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Executive summary 
This paper presents a stock assessment of albacore tuna in the Indian Ocean using Stock 

Synthesis (version 3.30.19.01 http://nft.nefsc.noaa.gov/Download.html).  The albacore tuna 

assessment model is an age structured (14 years), spatially aggregated (1 region) and two sex 

model. The catch, effort, and size composition of catch, are grouped into 23 fisheries covering 

the time period from 1950 through 2020. Fifteen indices of abundance, fourteen of which are  

from longline fisheries were considered for this analysis.   The estimated abundance trend is 

decreasing throughout the time frame of the model, and spawning stock abundance has 

decreased to approximately 2 times SSBMSY  The fishing mortality has increased   over the 

model time frame with F2020/FMSY= 0.6. 

 

Albacore tuna are most often caught in long line fisheries in the Indian Ocean tuna fisheries, 

though some bycatch occurs in the purse seine fisheries as well as other mixed gear fisheries.    

This analysis was developed based on the 2019 assessment along with updates to the data and 

parameterization.  A the diagnostic case,   is referred to in the main text when presenting the 

model parametrization and diagnostics.  The upcoming 8th meeting of the Indian Ocean Tuna 

Commission Working Party on Temperate Tuna and Bycatch (WPTmT08) will recommend the 

final parameterization as a base case model for the provision of stock status. Initial analysis 

based on the sensitivity analysis done with SS3 indicated that the stock is not over fished nor 

experiencing overfishing.  
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1 Introduction  

Commercial fisheries for albacore tunas have operated in the Indian Ocean since the early 

1950s. The earliest known exploitation was by the Japanese longline fishery in the 1950s, 

followed by the Korean and Taiwanese longline fisheries in the mid and late 1950s (Kim et al. 

2010; Chen 2009). Drift nets were employed in the albacore fishery from the early-1980s until 

1992 when an international ban on drift net fishing came into force. Taiwanese and Indonesian 

longline catch has recently accounted for around 70% of the total catch. Between 2008 and 

2011, following the onset of piracy in waters off Somalia, part of the longline fleets that had 

traditionally targeted tropical tunas or swordfish in those waters moved towards albacore 

fishing grounds in the southern part of the Eastern Indian Ocean.   

 

Like albacore fisheries in other oceans, the Indian Ocean fishery is characterized by smaller fish 

at higher latitudes. Unlike other oceans however, there is no significant troll or pole and line 

fishery for albacore, and since the ban on the drift net fishery there has been no large-scale 

targeting of small fish.  

 

Stock assessments of the Indian Ocean albacore stock have been conducted in the past using 

several different methods, including the non-equilibrium production model ASPIC (Chang et al. 

2012, Matsumoto et al. 2012, Matsumoto et al. 2014, Matsumoto 2016), the age-structured 

production model ASPM (Nishida et al. 2012,  Nishida et al. 2016), a Bayesian biomass dynamic 

model (Guan et al. 2016), and Stock Synthesis (SS) (Kitakado et al. 2012, Hoyle et al. 2014, 

Langley & Hoyle 2016, Langley 2019).  

 

The most recent (2019) assessment using Stock Synthesis incorporated data to 2017 (Langley 

2019). The assessment incorporated longline CPUE indices for albacore from a collaborative 

project between Japan, Taiwan, Korea, and the IOTC, similar to the work done in 2016 (Hoyle et 

al 2019. Hoyle et al. 2015, Hoyle et al. 2016).  The standardized CPUE indices were derived from 

operational-level longline data from the three fleets, incorporating cluster analyses to address 
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the effects of target change and standardization models including vessel effects and spatial 

effects. The project built on a study applying similar methods to Indian Ocean bigeye and 

yellowfin tuna (Hoyle et al. 2015). The 2019 assessment investigated the interactions between 

the key data sets (CPUE indices and length composition data) and the uncertainty associated 

with the key biological parameters (natural mortality and SRR steepness). The 2019 model used 

the fleets as areas approach with four longline fleets, and four corresponding CPUE series (LL1 – 

LL4).  The CPUE in the southwest area are mostly likely to represent the abundance of albacore 

tuna in the Indian Ocean, as the indices were based on a main target fishery with more 

consistent fishing operations. The southwest area also represents a significant proportion of the 

albacore biomass in the Indian Ocean. The WPTmT 07 assessment meeting noted that 

regarding the assessment results: 

i. There are conflicts between LL3 CPUE indices and LF data in the southern area (LL3 

and LL4). 

ii. Reducing weight on the LL3 and LL4 LF data results in a shift in the selectivity to 

improve fits to LL3 and LL4 CPUE. 

iii. The PS LF data are still influential in determining stock status when LL LF data are 

removed. 

iv. Conflict between LL1 CPUE and LL3 CPUE not resolved but separate model fits to LL1 

and LL3 CPUE yield similar estimates of stock status when LL LF data are substantially 

down weighted 

 

Based on the assessment results the WPTmT 07 adopted a subset of the SS model scenarios for 

the determination of the stock status of Indian Ocean albacore and the formulation of 

management advice for 2019. These are  

i. Model 1 - CPUE-Northwest, LL and PS LF included 

ii. Model 2 - CPUE-Southwest, LL and PS LF included 

iii. Model 3 - CPUE-Northwest, LL and PS LF excluded (selectivity fixed at values from initial fit)  
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WPTmT7 concluded that “ catches in 2017 were marginally above the MSY level of the SS3 

model. Fishing mortality represented as F2017/FMSY is 1.346 (0.588–2.171). Biomass is estimated 

to be above the SBMSY level (1.281 (0.574–2.071)). These changes in stock status since the 

previous assessment are possibly due to decreases in the CPUE in recent years. the stock status 

in relation to the Commission’s BMSY and FMSY target reference points indicates that the stock 

is not overfished but is subject to overfishing. 

 

In advance of the current assessment, a preparatory meeting was held in April 2022 to compile 

the data sets for the assessment (IOTC 2022). The meeting reviewed the updated CPUE indices 

derived from operational data from the Indian Ocean longline fleets (Kitakado, et al. 2022), 

recent biological studies and updated, catch data. The meeting also specified the details of the 

assessment modelling requested during the WPTmT 08 assessment meeting. This assessment 

has been built around Model 2 - CPUE-Southwest, with longline and purse seine length 

frequency included. 

 

This report presents the preliminary results of the 2022 stock assessment modelling of Indian 

Ocean albacore tuna using Stock Synthesis (Version 3.30.19_01). The assessment results will be 

finalized at the WPTmT8 meeting.  

2 Methods  

Data 

There are many different fleets catching albacore tuna in the Indian Ocean, with the main fleets 

consisting of longline fleets from distant water fishing nations.  The data used in the albacore 

tuna assessment consist of fishery specific catch and length composition data along with  

standardised longline CPUE indices. The details of the configuration of the fishery specific data 

sets are described below.   

 

There is enough uncertainty about the selectivity assumptions with respect to time, and the 

interannual variability with respect to the numbers of size composition data, that the size 
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composition data are not expected to be very informative about year-class strength. Hence, in 

the assessment presented here, the length-composition data are down weighted so as to 

inform the selectivity and recruitment but not alter the model fit to the abundance trend.  

 

2.1 Spatial stratification 

The 2016 assessment partitioned the Indian Ocean into four quadrants demarcated at 25°S 

latitude and 75°E longitude (Langley & Hoyle 2016). The spatial stratification was primarily 

adopted to partition the longline fisheries by the size of fish caught; the longline fisheries in the 

southern area tend to catch albacore that are considerably smaller than the fisheries in the 

northern area (Chen et al. 2004, Geehan & Hoyle 2013, Nikolic et al 2013). Higher longline CPUE 

for albacore has been associated with the North Subtropical Front in the southern Indian Ocean 

(30–35°S latitude) where SST was 15–19°C (Lan et al 2011). There is no indication of a 

longitudinal trend in the size of albacore caught by the longline fisheries (Geehan & Hoyle 2013) 

and the overall distribution of the southern longline fishery is continuous throughout the 

southern region (Figure 1). However, during the history of the fishery there were periods when 

there was an appreciable separation between the operation of the longline fishery in the 

southwestern and south-eastern quadrants of the Indian Ocean, most notably during the 1960s 

and 1970s (Figure 2). To account for potential longitudinal variation in the key fishery data sets, 

the northern and southern areas of the Indian Ocean were partitioned at 75°E longitude. An 

investigation of the stock structure of Indian Ocean albacore by morphometric and DNA 

sequence methods categorised samples into two major groups partitioned by 90°E longitude 

suggesting that there may be two albacore stocks in the Indian Ocean (Yeh et al. 1995). Thus, 

the spatial stratification of the assessment data sets can be applied to approximate the more 

complex stock structure within the Indian Ocean.  

