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SUMMARY 

Three Bayesian State-Space Surplus Production Model scenarios were run to assess blue marlin (Makaira 

nigricans) in the Indian Ocean using the JABBA framework, based on catch and effort data up to and including 

2020. A ‘drop one’ sensitivity analysis indicated that omitting any of the CPUE time-series would not significantly 

alter the stock status. Similarly, a retrospective analysis produced highly consistent results for stock status 

estimates back to 2015 and therefore provided no evidence for an undesirable retrospective pattern. The B/BMSY 

trajectory declined from the mid-1980s to 2007. A short-term increase in B/BMSY occurred from 2007 to 2012, 

which is thought to be linked to the NW Indian Ocean Piracy period. Thereafter, the B/BMSY trajectory again 

declines to the current estimate. F/FMSY increased since the mid-1980s and despite a recent decline, F/FMSY remains 

above 1. Terminal points of the time series fall within the red quadrant of the Kobe plot in all scenarios (61.4% - 

74% probability). As such, the blue marlin stock in the Indian Ocean is currently “overfished” and “subject to 

overfishing”. However, the current catches of blue marlin are marginally lower than the estimated MSY for all 

scenarios. 
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1. Introduction 

 

In 2019, the Indian Ocean Commission (IOTC) carried out an assessment for blue marlin (Makaira nigricans) 

using two different model types; the Bayesian Surplus Production Model JABBA (Winker et al., 2018) and the 

statistical age-structured model Stock Synthesis (Methot and Wetzel, 2013). Prior to the final model being 

determined by the WPB, a continuity run was developed in JABBA (IOTC-2019-WPB17-20a) to recreate 

continuity with the previous assessment. The results indicated that JABBA was able to provide a suitable 

continuity run to the Andrade (2016) assessment as the results are comparable. Continuity of assessments is 

important to evaluate the efficacy of previous management interventions by the IOTC Commission.          

 

In 2019, the management advice was based on the results from the JABBA model with a Schaefer-type production 

function, which indicated that the catches in 2017 (12,796 t) were above MSY and that the stock was overfished 

and subject to overfishing.  

 

Here, we provide an updated (2022) assessment of blue marlin in the Indian Ocean using the Bayesian State-

Space Surplus Production Model software ‘JABBA’ (Winker et al. 2018a; Just Another Bayesian Biomass 

Assessment). JABBA is implemented as a flexible, user-friendly open-source tool that is hosted on GitHub 

(https://github.com/jabbamodel) that has also been included in the ICCAT stock catalogue 

(https://github.com/ICCAT/software/wiki/2.8-JABBA), following a number a number of recent tuna RFMO stock 

assessments.   

 

 

2. Material and Methods 

 

2.1. Fishery data 

 

Catch time series (1950-2020) were extracted from the IOTC stock assessment dataset repository of the 20th 

Meeting on of Working Party on Billfish (https://www.iotc.org/WPB/20/Data/03-NC). Indices of relative 

abundance were made available in the form of standardized catch-per-unit-of-effort (CPUE) time series, which 

were assumed to be proportional to biomass. Standardized CPUE series were obtained from three fishing fleets 

operating in the Indian Ocean, all of which were longline: Japan, Taiwan,China and Indonesia (Figure 3). The 

Taiwan,China indices were split into two separate time series, and it was recommended that only the latter index 

(2005 onwards) be used in the assessment. However, the early index was included in a scenario for continuity 

with the 2019 assessment: 

 

• Japan North-West (1979-2010)  

• Japan Central-East (1979-2020)  

• Taiwan,China North-West historical (1979-2004) 

• Taiwan,China North-East historical (1979-2004) 

• Taiwan,China North-West (2005-2020) 

• Taiwan,China North-East (2005-2020) 

• Indonesia (2006-2020) 

 

 

2.2. JABBA stock assessment model fitting procedures  

 

This stock assessment uses the most updated version (v2.2.5) of JABBA and can be found online at: 

https://github.com/jabbamodel/JABBA. JABBA’s inbuilt options include: (1) automatic fitting of multiple CPUE 

time series and associated standard errors; (2) estimating or fixing the process variance, (3) optional estimation of 

additional observation variance for individual or grouped CPUE time series, and (4) specifying a Fox, Schaefer, 

or Pella-Tomlinson production function by setting the inflection point BMSY/K and converting this ratio into shape 

a parameter m.  

