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Abstract

Black marlin (Makaira indica) is commonly caught as frozen by-catch from Indonesian tuna longline fleets
targeting albacore, yellowfin and bigeye tuna and its contributed around 7% (~600 tons/year). Relative
abundance indices as calculated based on commercial catches are the input data for several to run stock
assessment analyses that provide models to gather information useful information for decision making and
fishery management. In this paper a Delta-Lognormal Model (GLM) was used to standardize the catch per
unit effort (CPUE) and to calculate estimate relative abundance indices based on the Indonesian longline
dataset. Data was collected from August 2005 to December 2021 through scientific observer program. Most
of the vessels monitored were based in Benoa Port, Bali. The result showed that year, quarter, latitude and
longitude statistically significant and kept in the lognormal model, whereas moon and cluster were excluded.
In addition, according to the delta model, targeting effect (cluster) and vertical movement (latitude) played
no part on the possibility of catching BUM. Whereas, longitude, year, quarter, and the presence of moon
phase were likely the more influential effects. However, high uncertainties seemed as lingering issue, which
is inevitable due to low coverage of scientific observer data.
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Introduction

Blue marlin Makaira indica (Lacépède, 180) is an apex predator, highly migratory species and considered
as a non-target species from indonesian industrial and small-scale tuna fishery (Sulistyaningsih et al., 2011;
Widodo et al., 2016; Nugraha and Setyadji, 2013). It is a solitary species, prefers the warm offshore surface
waters above 24°C and known to have high commercial value in the tropical and subtropical Indian and
Ocean Pacific (Nakamura, 1985). However, due to its characteristics, blue marlin is threatened by over-
exploitation (Collette et al., 2011).

In Indian Ocean, blue marlin was largely caught by longline (68%), followed by gillnets (15%), with remain-
ing catches recorded under coastal longline, troll and handlines (IOTC-WPB19, 2021). Contribution of blue
marlin from Indonesian fleet between 2015-2019 was around 7% (~600 tons) of total catch in Indian Ocean,
ranked third after Taiwan, China and Srilanka (IOTC-WPB19, 2021). Results of latest stock assessment
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undertaken in 2017, as calculated based on the Bayesian State-Space Surplus Production model JABBA in-
dicated that, blue marlin stock of the Indian Ocean is overfished and subject to overfishing (IOTC-WPB19,
2021), with a very high chance (87%) of exceeding the MSY-based reference points in next 10 years if the
catch level at the time of the assessment is maintained. However, there were some uncertainties in the
robustness of the data available (nominal catch) and the CPUE series, especially in the north eastern Indian
Ocean which may hampers the assessment.

Through this paper we attempt to bridge the research’s gap in term blue marlin abundance in the north
eastern Indian Ocean. Hopefully, the results will be useful for assessing the status of the stock of blue marlin,
which is an important fishery resource in the Indian Ocean.

Materials and Methods

Data Collection
This research analyzed the data gathered by the Indonesian scientific observers on commercial tuna longline

vessels, which are mainly situated in Benoa Fishing Port, Bali. The observation program started in 2005
through an Australia-Indonesia collaboration (Project FIS/2002/074 of Australian Centre for International
Agricultural Research). Continued by the Research Institute for Tuna Fisheries (RITF) from 2012-2021 and
scheduled to be taken over by Directorate General of Capture Fisheries (DGCF) from 2022 onward.

A total of 2,135 set-by-set data span in detail 1x1 degree latitude and longitude grid from January 2006
to August 2021 were obtained from Indonesia scientific observer, which covers commercial tuna longline
vessels mostly based in Port of Benoa, Bali. Fishing trips usually last from three weeks to three months.
Main fishing grounds cover from west to southern part of Indonesian waters, stretched from 75°E to 35°S
(Figure 1). It also informed concerning the number of fish caught by species, total number of hooks, number
of hooks between floats (HBF), start time of the set, start time of haul, soak time, and geographic position
where the longlines were deployed into the water.

Figure 1. Area stratification used in the analysis (Wang, 2018) based on the aggregation of the relative sizes from nine IOTC
statistics areas for swordfish in the Indian Ocean (Nishida and Wang, 2006)
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Cluster Analysis
Cluster analysis was performed based on species composition as proposed by He et al. (1997). Further, for

each set, the catch composition was calculated and expressed as proportions relative to the total of the four
tuna species (e.g. albacore, bigeye tuna, southern bluefin tuna, and yellowfin tuna) and five billfish species
(i.e., black marlin, blue marlin, striped marlin, sailfish, swordfish). Clustering a large dataset could be a
major stumbling block. Sadiyah and Prisantoso (2011) suggested to perform two step clustering methods,
by using non-hierarchical k-means and followed by agglomerative hierarchical clustering. However, for this
purpose the analyses were performed using NbClust package (Charrad et al., 2014), which was intended to
perform k-means and hierarchical clustering with different distance measures and aggregation methods at
one go.

