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Abstract: Species distribution models (SDM) have emerged as an important 

technique for defining and forecasting species habitats. In the maritime domain, 

species distribution models have historically been constructed primarily as 

two-dimensional species occurrence and environmental data, with a lack of 

understanding of the real ecological environments of species. Our capacity to examine 

subsurface marine characteristics has grown thanks to developments in models and 

technology, but their integration into SDM is still somewhat restricted. We explored 

the impact of adding subsurface environmental factors in SDM on species habitat 

suitability to define habitat variation of adult swordfish (Xiphias gladius) in the Indian 

Ocean using environmental data from various depth layers in the research region. 

Data from the 2017–2019 Chinese Indian Ocean tuna longline fishery observer were 

used to generate the species data. In order to determine the best depth for simulating 

swordfish habitat, we utilized MaxEnt to investigate the impacts of subsurface factors 

and combine several indicators to evaluate the model's effectiveness. The significance 

of environmental elements was quickly assessed, and the connection between habitat 

appropriateness and CPUE was skimmed over. The outcomes demonstrated that the 

model's effectiveness was increased by include subsurface environmental factors, 

displaying a clear increasing trend and stabilizing after reaching the ideal level (300 

m). Although the adult swordfish's distribution range for habitat suitability shrank 

little as depth increased, its core habitat suitability value increased dramatically. 

Among all environmental factors, T and DO were closely related to adult swordfish 

habitat distribution. In contrast, there was no significant correlation between habitat 

suitability and CPUE. Incorporating three-dimensional environmental considerations 

into the model yields more realistic results than model results that consider habitat as 

two-dimensional. Develop explicit three-dimensional methods to better represent the 

distribution of marine species. 
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1 Introduction 

Species Distribution Model (SDM), a model commonly used in theoretical and applied 

research in ecology and biogeography (Peterson et al., 2015; Peterson and Soberón, 2012), has 

grown in recent years with the increase in computer processing power and the availability of 

environmental datasets and species distribution data, applications have gradually grown in recent 

years in many areas (Hortal et al., 2012), the most common of which are determining suitable 

habitat for species (Guisan and Thuiller, 2005), predicting the effects of future climate change on 

species distributions (Sahlean et al., 2014), assessing the invasive potential of exotic species 

invasion potential (Jiménez-Valverde et al., 2011) and conservation planning (Hu et al., 2020), and 

species distribution models applied to marine species are becoming increasingly popular 

(Robinson et al., 2017). 

However, the vast majority of current SDM implementations treat species occurrence and 

environmental data as two-dimensional, an approach that is a reasonable fit for species in shallow 

waters (Bentlage et al., 2013). However, for marine species inhabiting true 3D environments, 

given the lack of information on the 3D occurrence of marine species (Webb et al., 2010), the 

available environmental data layers (Assis et al., 2017a), and the limited understanding of the 

ecology and behavior of many organisms (Bentlage et al., 2013), most SDM applications often 

ignore or struggle to address the three-dimensionality of marine species habitats (Melo-Merino et 

al., 2020). 

As a result, Duffy and Chown advocate the development of explicit 3D methods that extend 

SDM into 3D space (Duffy and Chown, 2017). To date, several approaches have also emerged to 

consider the marine 3D environment, such as a modified SDM approach that approximates the 

representation of the true 3D habitat of a species by stacking 2D SDM at different depths layer by 

layer (Bentlage et al., 2013); or treating the multi-depth layer as a single three-dimensional layer 

and then filtering relevant variables from all environmental information for modelling (Alabia et 

al., 2016); then there is the use of a combination of both approaches, dividing the multi-depth 

layer into a smaller number of composite depth layers, which are then stacked (Venegas-Li et al., 

2017; Pérez-Costas et al., 2019). 