 

The four regions of the Indian Ocean were used to define the spatial domain of the model 

fisheries and define the region specific longline data sets for the CPUE analysis (Hoyle et al 2016 

and 2019, Kitado et al 2022). There are apparent differences in the trends in albacore CPUE 

indices between the two southern areas over the last decade. 
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2.2 Temporal stratification 

The time period covered by the assessment is 1950-2020 representing the period for which 

catch data are available from the commercial fishing fleets. The model was further stratified by 

quarter of the calendar year (Jan-Mar, Apr-Jun, Jul-Sep, Oct-Dec) and the various data sets were 

compiled accordingly. 

2.3 Definition of fisheries 

The spatial stratification was applied to define model fisheries based on region and fishing gear. 

These “fisheries” are considered to represent relatively homogeneous fishing units, with similar 

selectivity and catchability characteristics.  As an update for this assessment the single 

aggregate longline fisheries by region have been separated into quarterly fisheries, thus there 

are sixteen longline fisheries, as opposed the   previous assessment which used four.  

 

A total of twenty-three fisheries were defined, including 16 longline fisheries (one per quarter 

per region), two driftnet fisheries, one purse seine fishery and four ‘other’ fisheries that 

account for the troll, sport fish, and miscellaneous fisheries by region (Table 2). 

 

Longline northwest (LL1). The composite longline fishery in the north-western region was 

initially developed by the Japanese fleet in the mid 1950s. Data for the Taiwanese fleet are 

available from the late 1960s and the  fleet has operated continuously since then. Japanese 

fishing effort declined in the early 1970s and remained relatively low until the mid 1990s. 

Fishing effort by the Japanese fleet recovered to a moderate level during the late 1990s and 

2000s but was at a relatively low level from 2010. The composite longline fishery included 

effort by the Korean longline fleet during the late 1970s and 1980s. Limited albacore catches 

have been taken by other fleets, most notably the Chinese longline fleet operating during the 

last decade. 

 

Longline northeast (LL2). The composite longline fishery in the north-eastern region has a 

similar composition to the LL1 fishery. The Japanese fleet was the dominant component of the 

fishery during 1953-1970 and continued to operate at a lower level over the subsequent years. 
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Data for the Taiwanese fleet’s operations in the area are available from the late 1960s, while 

the Korean fleet primarily operated in the fishery during 1976-1987.  Longline southwest (LL3) . 

The composite longline fishery in the south-western region was dominated by the Japanese 

fleet from the inception of the fishery in the late 1950s until the introduction of the Taiwanese 

fleet in  the mid-1960s. Since the early 1970s, most of the catch was taken by the Taiwanese 

fleet. There was a short period of higher Japanese catch during 2004-2008. 

 

Longline southeast (LL4) . The composite longline fishery in the south-eastern region was 

dominated by the Japanese fleet from the inception of the fishery in the late 1950s until the 

introduction of the Taiwanese fleet in  the early 1970s. During 1974 2006, most of the catch 

was taken by the Taiwanese fleet. Japanese longline catches increased from 2006 and in recent 

years considerable catches have also been taken by China and Korea.  

 

Drift net fisheries. Drift net fisheries were defined for the south-western (DN3) and south-

eastern (DN4) regions. These fisheries were comprised exclusively of drift net vessels flagged to 

Taiwan China, which operated in the southern waters of the Indian Ocean from 1982 until 1992 

when the UN adopted a worldwide ban on drift nets. 

 

Purse seine. A single purse seine fishery (PS1) was defined as virtually all purse seine catch was 

taken within the north-western region. The purse seine fishery is made up of various fleets 

although the majority of the  catches of albacore are reported by purse seiners flagged to the 

European Union and other fleets under EU ownership, including the Seychelles (86% of the 

total catches of albacore over the time series). The purse seine catches of Iran, Japan, 

Mauritius, Thailand, and the Republic of Korea are also included in the fishery. 

 

Other. A miscellaneous (“Other”) fishery was defined for each of the regions. The “Other” 

fisheries include various coastal longline, gillnet, trolling, hand lines and other minor artisanal 

gears, which are used in coastal countries of the Indian Ocean. Collectively, the “Other” 

fisheries account for a small proportion of the Indian Ocean albacore catch (2% of the entire 
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catch). Most of the catch was reported by Indonesia with the remainder of the catches 

reported by Mauritius, Reunion and Mayotte (EU), Comoros, Australia, South Africa, and East 

Timor. 

 

2.4 Total catch 

Catch data were compiled by IOTC secretariat based on the fishery definitions (IOTC-2022-

WPTmT08(AS)-DATA12-SA_ALB_02_SS3.xlsx). All catches were expressed in metric tonnes (mt). 

There were minor changes in the gear specific catch histories from the previous assessment 

(Langley 2019). The most notable change was a redistribution of the annual longline catches 

amongst the model regions due to a revision of the spatial catches from the longline fleet  

 

The longline fisheries for albacore developed from the mid 1950s and total annual catches 

averaged about 17,000 t during 1960-1980 (Figure 3). Catches increased during the period of 

drift net fishing in the late 1980s and early 1990s and continued to increase with the expansion 

of the longline fishery in the late 1990s to  reach a peak in catch of 40-45,000 mt in 1998-2001. 

Total catches declined to about 30,000 t in 2003-2006 and have since fluctuated between 33-

43,000 t per annum (Figure 3). During the last decade, the longline fisheries have accounted for 

95% of the total albacore catch apportioned amongst the regions as follows: northwest 23%, 

northeast 13%, southwest 34% and southeast 30%. Most of the catch from the southern 

longline fisheries occurs during the 2nd and 3rd quarter of the year, while catches from the 

north-western longline fishery are predominantly taken in the 4th quarter. 

 

Longline in the northwest region (LL1). Fishing Fleets 1-4. The longline catch was relatively low 

from the north-western region during the late 1980s and early 1990s immediately following the 

reduction in fishing by the Korean fleet and during a period of low catch by the Japanese fleet. 

The high catches in 2000 and 2001 were predominantly attributable to higher catches by the 

Taiwanese fleet in those years (Figure 3 ). Annual catches averaged about 8,000 t per annum 

over approximately the last decade (2010-2020), with the average catch by quarter being 2000, 

287, 600, and 5030 MT for quarters 1-4 respectively.  
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Longline in the northeast region (LL2)_(Fishing fleets 5-8) The higher catches from the fishery in 

the late 2000s (2007 and 2008) are primarily attributable to higher catches by the Taiwanese 

fleet in 2007 and 2008 and the Indonesian longline fleet during 2009 and 2010. Catches were 

generally declining from the early 2000’s to the approximately 2015, after which they increased 

in all quarters (Figure 2), and averaged 1235, 1257, 1912, and 1000 MT .by quarter (1-4 

respectively) over 2010-2020.  

 

Longline in the southwest region (LL3) Fishing fleets 9-12. The high catches from the fishery 

during 1996-2002 are primarily attributable to a considerable increase in catch by the 

Taiwanese fleet during that period (Figure 2). Annual catches dropped markedly in 2003 and 

the catch from the Taiwanese fleet remained relatively low during 2003-2005. Annual catches 

increased steadily since about 2006 , most notably in region 2. Quarterly catches averaged 

854,7068, 5735 and 692 by quarter (1-4 respectively), with   highest level of catch of about 

19,000 MT in 2019, followed by 17,000 MT in 2020. 

 

Longline southeast region (LL4), Fishing Fleets 13-16. Longline catches from the south-eastern 

region reached an historically high level of about 10,000 t in 2014. The higher level of catch 

around this time was primarily attributable to an increase in catch by the Japanese fleet since 

2006. Annual catches have declined in more recent years and were about 4,000 t in 2019 and 

2020. Average quarterly catches are about 300, 4,000, 2360, and 193 MT for quarters 1-4 

respectively.  

 

2.5 Relative abundance indices 

Similar to the 2019 assessment, for each of the four regions, standardised CPUE indices for 

albacore tuna were derived using generalized linear models (GLM) from operational longline 

catch and effort data provided by Japan, Korea, and Taiwan, China (Kitakado et al 2022). 

Contrary to the 2019 assessment data from the Seychelles was not used.  Cluster analyses of 

species composition data by vessel-month for each fleet were used to separate datasets into 
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fisheries that are believed to target different species or species compositions. Selected clusters 

were then combined and standardized using generalized linear models. In addition to the year-

quarter, models included covariates for vessel identity, 5 square location, effort and cluster. 

The analysis is a refinement of the approach used to derive the CPUE indices included in the 

2016 and 2019 albacore stock assessment (Hoyle et al 2016, Hoyle et al. 2019). 

Four sets of CPUE indices by year-quarter were derived based on different treatment of the 

fishing vessel variable in the CPUE modelling, resulting in one LL fleet by region (Kitakado et al 

2020). These four regional CPUE series were then dis-aggregated by quarter, resulting in 14 

CPUE series pertaining to quarters 1-4 for regions 1-3 and quarters 2 & 3 for region 4. This   

Models were run for the period 1975-2020, the early time period included in the previous 

assessment was not considered as previous assessments have highlighted that the large decline 

in the CPUE indices during the early period (1960- 1970) was not consistent with the relatively 

low catches taken from each of these regions during the period (Langley & Hoyle 2016, IOTC 

2019).    

