statistic for evaluation the prediction skill can be constructed using
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Figure 8: Runs tests for the various sources of length frequency data.

the mean absolute scaled error (MASE) of (2006). The R package ss3diags contains functions that simplify the
calculation of prediction skill and the computation of their MASE for both CPUE and length frequencies.

The prediction skills of both the Northwestern (LLCPUE1) and Southwestern (LLCPUE3) indices are presented
in Figure 9. A MASE score larger than 1 indicates the model does only as well as a random walk at predicting
the quantity, while a value of 0.5 indicates the model is twice as good as a random walk. For both indices, the
model prediction skill appears to be better for seasons 1 and 4, the later being the spawning season for this
stock. These results could indicate that a single season CPUE, or a combination of seasons 1 and 4, could
provide a better indication of stock status and trends to inform the management procedure.

Parameter uncertainty

The previous albacore operating model did not incorporate parameter uncertainty, only considering the
structural uncertainty as characterized by the variables included in the grid. A comparison of both sources of
uncertainty should help informing on whether this should still be the case. Figure 10 presents the uncertainty
in the estimates of current status, as generated from a Multivariate Log-Normal distribution (Winker et al.
2019).

A easy measure of parameter uncertainty, to compare with the structural uncertainty contained in the model
grid, can be obtained for the estimate of biomass at the very start of the series (1952) obtained through the
MVLN method (Figure 11). It appears that the scale of variability is lower, as expected, when only parameter
uncertainty is considered.
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(a) a (b) b

Figure 9: Hindcasting cross-validation results by season for the LLCPUE1 and LLCPUE3 indices.

Figure 10: Uncertainty in the estimates of status (F/FMSY and B/BMSY) of the albacore base case model.
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Figure 11: Uncertainty in the estimates of SSB in 1952 from the albacore base case model.
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Operating Model grid

A simpli�ed model grid was discussed and accepted by WPM (IOTC 2021a) that reduced the number of factors
and levels from those used in the previous OM, based on the 2016 assessment model. The con�guration of
the model grid was informed by an analysis of the e�ect of each level and factor on the uncertainty of the
previous one, which consisted of 1,440 model runs.

The model grid currently in used includes the following factors and levels:

• Natural mortality (M): 0.20, 0.25, 0.30 or 0.35, for all ages.
• Standard deviation in recruitment deviates (sigmaR): 0.4, 0.6, or 0.8.
• Steepness of the stock-recruitment relationship: 0.7, 0.8 or 0.9.
• LL CPUE series (cpues): Northwest (12) or Southwest (14).
• Length-frequency data likelihood weighting (lfreq): 0.01, 0.01, 0.1 or 1.
• Catchability increase of the LL CPUE series (llq): 0% or 1% per year.

Therefore the full grid consists of 432 model runs, together with �ve restrospective runs for each of them.
Running these models requires around 1,200 h of computation time.

E�ect of individual grid factors and levels

An exploration has been carried out of the individual e�ect on model output of adopting an alternative value
for each variable, one at a time. These main e�ects provide an useful indication of how much variability in
dynamics and status is controlled by a single variable, and how much is the result on 2nd or higher order
interactions. The estimates of the scale indicator (virgin spawning biomass) are shown in Figure 12, while
those for trend (SSB in 2017 over SSB at MSY) are presented in Figure 13.

Figure 12: Changes in estimates of virgin spawning biomass (SSB0) under each factor and value. Horizontal
line shows the reference estimate for the base case model run.
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Figure 13: Changes in estimates of spawning stock biomass (SSB) in the last year (2017) over the SSB at MSY,
under each factor and value. Horizontal line shows the reference estimate for the base case model run.

Partial factorial operating model

A previous meeting of the MSE taskforce of WPM (IOTC, 2021), recommended that all operating models
constructed around a grid of SS3 model runs should apply a partial factorial design to the full grid. This
should allow running and inspecting a reduced number of models without a loss in its capacity to map stock
uncertainty. Federov’s exchange algorithm, as implemented in R package ‘AlgDesign’1, was used for this. An
evaluation of the sampling design indicated that a value of 84 runs would be su�cient to obtain a robust
representation of the grid uncertainty (close to 95%), as quanti�ed by the minimax normalized variance (Figure
14).

Once the selection criteria outlined below were applied to this subset, 38% of the chosen runs were rejected,
leaving an OM grid composed of 52 model runs. Given that the size of the full grid, much reduced in this
latest version, was considered not too large, and expecting a similar rejection rate as obtained in the partial
factorial grid, the decision was taken instead to run the full grid of 432 models.

Selection process

Model runs from the full grid were then evaluated applying four diagnostic criteria. The objective was to
retain only those model runs where convergence was assured, led to reasonable estimates of stock status, and
had su�cient prediction skill:

1. Identify models leading to estimates of virgin biomass outside of a reasonable range (SB0 > 1e7), or
overly optimistic estimates of recent stock status (SB 2017 / SBMSY > 3).