Pelagic species are functional groups of fish that typically inhabit oceanic regions, and many 

previous studies have described their habitat use only through surface environmental variables, 

spatial variables (longitude, latitude) and some typical depth-related variables (e.g., MLD and 

BAH (ocean bathymetry, BAH), Chang et al., 2012). As these species develop, however, they can 

use deeper water layers as habitat space, so using only two-dimensional models to describe their 

habitat may not be sufficient (Dambach and Rödder, 2011). For example, Igarashi (Igarashi et al., 

2018) and Brodie (Brodie et al., 2018) et al. tested model performance by adding subsurface 
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environmental variables to studies of Pacific neon flying squid and four species of fish from the 

U.S. coast and found significant improvements in model performance. 

As a globally distributed and highly migratory large pelagic fish, swordfish (Xiphias gladius) 

are an important target and by-catch species for longline fleets (Abecassis et al., 2012). Due to the 

biological demands of feeding and reproduction, swordfish move in response to changes in their 

biotic and abiotic environment (Humston et al., 2000). This mobility, in turn, will determine the 

species' spatial and temporal scale responses to environmental conditions, including preferences 

for real habitats (Pickens et al., 2021). In previous studies of swordfish habitat distribution, the 

vast majority of swordfish habitats have been treated as two-dimensional. Therefore, it is 

important to incorporate the third-dimensional attributes of the real habitat environment of 

swordfish into the model. In addition to the complexity of three-dimensional marine habitats, 

other aspects, such as the different environmental ecological niches of juvenile and adult 

individuals, should be considered when applying SDM (Dambach and Rödder, 2011). For 

swordfish, there are differences in temperature tolerance (Poisson and Fauvel, 2009), spawning 

migrations (Arocha, 2007), etc. between sexes and sizes of individuals. A finer division should be 

made in the study. 

Among the many approaches to SDM, the maximum entropy model(MaxEnt, Phillips et al., 

2006) has been one of the most widely used modeling techniques for predicting species 

distributions from partial data (Melo-Merino et al., 2020).MaxEnt is designed to work with 

presence-only data, requiring relatively little information (Phillips et al., 2006), has robust 

prediction accuracy (Elith et al., 2006; Graham et al., 2008) even with small samples (Hernandez 

et al., 2006; Wisz et al., 2008), and provides, through user-friendly interfaces (e.g., functions and 

regularization multipliers) in model construction great flexibility, allowing the user to adapt the 

model to specific needs and available information (Merow et al., 2013). 

In this study, we attempted to characterize the true three-dimensional preferences of adult 

Indian Ocean swordfish for their habitat, with environmental characteristics at depth being 

explicitly considered in the model. Starting from the surface environment and adding 

environmental variables from different depth layers downwards in a stepwise manner to constitute 

a new composite environmental layer, this approach was attempted through a swordfish habitat 

study, using MaxEnt, with a view to (1) assessing the impact of different maximum depths of the 

composite environmental layer on modeling swordfish habitat, (2) assessing the appropriate depth 

of the composite environmental layer for inclusion in the MaxEnt model, and (3) comparing the 

three-dimensional approach with the results of the two-dimensional approach. Finally, it is hoped 

that this will provide SDM with experience in developing a 3D spatial approach. 

2 Materials and methods 
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2.1 Data sources 

2.1.1 Species occurrence data 

In this study, raw data from 2441 swordfish catches recorded in the Chinese Indian Ocean 

tuna longline fishery observer data from 2017 to 2019, including year of operation, month, fishing 

location, sex, and lower jaw-to-fork length, were used in this study. Given the range of occurrence 

data, we selected maritime space from 30°N to 40°S and 30°E to 80°E as the study area (Fig. 1). 

 

Figure 1 Study area and species occurrence data (small black dots) 

2.1.2 Environmental data 

Marine environmental data were obtained from the COPERNICUS website 

(http://marine.copernicus.eu/), an EU project that provides data products for various marine 

applications to the scientific community. Based on previous experience with swordfish studies 

(Chang et al., 2012; Evans et al., 2014; Brodie et al., 2018; Su et al., 2020), we selected seven 

variables from different datasets on the COPERNICUS website that were downloaded as netCDF 

files: temperature, salinity, dissolved oxygen, total plant primary production, northward sea water 

velocity, eastward sea water velocity, and mixed layer depth (see Table 1 for details). 