 

CPUE indices for regions 1-3 incorporated the effects of target and effort in the delta-

component and all the effects including the quarter-space interactions in the positive lognormal 

component.   Due to instability with same model with data from region 4, the log-normal model 

was used an alternative approach. The study authors note that the diagnostics plots show some 

deviation from the normal distribution.  

 

The CPUE indices from region 1 are characterized by a decline in the magnitude and variability 

of the indices through the timeseries (Figure 4).  The CPUE indices from region 2 are 

characterized by higher and more variable CPUE in quarter 2, compared to the other quarters, 

of which quarters 3 and 4 are the most stable. The CPUE series from region 3 are similar to 

region 2 with higher and more variable CPUE in quarter two, with lower and less variable 

standardized values in quarter 3, 4, and to an extent in region 1. The high variability in the 

region 3 CPUE indices during the later part of the 1970s may have been primarily attributable to 

a shift in targeting behavior (Figure 4). 
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A short time series of annual Taiwanese drift net CPUE indices is available from 1985–1992 

(Chang & Liu 1995) (Figure 5). The indices exhibit a high degree of interannual variability with 

high CPUE indices for 1987 and 1990. The reliability of the indices as an index of albacore 

abundance is unknown, although the high variability may provide some indication of variation 

in year class strength during the period given that the drift net fisheries typically catch a 

relatively narrow length range of albacore (corresponding to fish of about 1–2 years old). The 

annual indices were assumed to represent the relative abundance in the first quarter of the 

year (corresponding to the peak season of DN catch). 

2.6 Size composition data 

Longline fishery 

Size frequency data are available for the Japan longline fishery from 1965. Length and weight 

data were collected from sampling aboard Japanese commercial, research and training vessels. 

Weight frequency data collected from the fleet (as live weight) have been converted to length 

frequency data via a weight-length key. Levels of sampling aboard the Japanese composite 

longline fleet over time were uneven in terms of both the sampling platform (commercial and 

non-commercial vessels) and sampling source (fishermen, scientists, observers). While in recent 

years the majority of the samples available have come from scientific observers on commercial 

vessels, in the past samples came from training and research vessels (scientists), and 

commercial vessels (fishermen). 

 

Length frequency data from the Taiwanese longline fleet are also available from 1980. In recent 

years, length data are also available from other fleets and periods (e.g. Indonesia fresh-tuna 

longline, Seychelles, etc.).. Prior to the mid-2000s the length frequency data set is dominated 

by sampling from the Taiwanese deep-freezing longline fleet. Length samples from this 

component come from commercial vessels and include  lengths recorded by fishermen and, to 

a lesser extent, lengths measured by scientific observers on some of those vessels, in recent 

years. A review of the Taiwanese length frequency data identified major differences in the 
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length frequencies of albacore recorded before and after 2003, with the majority of the smaller 

albacore missing from the length distributions since that year (Geehan and Hoyle 2013 and 

Hoyle et al 2021). Following the previous assessment concerns regarding the reliability of these 

data, all length samples collected from the Taiwanese 

longline fleet via logbooks from 2003–2020 were excluded from the length composition data 

sets.  

 

In the assessment modelling, the individual longline length frequency observations were 

assigned a relative weighting based on the number of fish measured, up to a maximum of 2000 

fish (nfish). The Effective Sample Size (ESS) was determined from the number of fish divided by 

400 (nfish/400) giving a maximum ESS of 5. The samples were assigned the relatively low ESS 

due to concerns regarding the reliability of the length samples from some key data sets. 

Purse seine fishery 

Purse seine fisheries catch adult albacore, as a bycatch (approximately 90-120cm), in the 

western central Indian Ocean. Albacore lengths are measured in port, by enumerators, during 

the unloading of purse seiners flagged in the EU and Seychelles. Length samples are available 

from the fishery from 1990-2020. The ESS of the individual samples was determined in the 

same manner as described for the longline fisheries. 

Drift net fishery 

Drift nets catch juvenile or sub-adult albacore (62-75 cm) (Figure 15). The 2019 assessment is 

the first time length composition data have been available from the Indian Ocean fishery. The 

data are from sampling of the Taiwanese drift net catch during 1985-1991. These data were 

recently provided to IOTC by T. 

Nishida (IOTC 2019). 

3 Model Assumptions 

The most important model assumptions are described in the following sections.  Standard 

population dynamics and statistical terms are described below, while equations can be found in 

Methot (2000, 2009).  Attachment 1 is the template specification file for all of the models, and 

includes additional information on secondary elements of model formulation which may be 
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omitted in the description below.  All of the specification files are archived with the IOTC 

Secretariat. Table 2 lists the assumptions for the sensitivity runs.  

3.1 Software 

The analysis was undertaken with Stock synthesis SS V3.30.19.01, 64 bit version (Methot 2000, 

2009, executable available from http://nft.nefsc.noaa.gov/SS3.html), running on MS 

WindowsTM  10).  Typical function minimization of the fully disaggregated model on a 3.0 GHz 

personal computer required about 25 minutes.  Additional simplifications and aggregations 

could probably reduce the minimization time further, without significant loss to the stock status 

inferences.   

 

3.2 Population Dynamics 

The assessment  model was structured by sex and age with age classes of 0-13 years and an 

aggregate age class of 14+ fish. The model commences in 1950 at the start of the available 

catch history and continues to 2020. The initial population age structure was assumed to be in 

an unexploited, equilibrium state. Model years are partitioned into four quarterly seasons. A 

single spatial structures for the Indian Ocean albacore stock was used in conjunction with the 

quarterly disaggregated  survey and fisheries, based on the partitioning of the Indian Ocean 

into four regions (Figure 1). 

3.3 Biological inputs and assumptions 

Sex Ratio 

Across all oceans there are documented differences in the patterns of sex ratio at recruitment 

and at older ages and larger sizes, these patterns are likely to be caused by  

features of albacore biology. Males have been shown to grow considerably larger than females 

in the north Pacific (Chen et al. 2012), south Pacific (Williams et al. 2012), north Atlantic 

(Santiago and Arrizabalaga 2005), and  Mediterranean (Megalofonou 2000). However there is 

no evidence for unbalanced sex ratio at the age of recruitment. Sex ratio at recruitment was 

assumed to be equivalent (1:1).  

http://nft.nefsc.noaa.gov/SS3.html
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3.4 Growth 

The standard assumptions made concerning age and growth in the SS model are (i) the lengths-

at-age are assumed to be normally distributed for each age-class; (ii) the mean lengths-at-age 

are assumed to follow a von Bertalanffy growth curve.  Following the previous assessment this 

study used the Farley et al. 2019 estimation of the age and growth of Indian Ocean albacore. 

The study sampled albacore from the western Indian Ocean, primarily from the longline fishery 

with smaller fish also sampled from pole-an-line and purse seine fisheries. The sampled fish 

ranged in length from 74 to 108 cm FL for females and 67 to 115 cm FL for males (Farley et al. 

2019).   

 

Reproductive potential of female albacore was assumed to be equivalent to south Pacific 

albacore maturity-at length (Farley et al. 2014) (Figure 7). This ogive takes into account sex 

ratio, sexual maturity, spawning fraction, and fecundity and so represents female reproductive 

output at length. The ogive has fish attaining sexual maturity at about 85 cm and 50% 

reproductive potential is reached at about 92 cm (Figure 7). When converted to age using the 

new Indian Ocean albacore growth curve (Farley et al. 2019), sexual maturity is attained at 

about age 4 years and 50% reproductive potential is reached at about 5 years. As an alternative, 

the maturity ogive derived for western Indian Ocean albacore (Dhurmeea et al. 2016) was also 

considered, although the ogive is considered less reliable due to the limited number of fish 

sampled from the smaller length classes (below L50).. 

3.5 Natural mortality 

Natural mortality was assumed to be 0.3 for both sexes, based on the previous assessment and 

the value applied in the north Pacific and the north Atlantic albacore stock assessments. Age 

specific natural mortality at age was investigated in a sensitivity analysis   

3.6 Recruitment 

The model partitions the population into 15 year-quarter age-classes in one region (Figure 1). 

The last age-class comprises a “plus group” in which mortality and other characteristics are 

assumed to be constant. The population is “monitored” in the model at year quarter time steps, 
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extending through a time window of 1950-2020. The main population dynamics processes are 

as follows:  

Recruitment in the model occurs in the fourth quarter of each year, reflecting the summer 

spawning season (and the ageing protocol that assumed a birthday of 1 December Farley et al. 

2019). Recruitment was based on a BH stock recruitment relationship (SRR) and annual deviates 

were estimated for the period of the model where there was the most data (1975−2020). 