The hierarchical cluster analysis with Ward minimum variance method (“ward.D2”) followed the criterion
by Murtagh and Legendre (2014) was applied, which requires the dissimilarities to be squared before cluster
updating. It then processed to the squared Euclidean distances across 21 indices in order to select the
optimal number of clusters based on majority rule. The result then passed to CLARA (clustering large
applications) under cluster package (Kaufman and Rousseeuw, 1990).

Data Filtering
The major issue for modelling the abundance for billfishes from Indonesian tuna longline fishery was the

high proportion number of zero-catch-per-set (Setyadji et al., 2018). It was acknowledged that predominance
of zero catches could be driving the model outputs as the CPUE trends do not appear to be biologically
plausible (IOTC-WPB16, 2018). Originally the mean annual proportion of zero catches from the data was
very high, close to 90%. In attempt to reduce it, several ways were conducted as follows:

1. Exclude 2005 data from analysis, since it was the beginning of the scientific observer program, therefore
it might contain species misidentification;

2. Exclude sets which doesn’t contain blue marlin for the whole trip.

As a result of the application of the procedures and criteria above, total number of sets used in the analysis
was 2,135 and zero catch ratio were slightly reversed to ~85%. Moreover, the filtering process also intended
to find spatial consistency across years of observation.

CPUE standardization
A delta-lognormal GLM was applied to standardize the CPUE. As the approach of Wang (2018) with some

modifications, the models were simply conducted with the main effects considered in this analysis were as
follows:

a. Year, set as categorical variable (2006-2021);
b. Quarter, set as categorical variable (1-4);
c. Cluster, set as categorical variable (1-3);
d. Moon, referred to the eight shapes of the directly sunlit portion of the moon that we can see from

Earth. The moon phase was calculated using lunar package (Lazaridis, 2014);
e. Lat/Lon, defined as georeferenced information in 5x5 degree and presented in absolute value to avoid

negative mark. Incorporated as a continuous variable in the GLM analysis.

The interactions between main effects were not incorporated into the models to avoid overfitting. The
lognormal and delta models were conducted as follows:

Gamma model for CPUE of positive catch:

𝑙𝑜𝑔 (𝐶𝑃𝑈𝐸) = 𝜇 + 𝑌 𝑒𝑎𝑟 + 𝑄𝑢𝑎𝑟𝑡𝑒𝑟 + 𝐶𝑙𝑢𝑠𝑡𝑒𝑟 + 𝑀𝑜𝑜𝑛 + 𝐿𝑎𝑡 + 𝐿𝑜𝑛 + 𝜀𝑙𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙 (1)

Delta model for presence and absence of catch:

𝑃𝐴 = 𝜇 + 𝑌 𝑒𝑎𝑟 + 𝑄𝑢𝑎𝑟𝑡𝑒𝑟 + 𝐶𝑙𝑢𝑠𝑡𝑒𝑟 + 𝑀𝑜𝑜𝑛 + 𝐿𝑎𝑡 + 𝐿𝑜𝑛 + 𝜀𝑑𝑒𝑙𝑡𝑎 (2)
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We used a forward approach to select the explanatory variables and the order they were included in the
full model. The first step was to fit simple models with one variable at a time. The variable included in
the model with lowest residual deviance was selected first. As second step the model with the selected
variable then received other variables one at a time, and the model with lowest residual deviance was again
selected. This procedure continued until residual deviance did not decrease as new variables were added
to the previous selected model. Finally, all main effects and first order interactions were considered and a
backward procedure based on Akaike Information Criterion (AIC) (Akaike, 1974).

The area-specific standardized CPUE trends were estimated based on the exponentiation of the adjust
means (least square means) of the year effects (Maunder and Punt, 2004; Butterworth, 1996). The stan-
dardized relative abundance index was calculated by the product of the standardized CPUE of positive
catches and the standardized probability of positive catches:

𝑖𝑛𝑑𝑒𝑥 = 𝑒log(𝐶𝑃𝑈𝐸) ( 𝑒�̃�

1 + 𝑒�̃�
) (3)

Where:

𝐶𝑃𝑈𝐸: is the adjust means (least square means) of the year effect of the gamma model;
̃𝑃 : is the adjust means (least square means) of the year effect of the delta model.

Maps were produced using QGIS version 3.14 (Team, 2020) and the statistical analyses were carried out
using R software version 4.2.0 (R Core Team, 2022), particularly the package emmeans (Lenth, 2018), and
MASS (Venables and Ripley, 2002).