2. Signal models with no clear convergence of Stock Synthesis run, if �nal gradient > 1e-4
1https://github.com/jvbraun/AlgDesign
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Figure 14: Minimax normalized variance expressed as an e�ciency with respect to the optimal approximate
theory design (Ge�) for an increasing number of trials.

3. Identify runs where their MASE of selected CPUE indices (LLCPUE1 NW and LLCPUE3, SW) in seasons
1 and 4 were greater than 1.

4. Determine model runs that could not take the 2018, 2019 and 2022 nominal catches reported to IOTC
(41 615, 39 246 and 41 051 t, respectively) without a yearly increase in �shing mortality larger than 25%
per year.

These four selection criteria were applied to the full OM grid of 432 Stock Synthesis model runs. The number
of runs failing each of the individual tests were as follows:

• Unrealistic values: 10.
• Convergence: 26.
• MASE CPUE indices 1 and 3: 121.
• Catch 2018-2020 could not be taken: 376.

Model runs were kept in the OM set only if they passed all four of those selection �lters. This was the
case for only 39 model runs out of 432 model con�gurations in the original grid, or around 9%. This model
selection process leads to an uneven distribution of runs across four out of the six grid factors (Figure 15):
natural mortality (M), steepness, weight of the length frequency data (lfreq) and yearly increase in LL CPUE
catchability (llq).

Time series

The time series plot for this reference OM shows a large uncertainty in initial biomass and in current status,
most notable on the level of �shing mortality (Figure 16). The comparison with the stock trajectories estimated
by the base case stock assessment model (Figure 17) di�er specially in the recent levels of �shing mortality
and stock abundance. After projecting the stock for the catches reported between 2018 and 2020, the biomass
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Figure 15: Percentage of accepted OM runs across all factors and levels.

levels appear to have turned to even lower values.

Figure 16: Time series (recruitment, SSB, catch and �shing mortality) for the resampled operating model,
projected ahead to 2019 based on total reported catches.
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Figure 17: Time series (recruitment, SSB, catch and �shing mortality) for the resampled oeprating model,
projected ahead to 2019 based on total reported catches (OM) and the base case stock assessment model run
(SA).

Projections for MP evaluations using the reference OM will start from a stock status that is in a majority
of cases (75%) worse than what the base stock assessment estimated (Figure 18). This will likely call for a
recovery phase. Management objectives might need to be realigned to ensure stock recovery in a reasonable
time frame. Current tuning objectives, P(Kobe = green) of 50%, 60%, and 70% in 2030-2034, might only be
achievable through a sharp decrease in allowable catches in the short term.

Displaying the time series of the main metrics for the OM, but split across levels of each grid factor (Figures
19 to 21) shows how and in which way the OM runs diverge. Natural mortality values scale the biomass of
the stock up or down, as expected (Figure 19), while both the yearly increase in LL catchability (Figure 21)
and the choice of CPUE (Figure 19), appear responsible for the two alternative trends in biomass over the
1980 to 2000 period.

The uncertainty in stock dynamics is also re�ected in the range of estimates for MSY reference points (Figure
22).
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Figure 18: Distribution of estimated values for stock status (SB2017/SBMSY ) compared to that obtained
from the base case stock assessment model run (red line).

Figure 19: Time series (recruitment, SSB, catch and �shing mortality) for the resampled operating model, split
across CPUE and natural mortality grid levels.

Importance of grid factors and levels

The e�ect of the various factors and levels in the model grid on some quantities of interest was explored
through a series of regression trees (Breiman et al. 1984), computed using the R package rpart. Three variables

14



Mosqueira - Albacore OM IOTC-2022-WPTmT08-05

Figure 20: Time series (recruitment, SSB, catch and �shing mortality) for the resampled operating model, split
across recruitment variance and steepness grid levels.

Figure 21: Time series (recruitment, SSB, catch and �shing mortality) for the resampled oeprating model, split
across LL length frequency likelihood weight and yearly increase in LL CPUE catchability grid levels.

were selected to represent the three main OM system characteristics: scale (K), noise (recruitment variance)
and trend (depletion).

Figures 23 to 25 present the results of this analysis. The estimates of initial stock size (K) depend on two grid
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Figure 22: Distribution of estimated MSY reference points across the full OM grid.

factors, natural mortality and steepness, and also on the variability in recruitment deviances (Figure 23). The
choice of recruitment variability in the model �tting (sigmaR), has relatively limited importance on the actual
process error, as represented by the variance in recruitment deviances 25. Instead, the choice of CPUE and the
assumed catchability trend in the CPUE �eet has a three-fold e�ect on this model characteristic. Depletion in
the last year, computed as SB2017SB0, appears to be greatly determined by a combination of factors 24, lead
by the catchability trend and steepness. Stock status at around the BMSY level, 27% depletion, is only found
on model runs with high steepness values and no changes in longline COUe catchability.