Deviates from the SRR were given a small penalty, so that recruitment estimates in periods with 

less data were estimated closer to the mean. The applied penalty was based on the assumption 

that the true standard deviation of recruitment deviates (σR) is 0.3, reflecting the upper range 

of the magnitude in the. variation of recruitment deviates estimated during preliminary 

modelling. Imperfections in models and lack of full information in the data cause models to 

underestimate recruitment variability. Recruitment variability is assumed to be lognormally 

distributed, therefore mean recruitment is higher than median recruitment. Equilibrium 

recruitment is meant to represent the average recruitment through time, so the  

median value in the recruitment function must be bias-corrected upwards. Following Methot 

and Taylor (2011), the bias correction was adjusted across the time series according to the 

relationship between the assumed and estimated recruitment variability.  recruitment deviates 

were estimated for 1975−2018. 

 

The final model options included three (fixed) values of steepness of the BH SRR (h 0.7, 0.8 and 

0.9). These values are considered to encompass the plausible range of steepness values for 

tuna species such as albacore tuna and are routinely adopted in tuna assessments conducted 

by other tuna RFMOs. 

3.7 Initial population state 

In the previous assessment it was assumed that the albacore tuna population was at an 

unfished state of equilibrium at the start of the model (1950) with the beginning of longline 

fishing occurring in the following years (at least from the 1950s onwards), this assessment 

follows the same methodology.  
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3.8 Selectivity Curves and Fishing Mortality 

Selectivity is fishery-specific and was assumed to be time-invariant. A double- normal functional 

(Method 2015) form was assumed for all selectivity curves.  No sex-specific length data was 

available, all length data were aggregated. Length composition data was split by quarter and 

region, fishery F16_LL4_Q4 was mirrored to F8_LL2_Q4 due to poor fits in the initial modelling.  

A double normal selectivity was estimated for the purse seine fishery (PS1). The availability of 

length composition data from the drift net fishery enabled the estimation of a selectivity 

function for this method. The selectivity was parameterised as a double normal function and 

assumed to be equivalent for the two fisheries (DN3 & DN4). 

No reliable length frequency data are available for the four “Other” fisheries. The selectivity of 

the “Other” fisheries was assumed to be equivalent to the selectivity of the drift net fishery. 

Initial modelling indicated that the model results were not sensitive to the selectivity assumed 

for the four Other fisheries due to the small magnitude of the catch associated with each of 

these fisheries. Length composition data was down weighted so that the data can inform 

removals by fisheries from the correct age class, and inform recruitment but not determine the 

scale or trend of the population.  

 

Fishing mortality was modelled using the hybrid method that the harvest rate using the Pope’s 

approximation then converts it to an approximation of the corresponding F (Methot & Wetzel 

2013). 

3.9 Parameter estimation and uncertainty 

Model parameters were estimated by maximizing the log-likelihoods of the data plus the log of 

the probability density functions of the priors, and the normalized sum of the recruitment 

deviates estimated in the model. For the catch and the CPUE series we assumed lognormal 

likelihood functions while a multinomial was assumed for the size data. The maximization was 

performed by an efficient optimization using exact numerical derivatives with respect to the 

model parameters (Fournier et al. 2012).  The Hessian matrix computed at the mode of the 

posterior distribution was used to obtain estimates of the covariance matrix. This was used in 
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combination with the Delta method to compute approximate confidence intervals for 

parameters of interest. 

3.10 Profile Likelihood  

An investigation of the information content in the data components was undertaken via the use 

of profile likelihood on the global scaling parameter (R0) (Lee et al 2014). The negative log 

likelihood of a specific parameter or data component should, in theory, decline to an obvious 

minimum.  In situations where this does not happen, at least from one side, there may be 

insufficient information within the data to estimate other parameters.  Virgin recruitment (R0) 

is an ideal scaling parameter because it is proportional to the unfished biomass. Profiles were 

run with the natural log of virgin recruitment, ln(R0), fixed at various values above and below 

the model estimated value; the corresponding likelihood profile quantified how much loss of fit 

was contributed by each data source. One of the primary uses of the likelihood profile is to 

identify conflicting data and provide a rationale for down weighting or excluding any data. 

 

3.11  Hierarchical cluster analysis 

A hierarchical cluster analysis (HCA) was used to identify groupings of CPUE series that 

represented similar, or same states of nature. The goal of this analysis was to develop a 

framework for identifying groupings of CPUE series that were similar, so that the model did not 

include trends that implied conflicting states of nature (i.e. increasing and decreasing). The 

methods were adapted from those recently implemented in an Atlantic shortfin mako 

assessment conducted by the International Commission for the Conservation of Atlantic Tunas 

(ICCAT 2017).   As noted in the Atlantic shortfin mako assessment (ICCAT 2017), “it is not 

uncommon for CPUE indices to contain conflicting information. However, when CPUE indices 

are conflicting, including them in a single assessment (either explicitly or after combining them 

into a single index) tends to result in parameter estimates intermediate to what would be 

obtained from the data sets individually. Schnute and Hilborn (1993) showed the most likely 

parameter values are usually not intermediate but occur at one of the apparent extremes. 

Including conflicting indices in a stock assessment scenario may also result in residuals not 
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being identically and independently distributed (IID) and so procedures such as the bootstrap 

cannot be used to estimate parameter uncertainty. Consequently, when CPUEs with conflicting 

information are identified, an alternative is to assume that indices reflect hypotheses about 

states of nature and to run scenarios for single or sets of indices that represent a common 

hypothesis.”  

 

The HCA used methods conducted in R using FLR (http://www.flr-project.org/). and the diags 

package. FLR provides a set of common methods for reading these data into R, plotting and 

summarizing them to assess the consistency in the CPUE trends. The CPUE time series along 

with a lowess smoother fitted to CPUE each year using a general additive model (GAM) to 

compare trends for the CPUEs. It is important to note that the hierarchical cluster analysis is 

sensitive to the overlap in the time series as well as specific trends in the indices. The HCA use 

years in analysis of the CPUE series so that the trends would be comparable across indices. The 

results should be interpreted carefully, nevertheless the HCA identified possible groupings of 

time-series.  

 

The first group identified by the HCA  was characterized by time-series which were positively 

correlated with each other, LLCPUE4_Q2, LLCPUE4_Q3, LL_CPUE3_Q2, LLCPUE3_Q3. Which 

corresponds to the Southern areas in the austral winter. The second group was region 3 where 

the CPUEs for quarters 1-4 were positively correlated, as were the four CPUE for region1, 

though two regions were not positively correlated.  

 

Because CPUEs with conflicting information were identified, it may be reasonable to assume 

that the indices reflect alternative hypotheses about states of nature and to run separate 

scenarios for each group.  As previously, the diagnostic model option incorporates a single set 

of longline CPUE indices (from the south-western fishery). 

  



IOTC–2022–WPTmT08-XX 

 Page 20 of 89 

 

3.12 Selection of a diagnostic case.  

During the data prep meeting (April 2022) the WPTmT noted that the previous assessments  

investigated a wide range of structural assumptions and those results informed to structure of 

the most recent assessment. For the current assessment, there are no additional data to 

enable any further investigation of some of the main structural assumptions related to spatial 

structure, fishery selectivities, initial conditions and recruitment estimation.  

 

Instead, this assessment focussed on the development of the individual fleets, and surveys by 

quarter primarily to accommodate the differences in the length composition and CPUE trends 

amongst the four regional longline fisheries. This is consistent with the ‘fleets as areas’ 

approach.  The initial model was based around the assessment model that used the -Southwest  

- CPUE(Region 3), with  longline and  and Purse Seine length frequency.   

Sensitivity trials were run using the other CPUE time series and combinations of CPUE. 

Groupings of CPUE series will be chosen by the WPTmT which will seek to use the results of the 

HCA, other diagnostics as well as expert opinion to selected the most appropriate  

parameterization and  CPUE series groupings.  

 

3.13 Benchmark and Reference Point Methods  

Benchmarks included estimates of absolute population levels and fishing mortality for the 

terminal year, 2020 (F2020, SSB2020, B2020). These values are reported against reference points 

relative to MSY levels, and depletion estimates (relative to virgin levels).   

 

3.14 Diagnostics and additional model runs 
Additional model diagnostics which were carried out includes expanded analysis on the residual 

and hierarchal cluster analysis, runs tests and joint residual plots, likelihood profiles, and age 

structured production models.  
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4 Results   

In this section we focus on the results from the diagnostic case model and the key results and 

diagnostics for this model. We then comment on any important differences in both outputs and 

model diagnostics for the sensitivity analyses, and present preliminary results.   Stock Synthesis 

3(v3.30.19.01) was implemented here as a length-based age-structured stock assessment 

model (Methot and Wetzel 2013; e.g., Wetzel and Punt 2011a, 2011b). Stock synthesis utilizes 

an integrated modeling approach (Maunder and Punt 2013) to take advantage of the many 

data sources available for the Indian Ocean stock of albacore tuna. An advantage of the 

integrated modeling approach is that the development of statistical methods that combine 

several sources of information into a single analysis allows for consistency in assumptions and 

permits the uncertainty associated with each data source to be propagated to final model 

outputs (Maunder and Punt 2013).  