 

For the unfished equilibrium biomass K, two values were used depending on the scenario. For the continuity 

scenarios we assumed the same range of plausible values as in Parker et al. (2019) which approximates those used 

in Andrade (2016). For the updated scenario, we used the default settings of the JABBA R package in the form of 

https://github.com/jabbamodel
https://github.com/ICCAT/software/wiki/2.8-JABBA
https://protect-za.mimecast.com/s/XEwBCxG5xoTJMkNwsYf2at?domain=iotc.org
https://github.com/jabbamodel/JABBA
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vaguely informative lognormal prior with a large CV of 100% and a central value that corresponds to eight times 

the maximum total catch and is consistent with other platforms such as Catch-MSY (Martell and Froese, 2013) or 

SpiCt (Pederson and Berg 2017). Similarly, two values were used as priors for initial depletion. For the continuity 

scenarios a lognormal prior distribution with mean = 1 and CV of 5% were used, as was the case in Parker et al. 

(2019). For the updated scenario, the initial depletion was input as a “beta” prior (φ= B1950/K) with mean = 0.95 

and CV of 5%. This distribution is considered more appropriate than a lognormal for initial depletion, given the 

understanding that there was very little fishing before the starting year of 1950. All catchability parameters were 

formulated as uninformative uniform priors, while additional observation variances were estimated for indices by 

assuming inverse-gamma priors to enable model internal variance weighting. Instead, the process error of log(By) 

in year y was estimated “freely” by the model using an uninformative inverse-gamma distribution with both 

scaling parameters setting at 0.001. Observation error for CPUE estimates was fixed at 0.15 in the continuity 

scenarios, and 0.25 in the updated scenarios.   

 

All models were run using a Schaefer model type with an associated lognormal r prior of log(r) ~ N(log(0.4),0.3) 

and a fixed input value of BMSY/K = 0.5. A Schaefer model was preferred for continuity with the 2019 assessment, 

where the WPB decided a Schaefer model was more appropriate than a Fox (BMSY/K = 0.37) model.   

 

S1 (Cont_hist): Parker et al. (2019) prior formulation; all CPUE 

S2 (Cont_new): Parker et al. (2019) prior formulation; remove historical TWN CPUE 

S3 (Update): updated K, initial depletion, and observation error prior formulation; remove historical 

Taiwan,China CPUE  

 

2.3. Model diagnostics 

 

The evaluation model diagnostics follows the principles in Carvalho et al. (2021), who recommended to 

objectively evaluate the base-case candidate model based on the following four model plausible criteria: (1) model 

convergence (2) fit to the data, (3) model consistency (retrospective pattern) and (4) prediction skill through 

hindcast cross-validation (Kell et al. 2016; 2021).  

 

JABBA is implemented in R (R Development Core Team, https://www.r-project.org/) with JAGS interface 

(Plummer, 2003) to estimate the Bayesian posterior distributions of all quantities of interest by means of a Markov 

Chains Monte Carlo (MCMC) simulation. In this study, three MCMC chains were used. Each model was run for 

30,000 iterations, sampled with a burn-in period of 5,000 for each chain and thinning rate of five iterations. Basic 

diagnostics of model convergence included visualization of the MCMC chains using MCMC trace-plots as well 

as Heidelberger and Welch (Heidelberger and Welch, 1992) and Geweke (1992) and Gelman and Rubin (1992) 

diagnostics as implemented in the coda package (Plummer et al., 2006).  

 

To evaluate the JABBA fit to the abundance index data, the model predicted values were compared to the observed 

indices. Residual plots were used to examine (1) color-coded lognormal residuals of observed versus predicted 

CPUE indices by fleet together with (2) boxplots indicating the median and quantiles of all residuals available for 

any given year; the area of each box indicates the strength of the discrepancy between CPUE series (larger box 

means higher degree of conflicting information) and (3) a loess smoother through all residuals which highlights 

systematically auto-correlated residual patterns to evaluate the randomness of model residuals. In addition, it 

depicts the root-mean-squared-error (RMSE) as a goodness-of-fit statistic. Run tests were conducted to evaluate 

the randomness of residuals (Carvalho et al., 2017). The runs test diagnostic was applied to residuals of the CPUE 

fit on log-scale using the function runs.test in the R package “tseries”, considering the 1- sided p-value of the 

Wald-Wolfowitz runs test (Carvalho et al. 2021).  