Table 1 Environmental variables used in the maximum entropy model 

Variable name Acronym Unit Raw resolution Depth range 

sea water temperature T ℃ 0.25°×0.25° surface to 500 

sea water salinity S ‰ 0.25°×0.25° surface to 500 

net primary production NPP mgC·m-2·day-1 0.25°×0.25° surface to 500 

moole concentration of 

dissolved oxygen 
DO mmol·m-3 0.25°×0.25° surface to 500 

northward sea water 

velocity 
NV m·s-1 0.083° × 0.083° surface 
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eastward sea water 

velocity 
EV m·s-1 0.083° × 0.083° surface 

ocean mixed layer MLD m 0.083° × 0.083° surface 

 

2.2 Data pre-processing 

2.2.1 Species occurrence data screening 

According to Poisson and Fauvel (Poisson and Fauvel, 2009), the first maturity size (L50) for 

Indian Ocean swordfish females and males is 170 cm and 120 cm (lower jaw-to-fork length, 

LJFL), respectively. Given that catch sex records are incomplete in the original fishery data. 

Therefore, for catch information with sex records, adults were selected according to LJFL of 170 

cm and 120 cm, respectively; for information without clear sex records, categories were classified 

according to female swordfish first maturity size (L50), and catch records with LJFL ≥ 170 cm 

were retained. Also, 902 catch records were finally retained considering the sample size in 

different months and the coupling with environmental data on the time scale (Fig. 1). 

2.2.2 CPUE calculation 

Catch per unit effort (CPUE) is used in many fisheries studies as a common indicator of 

abundance of fishery resources and the spatial distribution of their habitats (Maunder and Punt, 

2004) (Igarashi et al., 2018; Su et al., 2020). However, it is unclear whether there is always a 

strong linear association between predicted habitat suitability or probability of occurrence and 

species abundance (Vanderwal et al. 2009; Dallas and Hastings 2018). Therefore, this study 

calculates CPUE with the results of the final model to make a brief observation. For longline 

fisheries, fishing effort is typically expressed as the number of hooks placed (Wu et al., 2021). 

CPUE is calculated as follows： 

𝐶𝑃𝑈𝐸 =
𝑈𝑐𝑎𝑡𝑐ℎ
𝑓ℎ𝑜𝑜𝑘𝑠

× 1000 

where Ucatch is the cumulative catch in tails (ind) for the location and fhooks is the total 

number of hooks cast in hooks for the location. 

2.2.3 Environmental data processing 

To avoid multiple correlations among environmental variables, the variance inflation factor 

(VIF) was used to measure the multicollinearity among environmental factors. The results were 

calculated by SPSS 20.0 and the VIF values of each factor were less than 10 (Table 2). 

Table 2 Correlation coefficients for surface environmental factors 

Pearson’r DO EV MLD NPP NV S T VIF 

DO 1.000       5.370 

EV -0.070 1.000      1.185 

MLD 0.217 0.217 1.000     1.906 
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NPP 0.259 0.086 -0.152 1.000    1.188 

NV 0.005 -0.164 -0.190 0.059 1.000   1.058 

S -0.050 0.245 0.092 -0.065 -0.040 1.000  1.080 

T -0.872 0.000 -0.480 -0.205 0.053 -0.010 1.000 6.735 

For MaxEnt, the inputs to the model must be of the same resolution in order to be used for 

matching. ArcMap 10.4 software was used to convert the netCDF format files to TIFF format 

raster layers, which were later converted to ASCII format files with a spatial resolution of 0.25° 

× 0.25° and the same boundaries. The processed environmental data were used to filter the 

species occurrence data to reduce sampling bias in the species occurrence data and to keep the 

species occurrence at the same resolution as the environmental data. 

 

2.3 Analysis options 

Using the software MAXENT 3.4.1 (https://biodiversityinformatics.amnh.org/open_source/ 

maxent), 75% of the occurrences in the swordfish sample were randomly set as the training set, 

and the remaining 25% of occurrences were used as the test set, and the calculation was repeated 

50 times to eliminate randomness, and the results were output in logistic format. The 

interrelationship between environmental factors and habitat suitability of swordfish was analyzed 

by combining the contribution rate with the Jackknife method. The rest of the settings were kept 

as default. In this case, only the surface model environmental variables were chosen, and then the 

corresponding depth environmental variables were added in 100 m intervals for modeling until the 

maximum depth of 500 m was reached.  