 

4.1 Diagnostic case model 
The choice of model parameters and data inputs reflected the input of the WPTmT 08 data 

prep meeting and the available updated data for biology and life history to the extent possible. 

This will be further refined by input at the WPTmT assessment meeting. This case was built 

around the SW CPUE run.   

 
Model Fits to Abundance Indices 
The model was able to fit the general trends of the indices of abundance (Figure 10). Although 

the CPUE series for quarter 2 underestimates the CPUE in the recent years of the model, while 

the index from quarter 4 over estimates the final period of the model with respect to the index 

estimates.   Indices 1 and 3 exhibit annual variation in addition to a decline starting around 

2010 and lasting until 2016 or 2016 before increasing. The indices for quarter 2 and 4 also show 

this trend to a lesser extent. The model does not quite fit this trend. The spawning output was 

estimated to increase slightly in the late 1990s to the early 2000s followed by a period of 

decline coincident with the increase in catch (Figure 2) and decline in the CPUE series. 

 
Fits to the Length composition 
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The overall fit to the length data was generally good (Figure 13). Fleet specific annual length 

samples were often quite different, i.e. left skewed one year and bimodal the next, which 

accounts for the small amount of misfit in the aggregated samples.   Pearson residuals of the fit 

to the length compositions were generally small – on the order of 2 to -2 and did not show any 

temporal trend (Figures 14-16).  

 

Stock-recruitment Parameters 

The predicted virgin recruitment (R0; number of age 0) was approximately 17,000,000 animals 

and the number of recruits was relatively constant from the early 1950s  Through the early 

1980s, after which estimated recruitment experienced large fluctuations from about 1980-2020 

(Figure 16). The bias correction estimated in the model is shown in Figure 17. The 

corresponding estimated stock recruitment relationship and annual deviations are also shown 

in Figure 18.  

 

Fishing Mortality 

Estimated F/FMSY and fleet-specific instantaneous fishing mortality rates are presented in 

Figures 20 and 21 respectively. Fishing mortality was relatively low from the 1950 to the mid 

1990s, which is in accordance with low catches and effort during that period. In the late 1980s 

fishing mortality increased with the advent of driftnet fishery.  Starting in the late-1990s overall 

fishing mortality increased, with large fluctuations in the individual fisheries contribution to  the 

overall fishing mortality.  Since the early 2000s the overall fishing mortality has been increasing 

but  below FMSY (i.e. overfishing is not occurring) for the entire time series. 

 
Estimated stock status and other quantities 
The estimated equilibrium yield curve for the diagnostic case model is shown in Figure 21. The 

estimated MSY is approximately 47,000  MT and this is predicted to occur at 21.5% of the 

unfished biomass (Figure 21), which is less than the standard Schaefer production model 

(0.5SSB0). The diagnostic case model estimates that the total biomass of the stock was at 

approximately 100% of the unfished level at the start of the model period (Figure 11) and 



IOTC–2022–WPTmT08-XX 

 Page 23 of 89 

 

steadily decreased to an estimate of   SB2020/SBMSY = 1.9  that corresponds with F2020/FMSY = 

0.62.  Recruitment is fairly well estimated throughout the model time period (Figure 8), with 

recent recruitment estimated to be lower than the implied stock recruitment curve  due to 

deviations implied by the length data. The estimates of recruitment were quite tightly 

constrained to the stock recruitment curve for the initial period of the model when there was 

no length information to inform the model. The main trends in the population dynamics can be 

explained through the estimated fishing mortality which was greatly increased in the 1990s and 

early 2000s due to the increase in catch (Figures 19 and 20). These changes in fishing mortality 

correspond to an overall stock status that is headed from a virgin state to the direction of 

overfished and overfishing (Figure 22).  

 

Model Uncertainty 

Stock status uncertainty was evaluated delta-Multivariate lognormal (MVLN)approximation  

  to generate joint error distributions for SSB2020/SSBMSY and F2020/FMSY.  Figure 22 shows the 

estimated stock status based on the MVLN analysis for the base case model and Figure 23 

shows the estimated timeseries based on the MVLN approximation.  Figure 24 shows the 

distribution of the  MLE estimates of SSB2020/SSBMSY and F2020/FMSY. 

 

Stock synthesis provides estimates of the MSY-related quantities and these and other quantities 

of interest for management are provided in Table 4.   

 

Retrospective Analysis 
As part of an analysis of model structure, retrospective analysis (sequentially deleting 1 year of 

data from the end of the model and re-running) was run using the diagnostic case formulation 

(the southwest CPUE series). The estimates of spawning depletion remain very similar across all 

the retrospective model runs considered  (Figure 25) indicating that the changes in estimates of 

virgin spawning biomass are based on the total catch (Figure 25 right panel). The last 

retrospective run (-5 years) estimated a more depleted stock that corresponds to a slightly 

smaller virgin recruitment (Figure 25 right panel), this is associated with higher estimated total 

fishing mortalities in the last 4 years.  In general the retrospective analysis shows no large 
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departures from the estimated scale, depletion, or overall trend based on the sequential 

deletion of the last 7 years of data. 

 

4.2 Other model diagnostics 
 
Annex 1 shows the results of the expanded analysis on the residuals, hierarchal cluster analysis, 

runs tests joint residual plots, likelihood profiles, age structured production model and 

hindcasting cross-validation are presented in Annex 1. Select details from Annex 1 are repeated 

here, the reader is encouraged to read Annex 1 in its entirety.  

 

The runs test indicated that the CPUE from quarter 1 and two  and length data did contain 

some patterns in the residuals, indicating a trend in the departure from the expected values the 

(Figures A7 and A8) the cause of this was the early time period in which the index had high 

contrast and little data. The joint residual plots (Figure A6) shows that in the latter part of the 

time series the model fits the Japanese data fairly well.  

 

An age structured production model (ASPM) can help evaluate whether the catch and CPUE 

data give evidence for a production function within the model (Carvalho 2017). Overall the 

ASPM evaluates whether the effect of surplus production and observed catches alone could 

explain trends in the CPUE, in contrast to a more complex model (i.e. SS3) that incorporates 

annual recruitment deviations  to improve the fit (Carvalho et al 2021).  Maunder and Piner 

(2017) note that if the ASPM fits well to the indices of abundance with contrast the production 

function is likely to drive the stock dynamics and the indices will provide information about 

absolute abundance (Minte-Vera et al., 2017).  Figure A13 shows that the biomass trajectories 

for both models (ASPM and the diagnostic) follow the same trend and that the estimates of  

LN(R0) are different.  The fits to the indices are shown in Figure A14 and indicate an overall 

good fit, indicating that the information content in the data is sufficient.   
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5 Conclusion 

The overall scale of the estimated stock biomass is similar to the previous assessment, though 

there is variation based on the model parameterization.  The main change from the 2019 

assessment is the separation of the longline CPUE series by quarter. The disaggregation of the 

CPUE series allowed the investigation of models based on seasonal quarters, and the exclusion 

of highly variable quarterly data.   

 

The current assessment depends largely on the time series of southwestern longline CPUE 

indices and the catch history from the entire fishery. The LL3 CPUE indices showed declining 

trends during the late 1980s  early 1990s for quarter 1 and 2. The CPUE trends in quarter 3 and 

4 were fairly stable and lower in comparison.  The declining trends in the CPUE indices during 

the early part of the model match the overall catch from the fisheries. 

The main drivers of this assessment are the trend in the catch and CPUE series. In particular the 

large increase in recent years of catch has different interpretations (within the model). based 

on which the CPUE series are included.  
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8 Tables 
Table 1.  Fishery and survey definitions for the Indian Ocean Albacore Assessment

  