 

To check for model consistency with respect to the stock status estimates, a retrospective analysis was performed 

on S3 by removing one year of data at a time sequentially (n = 5), refitting the model and comparing quantities of 

interest (i.e., biomass, fishing mortality, B/BMSY, F/FMSY, B/B0 and MSY) to the S3 model that is fitted to full time 

series. To compare the bias between the models, we computed Mohn’s (Mohn, 1999) rho (ρ) statistic and 

specifically the commonly used formulation Hurtado-Ferro et al. (2015).  

 

To validate a model’s prediction skill, we applied a hindcasting cross-validation (HCXval) technique (Kell et al. 

2016), where observations are compared to their predicted future values. HCxval is a form of cross-validation 
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where, like retrospective analysis, recent data are removed, and the model refitted with the remaining data, but 

HCXval involves the additional steps of projecting ahead over the missing years and then cross-validating these 

forecasts against observations to assess the model’s prediction skill. A robust statistic for evaluating prediction 

skill is the Mean Absolute Scaled Error (MASE), which scales the mean absolute error of prediction residuals to 

a naïve baseline prediction, where a ‘prediction’ is said to have ‘skill’ if it improves the model forecast when 

compared to the naïve baseline (Kell et al. 2021). The MASE score scales the mean absolute error of the prediction 

residuals to the mean absolute error of a naïve in-sample prediction and a score of higher than one can be 

interpreted such that the average model forecasts are no better than a random walk. Conversely, a MASE score of 

0.5 indicates that the model forecasts twice as accurately as a naïve baseline prediction; thus, the model has 

prediction skill. 

 
 
3. Results and Discussion 

 
The MCMC convergence tests by Heidelberger and Welch (Heidelberger and Welch, 1992) and Geweke (1992) 

and Gelman and Rubin (1992), as well as visual inspection of trace plots, indicate adequate convergence in all 

models. Furthermore, identical model runs produce consistent results, indicating a good level of model stability.  

 

The S3 model fit to each of the five (three fleets, two of which are split by area) standardized CPUE LL indices 

are shown in Figure 3. The S3 model appeared to have a reasonable fit to the CPUE data, and the goodness-of-

fit was estimated to be RMSE = 26% (Figure 2). There is some conflict in the last 15 years (2005-2020) largely 

due to this being the period when the most indices are available. Run tests conducted on the log-residuals indicated 

that the CPUE residuals may not be randomly distributed for two of the five: JPN_NW and TWN_NW (Figure 

4). Both Northwest indices show residual autocorrelation and the several outliers.  

 

Marginal posterior distributions along with prior densities for all three models are shown in Figures 6,7 and 8. 

The prior to posterior median ratio (PPMR) for r in all models are above 1, indicating that the posterior mean is 

consistently larger than the prior mean (i.e., there is information in the data to suggest that the stock is more 

productive). The response of the prior to data was expected, given the relatively high CVs of 0.4 that was input 

(Table 3). Similarly, the resulting small PPVRs for K observed in all scenarios indicate that the input data was 

informative about K, while the prior was largely uninformative. The marginal posteriors for initial depletion (𝜑) 

were similar between S1 and S2, with both PPMR and PPVR close to 1, which suggests that this parameter was 

largely informed by the priors. For S3, the prior had a different distribution (beta) but the posterior was still heavily 

influenced by the prior.  

 

Summaries of posterior quantiles for parameters and management quantities of interest are presented in Table 3 

Estimates of MSY were very similar between all models (8,456 – 8,837). The marginal posterior median for BMSY 

varied between 34,370 metric tons (S1) and 37,401 metric tons (S2). The largest variation is seen in the estimate 

of K, which ranged from 68,741 (S1) to 74,802 (S2). Despite the 2020 points estimates being similar between all 

models, the trends in biomass and fishing mortality, including B/BMSY and F/FMSY, were different for S1 when 

compared to S2 and S3. This is due to the inclusion of historical TWN CPUE information in S1 (Figure 9). The 

trajectory of B/BMSY showed an overall decreasing trend from the early 1980s to 2007, followed by a substantial 

increase over a brief period (2008-2012) which is thought to be linked to the NW Indian Ocean Piracy period. 

B/BMSY has declined since 2014. The lowest level of B/BMSY was observed in 2007 (0.64). The F/FMSY trajectory 

showed a gradual increasing trend between 1980 and the mid-2000s, and despite a recent declining trend F/FMSY 

remains above 1 (Figure 9). The 2020 estimates of B/BMSY range between 0.73 (S3) and 0.77 (S2), while F/FMSY 

estimates range between 1.06 (S2) and 1.13 (S2).  