Results

Cluster Result
Based on majority rules (Figure 2), the optimal number of clusters was three. Cluster 1 was consisted of

mixed ALB, YFT and BET, whereas cluster 2 was dominantly filled with BET, and the biggest proportion
in cluster 3 was ALB (Figure 3).
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Figure 2. Selection of optimum number of clusters, based on the majority rules.
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Figure 3. Catch proportions of BUM caught by Indonesian longline fleets operated in the north-eastern Indian Ocean.

Descriptive Statistic
Observers recorded catch and operational data at sea (after cleaning) following Indonesian tuna longline

commercial vessels from 2006-2021. The filtered dataset contained 72 trips, 2135 sets, and around 2.8 million
hooks observed, respectively (Table 1). The distribution of sets mainly gathered in area of eastern Indian
Ocean with most of the positive catches occurred in the area south of Indonesian waters, between 0°-20°S
and 75°-125°E (Figure 4).

Table 1. Summary of observed effort from Indonesian tuna longline fishery during 2006–2021. Results are pooled and also
presented by year of observation

Year Trips Sets Total Hooks Mean Hooks se Mean HBF se
2006 8 237 350081 1477.14 13.11 11.35 0.22
2007 4 124 211434 1705.11 27.95 13.44 0.23
2008 8 220 278357 1265.26 30.84 10.24 0.29
2009 5 170 202241 1189.65 16.59 11.64 0.38
2010 6 166 221274 1332.98 35.51 13.61 0.40
2011 3 105 110384 1051.28 16.97 12.00 0.00
2012 5 136 206237 1516.45 55.60 13.26 0.13
2013 6 173 190262 1099.78 16.77 11.61 0.11
2014 4 98 110616 1128.73 22.14 14.29 0.24
2015 2 51 60911 1194.33 27.85 11.84 0.61
2016 2 95 118118 1243.35 12.54 11.42 0.40
2017 2 70 86048 1229.26 25.37 15.64 0.06
2018 5 186 246086 1323.04 14.45 14.90 0.19
2019 7 141 190106 1348.27 15.95 11.74 0.35
2020 2 63 86845 1378.49 18.20 13.48 0.11
2021 3 102 166554 1632.88 22.41 11.61 0.25
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Figure 4. Effort and positive catch distribution of BUM by Indonesian longline fleets operated in the north-eastern Indian
Ocean.

CPUE Data Characteristics
In general, the catches of BLM during the last decade were fluctuating, with tendency of declining since

2012. The lowest CPUE recorded was in 2017 (0.04+0.02), as the highest was in 2012 (0.27+0.05) (Figure 5).
Most of the observations were conducted in the area above 20°S, which belong to the north-eastern Indian
Ocean area. In addition, the proportion of zero catch for BUM was quite high. As opposed to nominal
CPUE, the trend was varying annually between a maximum of 96% in 2017 and a minimum of 79% in 2012
with average proportion 86%+0.05 year-1 (Figure 5).
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Figure 5. Nominal CPUE series (N/1000 hooks) (left panel) and Proportion of zero-catch-per-set (right panel) for BUM from
2006 to 2021. The error bars refer to the standard errors.
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CPUE Standardization
year, quarter, latitude and longitude statistically significant and kept in the lognormal model, whereas

moon and cluster were excluded (Table 2). In addition, according to the delta model, targeting effect
(cluster) and vertical movement (latitude) played no part on the possibility of catching BUM. Whereas,
longitude, year, quarter, and the presence of moon phase were likely the more influential effects (Table 3).

Table 2. The deviance table for selected lognormal model.

Df Deviance Resid. Df Resid. Dev F Pr(>F)
NULL NA NA 307 44.2901 NA NA
Year 15 6.4316 292 37.8584 3.7868 0.0000
Quarter 3 1.2266 289 36.6318 3.6110 0.0138
Lat2 1 1.4932 288 35.1386 13.1878 0.0003
Lon2 1 2.6417 287 32.4969 23.3309 0.0000

Table 3. The deviance table for selected delta model.

Df Deviance Resid. Df Resid. Dev Pr(>Chi)
NULL NA NA 2134 1761.913 NA
Year 15 40.5196 2119 1721.393 0.0004
Moon 7 21.0024 2112 1700.391 0.0038
Quarter 3 12.0157 2109 1688.375 0.0073
Lon2 1 7.1764 2108 1681.199 0.0074

Overall, the standardized CPUE trend was relatively stable over time with some notably peak in 2011-2013
and 2015. However, high uncertainties seemed as lingering issue, which is inevitable due to low coverage of
scientific observer data (Figure 6).
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