ID Number

Fleet/ Survey  

Name
Gear(s) Region Quarter Selectivty

1 F1_LL1_Q1 Longline 1 1 Estimated double normal

2 F2_LL1_Q2 Longline 1 2 Estimated double normal

3 F3_LL1_Q3 Longline 1 3 Estimated double normal

4 F4_LL1_Q4 Longline 1 4 Estimated double normal

5 F5_LL2_Q1 Longline 2 1 Estimated double normal

6 F6_LL2_Q2 Longline 2 2 Estimated double normal

7 F7_LL2_Q3 Longline 2 3 Estimated double normal

8 F8_LL2_Q4 Longline 2 4 Estimated double normal

9 F9_LL3_Q1 Longline 3 1 Estimated double normal

10 F10_LL3_Q2 Longline 3 2 Estimated double normal

11 F11_LL3_Q3 Longline 3 3 Estimated double normal

12 F12_LL3_Q4 Longline 3 4 Estimated double normal

13 F13_LL4_Q1 Longline 4 1 Estimated double normal

14 F14_LL4_Q2 Longline 4 2 Estimated double normal

15 F15_LL4_Q3 Longline 4 3 Estimated double normal

16 F16_LL4_Q4 Longline 4 4 Mirrored to Fleet 8

17 F17_DN3 Driftnet 3 NA Fixed Double normal

18 F18_DN4 Driftnet 4 NA Mirrored to fleet 17

19 F19_PS1 Purse Seine 1 NA Fixed Double normal

20 F20_Other1 Other* 1 NA Mirrored to fleet 17

21 F21_Other2 Other* 2 NA Mirrored to fleet 17

22 F22_Other3 Other* 3 NA Mirrored to fleet 17

23 F23_Other4 Other* 4 NA Mirrored to fleet 17

24 LLCPUE1_Q1 Longline 1 1 Mirrored to fleet 1

25 LLCPUE1_Q2 Longline 1 2 Mirrored to fleet 2

26 LLCPUE1_Q3 Longline 1 3 Mirrored to fleet 3

27 LLCPUE1_Q4 Longline 1 4 Mirrored to fleet 4

28 LLCPUE2_Q1 Longline 2 1 Mirrored to fleet 5

29 LLCPUE2_Q2 Longline 2 2 Mirrored to fleet 6

30 LLCPUE2_Q3 Longline 2 3 Mirrored to fleet 7

31 LLCPUE2_Q4 Longline 2 4 Mirrored to fleet 8

32 LLCPUE3_Q1 Longline 3 1 Mirrored to fleet 9

33 LLCPUE3_Q2 Longline 3 2 Mirrored to fleet 10

34 LLCPUE3_Q3 Longline 3 3 Mirrored to fleet 11

35 LLCPUE3_Q4 Longline 3 4 Mirrored to fleet 12

36 LLCPUE4_Q2 Longline 4 2 Mirrored to fleet 14

37 LLCPUE4_Q3 Longline 4 3 Mirrored to fleet 15

38 DNCPUE4 Driftnet 4 NA Mirroed to fleet 17

*Other  inclues: Coastal Longline, gillnet, trolling, handlines, and artisanal gear.
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Table 2. Recent catch data for Albacore in the Indian ocean.  

 
 
  

Longline Fleet No. Region Quarter Average (2010-2020) Max (2010-2020)

1 1 1 2,001                           2,322                   

2 1 2 287                               629                      

3 1 3 601                               1,619                   

4 1 4 5,030                           7,035                   

5 2 1 1,235                           2,289                   

6 2 2 1,357                           2,345                   

7 2 3 1,912                           4,129                   

8 2 4 1,006                           1,549                   

9 3 1 854                               1,957                   

10 3 2 7,068                           10,165                

11 3 3 5,735                           7,142                   

12 3 4 692                               1,092                   

13 4 1 344                               542                      

14 4 2 4,072                           6,360                   

15 4 3 2,363                           3,873                   

16 4 4 193                               469                      

Catch (MT)
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Table 3.  Summary of SS3 specification options for the Indian Ocean albacore tuna assessment models.  Other 
assumptions were constant for all models.  . 

Model Description Base Parameters 
Alternative 
Parameterizatoin 

Steepness0.70 SRR steepness at 0.70 h=0.80 h=0.70 

Steepness0.80 SRR steepness at 0.90 h=0.80 h=0.90 

        

LengthAtAge 

Increase variation in 
length-at-age 
for males and females. 

CVs for length-at-age 
CV_young 0.06 
CV_old 0.025 

CV_young 0.10 
CV_old 0.10 

LengthWeight 

Use length-weight 
parameters from 
Kitakado et al. (2019) 

a = 1.3718e-05 
b = 3.0973 

a = 6.9e-06 
b = 3.2263 

Nat_Mort  
Age Specific Natural 
mortality M=0.30 all ages 

Lorenzen M, average of 0.3 
for age 4+ 

Maturity 

Use maturity at length 
from recent 
western Indian Ocean 
study (rather 
than South Pacific 
reproductive 
potential at length) 

Length based 
Reproductive 
Potential from South 
Pacific albacore. 

Length based 
maturity ogive from 
Dhrumeea et al 
(2016) 

        

Selectivity 

Estimate separate length 
based 
selectivities for LL1 and 
LL2. 
Approx. logistic form 

Each LL fleet has its 
own selectivity 

 LL fleets share selectivity by 
quarter and east-west 
region. i.e  LL2_q1 mirrors 
LL1_q2.  

        

CPUE South 
Q2&Q3   

Use CPUE from Q1-
Q4 in SW 

Use CPUE from Q2 &Q3 in 
SW and SE 

 CPUE SW Q2&Q3   
Use CPUE from Q1-
Q4 in SW Use CPUE from Q2&Q3  SW 

CPUE Southwest  
& Northwest   

Use CPUE from Q1-
Q4 in SW 

Use CPUE from Q1-Q4 in 
NW and SW 
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Table 4: Model estimates of stock status and derived quantities. . 
. 

 
    
 

Model Diagnostic Steepness= 0.7 Steepness= 0.9 All Southern CPUE All Western CPUE

Q2&Q3 CPUE1 and 

Q1&Q4 CPUE 3

Southwestern 

CPUE Q2&Q3

Southern  CPUE 

Q2&Q3 Higher Grow CV

Alternate Weight 

Len curve

Age Specific 

Natural M. 

Alternate 

Maturity Schedule

C2020_msy 0.87 0.93 0.80 0.84 0.96 0.64 0.85 0.81 1.07 0.88 0.89 0.84

Y_MSY 47,108                  44,355                  51,375                  48,729                  42,843                  64,127                     48,317                  50,429                  38,304                  46,655                  46,224                  49,089                  

B_zero 567,296                625,173                527,995                587,570                511,774                770,993                   580,706                608,322                410,966                560,057                581,578                552,300                

B_msy 122,384                163,700                83,631                  126,744                110,642                165,583                   124,999                130,655                92,499                  121,923                122,315                127,435                

B_cur 323,392                356,368                302,211                380,566                280,290                495,191                   357,895                434,627                198,745                315,858                328,742                313,648                

SB_zero 131,972                145,437                122,830                136,689                119,056                179,167                   134,947                141,365                98,012                  132,115                137,984                160,640                

SB_msy 28,471                  38,082                  19,456                  29,485                  25,739                  38,479                     29,048                  30,362                  22,060                  28,761                  29,020                  37,065                  

SB_cur 71,249                  80,492                  65,274                  88,934                  47,103                  110,348                   81,371                  104,207                40,567                  70,921                  73,391                  88,861                  

SB_2020/SB_msy 2.0 1.7 2.7 2.5 1.5 2.3 2.3 2.9 1.5 2.0 2.0 2.1

SB_cur/SB_msy 2.5 2.1 3.4 3.0 1.8 2.9 2.8 3.4 1.8 2.5 2.5 2.4

SB_cur_init 0.5 0.6 0.5 0.7 0.4 0.6 0.6 0.7 0.4 0.5 0.5 0.6

Fcur 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

F_msy 0.2 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.2

F_2020/msy 0.6 0.7 0.5 0.5 0.7 0.4 0.5 0.5 0.9 0.6 0.6 0.6

F_cur/msy 0.5 0.6 0.5 0.4 0.7 0.4 0.5 0.4 0.7 0.6 0.6 0.5

SB_2020 57143.600 65195.600 51952.000 74242.800 37604.800 89630.600 67356.300 89445.000 33715.000 56915.800 58649.700 76102.000

F_2020 0.091 0.083 0.097 0.077 0.106 0.060 0.081 0.068 0.140 0.092 0.090 0.093

gradient 2.53769E-05 1.78272E-05 3.22093E-05 8.66926E-05 6.00051E-05 9.94598E-05 7.64412E-05 4.54122E-05 9.09623E-05 9.02147E-05 9.24413E-05 8.83151E-05
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9 Figures 

 
 
Figure 1. Spatial stratification of the Indian Ocean for the definition of the fisheries. The blue 
circles represent the aggregated Japanese and TW LL albacore catch (numbers of fish) by 5 
degree cell from 1952-2017. The area of the circle is proportional to the magnitude of the 
catch (the largest circle represents a catch of 2.45 million fish).   
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Figure 2. A comparison of Indian Ocean albacore longline catches. Rows indicate region (1-4) 

and columns indicate quarters (1-4).  
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Figure 3. Total annual catch (1000s mt) of albacore tuna by fleet  from 1950 to 2020. Fleet 
names indicate the fleet number, region and quarter, for example F1_LL1_Q1 is Fishing Fleet 1, 
in Region 1(LL1) and quarter1. 
. 
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Figure 4.  Standardized CPUE indices for the longline fisheries  by region and quarter (LL 1-14) 
from 1975-2020. The figure shows the region in row, and individual quarterly CPUE series in 
each column. Note that the bottom row, representing region 4, only had CPUE series for 
quarters 2 and 3.   
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Figure 5 Annual drift net CPUE indices (source: Chang & Liu 1995). 
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Figure 6. Growth function for female and male albacore. 

 

 
Figure 7 Maturity at length for female albacore in the Indian Ocean.  



IOTC–2022–WPTmT08-XX 

 Page 40 of 89 

 

 
Figure 7: Temporal data coverage for the diagnostic case model for the assessment of albacore tuna.  