 

A retrospective analysis for five years was run on S3 and the results presented in Figure 10, which shows minimal 

retrospective deviations from the full model. Furthermore, Table 5 depicts the Mohn’s rho statistic computed for 

a retrospective evaluation period of five years. The estimated Mohn’s rho for B and B/BMSY fell within the 

acceptable range of -0.15 and 0.20 (Hurtado-Ferro et al. 2014; Carvalho et al. 2017) and consequently indicated 

that the retrospective pattern for model S3 was negligible.  



IOTC-2022-WPB20-XX 

 

The Jackknife sensitivity analysis of CPUE indices performed on model S3 showed that the removal of the 

JPN_NW index resulted in the most optimistic outcome, in terms of B/BMSY. In contrast, removing either 

TWN_NE or JPN_CE had a similar, pessimistic, outcome (Figure 11). That said, omitting any of the CPUE 

indices does not alter the 2020 stock status, indicating the lack of a disproportionally influential CPUE timeseries. 

The two historical CPUE timeseries for TWN were not included in the Jackknife analysis it was recommended 

they not be included in the final model by the Taiwan,China scientists.   

Kobe biplots for all three models are shown in Figure 12. All three models indicate that the stock is in the “red” 

quadrant and therefore overfished and subject to overfishing. The resultant stock status posteriors for 2020 from 

each model have the highest probability falling within the red quadrant (61.4% - 74%). However, the current 

catches of blue marlin (average of 8,058 t in the last 3 years, 2018-2020) are marginally lower than the estimated 

MSY for all scenarios (8,456 - 8,837 t). 

 

Our results suggest that all three candidate models are stable and provide reasonably robust fits to the data as 

judged by the presented model diagnostic results. Scenario S1 includes TWN CPUE information from prior to 

2005 that was included only for continuity’s sake, but it was recommended these data be excluded from the final 

model. There is no evidence to favor either S2 or S3 based on performance alone. Furthermore, continuity exists 

between the results from the 2019 assessment and the current results in that catches have not decreased enough to 

facilitate stock recovery.  
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5. Tables  

 

Table 1. Summary of catch-per-unit-effort (CPUE) indices considered in the 2022 JABBA assessment for Indian 

Ocean blue marlin. 

 

CPUE indices and period Period Abbreviation Scenario 

Taiwan,China historical North-West Indian Ocean 1979-2004 TWN_NW_hist S1 

Taiwan,China historical North-East Indian Ocean 1979-2004 TWN_NE_hist S1 

Taiwan,China North-West Indian Ocean 2005-2020 TWN_NW S1, S2, S3 

Taiwan,China North-East Indian Ocean 2005-2020 TWN_NE S1, S2, S3 

Japan North-West Indian Ocean 1979-2010 JPN_NW S1, S2, S3 

Japan Central-East Indian Ocean 1979-2020 JPN_CE S1, S2, S3 

Indonesia  2006-2020 IDN S1, S2, S3 

 

 

 

Table 2. Summary of prior and input parameter assumptions used in the 2022 JABBA Indian Ocean blue marlin.  

 

Parameter Description Prior m CV Scenario 

K Unfished biomass Lognormal log(106557.8),0.75) 300% S1, S2 

K Unfished biomass Lognormal 95,700 100% S3 

r  Population growth rate lognormal 0.3 40% All 

ψ (psi) Initial depletion lognormal 1 5% S1, S2 

ψ (psi) Initial depletion beta 0.95 5% S3 

s (obs) Observations error variance fixed 0.15 - S1, S2 

s (obs) Observations error variance fixed 0.25 - S3 

BMSY/K Ratio Biomass at MSY to K fixed 0.5 - All 
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Table 3. Summary of posterior quantiles presented in the form of marginal posterior medians and associated the 

95% credibility intervals of parameters for the JABBA assessments of Indian Ocean blue marlin.  

  Scenario 1 (Cont_hist)   Scenario 2 (Cont_new) 

Estimates Median 2.50% 97.50%   Median 2.50% 97.50% 

K 68 741 46 545 105 547  74 802 48 200 121 940 

r 0.491 0.310 0.747  0.474 0.287 0.754 

ψ (psi) 0.999 0.907 1.099  0.998 0.907 1.103 

σproc 0.137 0.098 0.186  0.124 0.081 0.18 

FMSY 0.246 0.155 0.373  0.237 0.144 0.377 

BMSY 34 370 23 273 52 774  37 401 24 100 60 970 

MSY 8 456 6 895 10 345  8 837 7 189 10 938 

B1959/K 0.991 0.743 1.278  0.993 0.76 1.264 

B2020/K 0.374 0.266 0.508  0.382 0.276 0.514 

B2020/BMSY 0.748 0.533 1.016  0.765 0.552 1.029 

F2020/FMSY 1.134 0.759 1.679  1.057 0.715 1.541 

  Scenario 3 (Update)   