Short-term projections

The future dynamics and robustness of the OM have been �rst evaluated through a series of projections. They
attempt to establish whether the population is able to sustain recent catch or �shing mortality levels over a
number of years, and the expected impact of a short recovery to MSY conditions. Following the OM update
based on the nominal catches for the 2018-2020 period, abundances in 2021 have been computed by assuming
a level of mean �shing mortality (F̄ ) over ages 1 to 12 equal to that estimated in 2020.
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Figure 23: Regression tree for all factors and levels in the �ltered OM grid over carrying capacity (K).

Figure 24: Regression tree for all factors and levels in the �ltered OM grid over stock status (SB/SB0),
de�ned as depletion level from virgin SSB in 2017.

Applying a catch level of 35,000 t, approximately equal to the catches of 2016, and lower than catches reported
between then and 2019, leads to 76% of model iterations not being able to explain those catches if yearly
increases in �shing mortality are limited to be no greater than 25% 26.

When the OM is projected for the respective MSY catch levels across each run (Figure 27), only 8% of the
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Figure 25: Regression tree for all factors and levels in the �ltered OM grid over the variance in stock-recruitment
residuals (σR).

iterations are unable to sustain that catch level over the same period. The large variability in the estimates
of reference points 22 is re�ected here in the disparity of catch targets able to maintain the stock at healthy
levels, and the probability of catches like those observed in the recent past being extracted.

Figure 26: Projection of the full OM for a catch level of 35,000 t over the 2020-2023 period.
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Figure 27: Projection of the full OM for a catch level corresponding to the FMSY estimated for each model run
over the 2020-2023 period.

Discussion

The OM presented here is the third iteration of a model grid-based conditioning for Indian Ocean albacore.
The grid has been substantially reduced in size from the previous version, but still a large number of model
formulations lead to results that can not be accepted. The selection steps outlined above led to almost half
of those models being rejected, given the problems in convergence, extreme results in estimated carrying
capacity or recent biomass, or their inability to predict the main source of information on stock abundance, the
LL CPUE series. Management procedures for this stock will always depend on the ability of the standardized
indices of abundance to track faithfully changes in stock abundance. Models that cannot make good use of
this information, measured here by their prediction skill, have very limited value for simulation testing of any
MP.

The average stock status determined by the OM is in clear contrast with that obtained from the latest stock
assessment in which it is based. The base case model run indicates a healthier stock, with respect to the
management MSY reference points. The nature of the catch and CPUE series, e�ectively a one way trip, appear
to make the model runs heavily dependent on the values chosen for some of the model parameters. The model
grid was constructed in an attempt at covering the uncertainty around set assumptions, by generally going
for both higher and lower values. But the two and three-way interactions led to uncertainty in dynamics and
status being more complex than that. A large proportion of model runs that cannot explain recent nominal
catch, or show very little prediction power for the indices of abundances. This severely limits their usefulness
as platforms for exploring the possible e�ect of alternative management procedures.

The new stock assessment model for Indian Ocean albacore discussed during WPTmT08 might present a view
of the stock dynamics, and specially its status, di�erent enough to justify a call for reconditioning the OM.
This process has already taken place twice, partly due to the step by step process for adoption of MPs at IOTC,
but also because of the di�culties encountered with these OMs. Even after the model selection process, some
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runs in the grid present a stock with dynamics that diverge from those of most of the grid, and lead to short
term risks that might not be realistic.

Decoupling the OM conditioning from the stock assessment is an option that should be considered for this
stock. Methods for conditioning such as those recently presented to the WPM MSE taskforce (Hillary and
Mosqueira 2022), present a possible methodological alternative. Approximate Bayesian Computation (ABC)
requires priors to be de�ned for multiple population and �shery parameters, and this could be constructed
using stock assessment outputs. So rather than a complete break from the stock assessment model, this
methodology proposes adopting an approach that recognizes that the objectives of both types of models,
assessment and operating, are not the same. The stock assessment step should still be part of the MP review
process, and carried out to provide a check on the behaviour and e�ect of the MP, and identify any warning
sign that would require a review of the MSE analysis.

Some lessons from the conditioning exercise might be identi�ed by WPTmT as useful for the stock assessment
work. The diagnostics employed to select and weight model runs are now all available in standard form,
and should be computed as they provide important insights on the model quality and ability to provide
management advice. The lag between data and (possible) management action for this stock in IOTC is larger
than for other stocks, and information on recruitment strength is only available after a number of years, given
the selectivity patterns of most �eets. Both factors make forecasting future stock status for the stock under
di�erent management options particularly challenging, and makes more necessary any evaluation of the
ability of the model to do so.
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