 
 
 



IOTC–2022–WPTmT08-XX 

 Page 41 of 89 

 

 

Figure 6: Likelihood profiles for length composition, the bottom panel is a close up version of the top..   
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Figure 7: Likelihood profiles for the CPUE components for the reference run, The Bottom panel 
is a close up of the top.  
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Figure 8 Likelihood profile for the total likelihood, based on the diagnostic run.  
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Figure 9. Correlation matrix for CPUE indices available for the Indian Ocean blue shark. Blue 
indicates positive and red negative correlations. The order of the indices and the rectangular 
boxes are chosen based on a hierarchical cluster analysis using a set of dissimilarities. 
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Figure 10: Diagnostic case fit to the CPUE series, from region 3. The top left panel is  quarter 1, the top right is 
quarter 2, the bottom left is quarter 3, the bottom right is quarter 4. 
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Figure 11: Total biomass (top) and spawning biomass for the diagnostic case parameterization 
model. The filled dot represents the pre-model estimate of unfished biomass. 
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Figure 12: Selectivity curves estimated from the diagnostic case model for the assessment of albacore tuna in 
the Indian Ocean. 

  



IOTC–2022–WPTmT08-XX 

 Page 48 of 89 

 

 
Figure 13  Fit to the length frequency data for the diagnostic case model for the assessment of albacore tuna in 
the Indian Ocean. 
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Figure 14.   Residuals from the fit to the  length frequency data for the diagnostic case model for the assessment 
of albacore in the Indian Ocean, Fleets 1-6. Closed bubbles are positive residuals and open bubbles are negative 
residuals, bubble sizes are scaled to maximum within each panel. Thus, comparisons across panels should focus 
on patterns, not bubble sizes. 
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Figure 15.  Residuals from the fit to the  length frequency data for the diagnostic case model for the assessment 
of albacore  in the Indian Ocean, Fleets 7-12.   Closed bubbles are positive residuals and open bubbles are 
negative residuals, bubble sizes are scaled to maximum within each panel. Thus, comparisons across panels 
should focus on patterns, not bubble sizes. 
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Figure 16  Residuals from the fit to the  length frequency data for the diagnostic case model for the assessment 
of albacore  in the Indian Ocean, Fleets 13-19.   Closed bubbles are positive residuals and open bubbles are 
negative residuals, bubble sizes are scaled to maximum within each panel. Thus, comparisons across panels 
should focus on patterns, not bubble sizes. 
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Figure 17. Estimated recruitment including the estimate of virgin recruitment (filled circle at 
the start of the time series) for the diagnostic case model for the assessment of albacore tuna 
in the Indian Ocean. 
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Figure 18 .Estimated bias adjustment in the model.    
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Figure 19.  Stock recruitment curve used in the assessment and time series of estimates of 
recruitment deviations (colored points). 
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Figure 20. Estimated total fishing mortality/FMSY.  
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Figure 21. Estimated fleet specific fishing mortality by year for the base case model 
configuration.  
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Figure 22. Equilibrium yield curve for the diagnostic case model for the assessment of 
albacore tuna in the Indian Ocean.    
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Figure 23. Kobe plot of the annual stock status  
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Figure 24. Estimated timeseries based on the MVLN approximation  
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Figure 25. Estimated spawning biomass in 2020 relative to MSY (SSB2020/SSBMSY, top panel) 
and estimated total fishing mortality in 2019 relative to MSY (F2020/FMSY, bottom panel) for 
the diagnostic case model configuration, dashed lines indicate the 50th quantile.  
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Figure 26. Dynamic B0 plot showing the spawning biomass under conditions no fishing and 

assuming the input catch series.   
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ANNEX 1  

Model Diagnostics  

Stock assessment of albacore tuna (Thunnus alalunga) in the Indian Ocean using 
SS3. 
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10 Annex 1. Diagnostic Tests for the Diagnostic Case SS3 Model 

 
Diagnostic tests are important in determining the robustness of estimates for management 
advice in integrated stock assessment models. The diagnostics tests included in are based on 
diagnostics prepared for the previous assessment as well as recently developed methods 
(Carvallo et al. 2021). Here we present the model diagnostics for the diagnostic model run 
presented in the main assessment analysis.  
 

10.1 Goodness of fit 
Residual and Hierarchal cluster analysis  
Data misfit often stems from inappropriate model structure, particularly with respect to the 
information contained in the CPUE data. By including divergent CPUE trends model mist fit  and 
The CPUE time series are plotted in Figure A1, along with a lowess smoother fitted to CPUE 
each year using a general additive model (GAM) to compare trends for the submitted CPUEs.  
 
The overall trend for fit to the indices is an initial decrease, a more dramatic decrease beginning 
in the early 1990s, following the Japanese CPUE, with a decrease through the 2000’s and a 
nearly stable or slightly declining trend during the 2010-2019 timeframe.  
 
Residuals from the smoother fits to CPUE are compared in Figure A2 to look at deviations from 
the overall trends. This allows conflicts between indices (e.g. highlighted by patterns in the 
residuals) to be identified. For example, in both the EU Portugal and the EU France (Reunion)  
time-series, the early part is mostly positive and the latter part is mostly a series  negative 
residuals  indicating that these time-series do not follow the overall trend, and provide 
evidence of a more rapidly decreasing trend in the stock trajectory in recent years than the 
overall trend. In contrast, The Japanese and South African  series provide evidence of a more 
gradually increasing trend in the stock trajectory in recent years than the overall trend. 
 
Correlations between indices are evaluated in Figure A3. The lower triangle shows the pairwise 
scatter plots between indices with a regression line, the upper triangle provides the correlation 
coefficients, and the diagonal provides the range of observations. A single influential point may 
cause a strong spurious correlation, so it is important to look at the plots as well as the 
correlation coefficients. Also, a strong correlation could be found by chance if two series only 
overlap for a few years.  
 
A hierarchical cluster analysis evaluated for the indices using a set of dissimilarities is provided 
in Figure A4. If indices represent the same stock components, then it is reasonable to expect 
them to be correlated. If indices are not correlated or are negatively correlated, i.e. they show 
conflicting trends, then this may result in poor fits to the data and bias in the parameter 
estimates obtained within a stock assessment model. Therefore, the correlations can be used to 
select groups of indices that represent a common hypothesis about the evolution of the stock 
(ICCAT 2017).  
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The hierarchical cluster analysis (HCA) identified two groupings of time-series. The first group 
includes Portugal and Reunion. This group is characterized by time-series which are highly 
correlated with each other and which have some highly negative correlations with some time-
series not included in the group. The second group includes the other indices. This group is 
characterized by time-series which are less highly correlated with each other or slightly 
negatively correlated with each other. Notably the HCA identified that the Portuguese CPUE 
was positively correlated with all the other CPUE series except the Taiwanese CPUE. The 
Taiwanese CPUE was negatively correlated with all of the other CPUE series, though only 
minimally with the CPUE series from Reunion and Japan. The South African CPUE series was 
positively correlated with only the Portuguese and Japanese CPUE series.  
 
Cross-correlations for the CPUE series are plotted in Figure A5 (i.e., the correlations between 
series when they are lagged by -10 to 10 years). The diagonals show the autocorrelations of an 
index lagged against itself.  The lag refers to how far the series are offset, and its sign 
determines which series is shifted. Note that as the lag increases, the number of possible 
matches decreases because the series overlap at the ends and do not overlap. The value of the 
lag with the highest correlation coefficient represents the best fit between the two series. 
 
You can plot the correlation coefficients versus lag to look for periodicities in the original time 
series. If the data is periodic, there will be an oscillation in the correlation coefficients with lag. 
They will be positive and have large values when the two series are in phase, and negative with 
large values when the two series are out of phase (peaks aligned with troughs). 
 
Runs test and joint residual plots. 
The goodness of fit of the model can be used as an indication of whether there is presence of 
significant model misspecification. Models that do not fit the data should be considered 
suspect, and further investigated. Here we use residual plots to investigate the trends and 
patterns in the data over time. Temporal correlation (autocorrelation) can drive bias and drift in 
the model estimates over time. A runs test (Wald and Wolfowitz, 1940) can test for 
randomness in a data sequence, such as model residuals (Carvalho et al., 2021). Residuals can 
also be investigated along side the root mean square error (RMSE,  Carvalho et al., 2017), and a 
joint residual plot (Winker et al., 2018), which can highlight the systematically auto-correlated 
residual patterns.  
 