Estimates Median 2.50% 97.50%   

K 71 552 45 734 120 654  

R 0.487 0.288 0.784  

ψ (psi) 0.963 0.819 0.999  

σproc 0.123 0.072 0.183  

FMSY 0.243 0.144 0.392  

BMSY 35 776 22 867 60 327  

MSY 8 735 7 142 10 720  

B1959/K 0.947 0.709 1.215  

B2020/K 0.364 0.257 0.496  

B2020/BMSY 0.728 0.513 0.992  

F2020/FMSY 1.125 0.754 1.691  
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6. Figures  

 

 
 

Figure 1: Available catch times series in metric tons (t) for Indian Ocean blue marlin for the period 1950 - 2020. 

 

 

 
 
Figure 2. Residual diagnostic plots of CPUE indices for the Indian Ocean blue marlin model S3. Boxplots 

indicate the median and quantiles of all residuals available for any given year, and solid black lines indicate a 

loess smoother through all residuals. 
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Figure 3: Time-series of observed (circle) and predicted (solid line) CPUE of Indian Ocean blue marlin for the 

JABBA model S3. The Dark shaded grey areas show 95% credibility intervals of the expected mean CPUE and 

light shaded grey area denote the 95% posterior predictive distribution intervals. 
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Figure 4: Runs tests to evaluate the randomness of the time series of CPUE residuals by fleet for S3. Green panels 

indicate no evidence of lack of randomness of time-series residuals (p>0.05) while red panels indicate possible 

autocorrelation. The inner shaded area shows three standard errors from the overall mean and red circles identify 

a specific year with residuals greater than this threshold value (3x sigma rule).  
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Figure 5: Process error deviates (median: solid line) of Indian Ocean blue marlin for each JABBA model (S1- 

S3). Shaded grey area indicates 95% credibility intervals. 
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Figure 6: Prior and posterior distributions of various model and management parameters for the JABBA model 

S1 for Indian Ocean blue marlin. PPRM: Posterior to Prior Ratio of Means; PPRV: Posterior to Prior Ratio of 

Variances. 
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Figure 7: Prior and posterior distributions of various model and management parameters for the JABBA model 

S2 for Indian Ocean blue marlin. PPRM: Posterior to Prior Ratio of Means; PPRV: Posterior to Prior Ratio of 

Variances. 
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Figure 8: Prior and posterior distributions of various model and management parameters for the JABBA model 

S3 for Indian Ocean blue marlin. PPRM: Posterior to Prior Ratio of Means; PPRV: Posterior to Prior Ratio of 

Variances. 
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Figure 9: Comparison of biomass, fishing mortality (upper panels), biomass relative to K (B/K) and surplus 

production curve (middle panels), and biomass relative to BMSY (B/BMSY) and fishing mortality relative to FMSY 

(F/FMSY) (bottom panels) among JABBA scenarios S1- S3 for Indian Ocean blue marlin. 
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Figure 10: Retrospective analysis performed to the S3 JABBA model of the Indian Ocean blue marlin assessment, 

by removing one year at a time sequentially (n=5) and predicting the trends in biomass and fishing mortality 

(upper panels), biomass relative to BMSY (B/BMSY) and fishing mortality relative to FMSY (F/FMSY) (middle panels) 

and biomass relative to K (B/K) and surplus production curve (bottom panels).   
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Figure 11: Jackknife index analysis performed to the S3 JABBA model of the Indian Ocean blue marlin 

assessment, by removing one CPUE fleet at a time and predicting the trends in biomass and fishing mortality 

(upper panels), biomass relative to BMSY (B/BMSY) and fishing mortality relative to FMSY (F/FMSY) (middle panels) 

and biomass relative to K (B/K) and surplus production curve (bottom panels)  
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Figure 12: Kobe phase plot showing estimated trajectories (1950-2020) of B/BMSY and F/FMSY for the three JABBA 

models (S1-S3) for the Indian Ocean blue marlin assessment. Different grey shaded areas denote the 50%, 80%, 

and 95% credibility interval for the terminal assessment year. The probability of terminal year points falling within 

each quadrant is indicated in the figure legend. 

 