10.2 Model consistency 
 
R0 Profile  
Use of a likelihood component profile on the a global scaling parameter (or other parameter) 
has been identified as a key model diagnostic   to identify the influence of information sources 
on model estimates (Carvalho et al. 2017, Ichinokawa et al., 2014; Lee et al., 2014; Wang et al., 
2014).  Here the equilibrium recruitment parameter, R0, is used because it represents an ideal 
global scaling parameter given that unfished (virgin) recruitment is proportional to unfished 
biomass (Carvalho et al 2021, Lee et al., 2014; Maunder and Piner, 2015; Wang  et al., 2014).  
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A relatively large change in negative log-likelihood units along the profile suggests a relatively 
informative data source for that particular model. Close association in the location of the 
minimum negative log-likelihood along the profile between data sources suggest that model 
consistency, and lack of conflict in the data.  Figures A9-A11 show the profile likelihoods of R0 
for the overall, CPUE and length components of the model. Figure A12 shows the fit to the 
CPUE series for the range of LN(R0) assumed.  The likelihood profiles show that overall the 
LN(R0) parameter is well estimated, led by the length likelihood  then the index likelihood and 
then the recruitment. Interestingly the lower edge of the likelihood is better defined (steeper) 
for all three components than the upper (Figure AA9). The fleet indices are generally in 
agreement (Figure AA10), however the length data shows different minimums (Figure A11), 
which is consistent with the fleets that encounter different components of the stock. The fits to 
the CPUE series at different values of LN(R0) show that values of approximately 7.5 fit the series 
(Figure A12).  
 
Age-Structured Production Model (ASPM) 
This diagnostic can help evaluate whether the catch and CPUE data give evidence for a 
production function within the model (Carvalho 2017). Overall the ASPM evaluates whether the   
effect of  surplus production and observed catches alone could explain trends in the CPUE, in 
contrast to  a more complex model (i.e. SS3) that incorporates annual recruitment deviations   
to improve the fit (Carvalho et al 2021).  Maunder and Piner (2017) note that if the ASPM fits 
well to the indices of abundance with contrast the production function is likely to drive the 
stock dynamics and the indices will provide information about absolute abundance (Minte-Vera 
et al., 2017).  Figure A13 shows that the biomass trajectories for both models (ASPM and the 
diagnostic) follow the same trend and that the estimates of  LN(R0) are comparable.  The fits to 
the indices are shown in figure Figure A14 and indicate an overall good fit, indicating that the 
information content in the data is sufficient.   
 
Retrospective analysis 
Retrospective analysis is common in fisheries stock assessment to check the consistency of 
model estimates  (Brooks and Legault, 2016; Carvalho et al., 2017; Hurtado-Ferro et al., 2015; 
Miller and Legault, 2017). A retrospective analysis is carried out by sequentially deleting a 
number of years of day (i.e. from 0 to 7) and re-running the model.  Comparisons of model 
estimates from the full time-series and the truncated time-series can illuminate the bias and 
accuracy of the modelled quantities. Statistical analysis in the form of calculating the 
retrospective bias, rho (ρM,  Mohn (1999), is common, with values between -0.15 and 0.2 being 
considered indicative of no bias.  Figure A15 shows the analysis of spawning stock biomass 
(SSB) and fishing mortality estimates for Indian Ocean albacore tunaalong with the Mohn’s rho 
which indicates no retrospective bias. Forecasting the next year based on the retrospective 
analysis  shows similar analysis (Figure A16). 
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10.3 Prediction Skill 
Kell et al. (2016) proposed the hindcasting cross-validation technique (HCXval) where 
observations are compared to their predicted future values. The key concept behind the HCXval 
approach is ’prediction skill’, which is defined as any measure of the accuracy of a forecasted 
value   to the actual observed that is not known by the model (Kell et al., 2021). The difference, 
which is referred to as the ’prediction residual’ (Michaelsen, 1987) can be evaluated by the 
mean absolute scaled error (MASE; Hyndman and Koehler, 2006). Carvalho et al note that a 
MASE  score > 1 indicates that the average model forecasts are worse than a random walk. 
Conversely, a MASE score of 0.5 indicates that the model forecasts twice as accurately as a 
naïve baseline prediction; i.e.  the model has prediction skill. For the CPUE series that constitute 
the diagnostic case the MASE values are 1.36, 0.93 and 1.09 for the Japanese, Portugal and 
Reunion series (respectively, Figure A17), this indicates a mix of poor, good and decent 
prediction skill.  
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11 Figures 
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Figure A1. Indian Ocean time series of  LL CPUE indices; Points are the standardized values, 
continuous black lines are a lowess smoother showing the average trend by area (i.e. fitted to 
year for each area with series as a factor). X-axis is time, Y-axis are the scaled indices. 
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Figure A2. Time series of residuals from the smooth fit to CPUE indices. X-axis is time, Y-axis are 
the scaled indices. 
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Figure A3. Pairwise scatter plots for CPUE indices. X- and Y-axis are scaled indices. 
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Figure A4. Correlation matrix for CPUE indices; blue indicates positive and red negative 
correlations, the order of the indices and the rectangular boxes are chosen based on a 
hierarchical cluster analysis using a set of dissimilarities. 
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Figure A5 Cross-correlations between CPUE indices to identify lagged correlations (e.g., due to 
year-class effects). X-axis is lag number, and y-axis is cross-correlation. 
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Figure A6. Joint residual plots for  CPUE fits (top),.   annual mean length estimates for  multiple 
fishing fleets (lower). Vertical lines with points show the residuals (in colors by index), and solid 
black lines show loess smoother through all residuals. Boxplots indicate the median and 
quantiles in cases where residuals from the multiple indices are available for any given year. 
Root-mean squared errors (RMSE) are included in the upper right-hand corner of each plot. 
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Figure A7. Runs tests results illustrated for three catch-per-unit-effort (CPUE) fits, panels 
indicate separate quarters. Green shading indicates no evidence (p ≥ 0.05) and red shading 
evidence (p < 0.05) to reject the hypothesis of a randomly distributed time-series of residuals, 
respectively. The shaded (green/red) area spans three residual standard deviations to either 
side from zero, and the red points outside of the shading violate the ‘three-sigma limit’ for that 
series.   
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Figure A8. Runs tests results illustrated for the length composition fits (with names and fleet 
numbers on top) from the Indian Ocean SS3 albacore tuna( ALB). Green shading indicates no 
evidence (p ≥ 0.05) and red shading evidence (p < 0.05) to reject the hypothesis of a randomly 
distributed time-series of residuals, respectively. The shaded (green/red) area spans three 
residual standard deviations to either side from zero, and the red points outside of the shading 
violate the ‘three-sigma limit’ for that series.   
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Figure A8. Runs tests results illustrated for the length composition fits (with names and fleet 
numbers on top) from the Indian Ocean SS3 albacore tuna( ALB). Green shading indicates no 
evidence (p ≥ 0.05) and red shading evidence (p < 0.05) to reject the hypothesis of a randomly 
distributed time-series of residuals, respectively. The shaded (green/red) area spans three 
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residual standard deviations to either side from zero, and the red points outside of the shading 
violate the ‘three-sigma limit’ for that series.   
 
 
 

 
Figure A9. Total likelihood and component profiles (recruitment, length and index (CPUE) 
components).  
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Figure A10. CPUE likelihoods for the diagnostic model.   
 

 
Figure A11.R0 profiles likelihoods for the fit to the length data.  



IOTC–2022–WPTmT08-XX 

 Page 80 of 89 

 

  

  

Figure A12. Fits to the component CPUE series (black dots and lines) for various profile likelihood values colored lines. Only the CPUE 
series that were fit in the diagnostic case are presented. The top panel is the fit to the Japanese CPUE, middle panel is the fit to the 
Portuguese CPUE and the bottom panel is the fit to the Reunion CPUE series  
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Figure A13. Comparison of spawning biomass trajectories for the ASPM and the diagnostic case 
of the assessment model carried out in stock synthesis. 
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Figure A14. Fits to the indices for the ASPM and Diagnostic case.    The panels indicate the fits 
to the CPUE from region 3 (SW region) by quarter, top left and right are quarters 1 &3, bottom 
left and right are quarters 3 and 4.  
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Figure A15. Retrospective analysis of spawning stock biomass (SSB) and fishing mortality 
estimates for Indian Ocean Albacore tuna  conducted by re-fitting the reference model (Ref) 
after seven years, one year at a time sequentially.  Mohn’s rho statistic are denoted on top of 
the panels.  
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Figure A16. Retrospective results shown for the most recent years only. Mohn’s rho statistic 

and the corresponding ‘hindcast rho’ values (in brackets) are printed at the top of the panels. 

One-year-ahead projections denoted by color-coded dashed lines with terminal points are 

shown for each model. 
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Figure A17. Hindcasting cross-validation (HCxval) results from CPUE fits, showing observed 

(large points connected with dashed line), fitted (solid lines) and one-year ahead forecast 

values (small terminal points). HCxval was performed using one reference model (Ref) and 

seven hindcast model runs (solid lines) relative to the expected CPUE. The observations used 

for cross-validation are highlighted as color-coded solid circles with associated 95 % confidence 

intervals. The model reference year refers to the endpoints of each one-year-ahead forecast 



IOTC–2022–WPTmT08-XX 

 Page 86 of 89 

 

and the corresponding observation (i.e., year of retrospective + 1). The mean absolute scaled 

error (MASE) score associated with each CPUE. 
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