A combination of methods was used for comparison in order to assess the model efficacy 

across depth layers. The magnitude of the Area Under Curve (AUC) of the Receiver Operating 

Characteristic Curve (ROC) was used as an indicator to assess MaxEnt prediction accuracy 

(Phillips et al., 2006). In a conservative approach, the habitat suitability value at Equal test 

Sensitivity and Specificity (ESS) is used as the threshold to measure model sensitivity (Liu et al., 

2013). Omission error and Commission error of the models are assessed using true skill statistics 

(TSS; Allouche et al., 2006).The AIC (Akaike information criterion; Akaike, 1974) and BIC 

(Bayesian information criteria; Schwarz, 1978) were calculated for each model using ENMTools 

(http://purl.oclc.org/enmtools/) values to synthetically assess model complexity and fit in place of 

the regularization parameters in the MaxEnt model setup with feature classes to select the optimal 

model (Phillips and Dudík, 2008). 

3 Results 

3.1 Assessment of models based on evaluation indicators 

The overall trend in AUC was observed to show an increasing trend in model efficacy with 
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the addition of subsurface environmental variables up to 200 m; after 200 m it tended to a steady 

state. Observed from the general level of AUC, the model efficacy was best at 300 m (Fig. 2). 

Based on the overall trend observed for Sensitivity and TSS, the model's ability to assess omission 

and misclassification errors tends to increase with the addition of subsurface environmental 

variables until 200 m; it tends to a steady state after 200 m. At a general level, the model's ability 

to assess both types of errors was strongest at 300 m (Fig. 3). Based on the AIC and BIC metrics, 

the complexity and fit of the model reach the optimal value at 300 m (Fig. 4). Thus, considering 

all metrics together, the model's integrated capability shows a clear upward trend with the addition 

of subsurface environmental variables until 200 m; it reaches an optimal level at 300 m. 

 

Figure 2 Comparison of AUC values for each depth model 

 

Figure 3 Comparison of Sensitivity and TSS values for each depth model 
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Figure 4 Comparison of AIC and BIC values for each depth model 

 

3.2 Comparison of results of different depth layer models 

We selected an excellent model result (AUCtest = 0.9666) and a poorly performing model 

result (AUCtest = 0.6778) from the surface results, and compared them visually with their different 

depth layers, respectively (Fig. 5 and 6). As can be seen from the plots, the range of habitat 

suitability of the different depth models for the two different months contracted to some extent 

with the inclusion of environmental variables at different depths at and before 200 m; after this it 

was largely stable (a-f in Fig. 5 and 6). The model at the optimal level (300 m) in both months, 

however, showed some increase in habitat suitability values for the major habitat suitability range 

compared to the results of the surface model. 

 

Figure 5 Model effects by depth in January 2017 (a-f are models at depths from the surface to 500 m, 

respectively, increasing in 100 m intervals; g is a plot of the difference in suitability values for models at 300 m 

minus the suitability values for models at the surface) 
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Figure 6 Model effects by depth, October 2017 (a-f are models for surface to 500 m depths, respectively, 

increasing at 100 m intervals; g is a plot of the difference in suitability values for models at 300 m minus the 

suitability values for models at the surface) 

 

3.3 Importance of environmental factors 

From the contributions of each component, it was found that, at 100 m and below, T and 

NPP outperformed several other categories of factors in their contribution to the model; at 200 m 

and above, T and DO outperformed several other categories of factors in their contribution to the 

model (Fig. 7). No matter the depth range, the three types of variables T, NPP, and DO were 

closely connected with the distribution of swordfish habitat suitability, according to the knife-cut 

method's findings (Fig. 8). T, DO, NPP, and MLD were highly associated with the model at its 

optimum level. 
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Figure 7 Average contribution of environmental factors across depth layers (A-F are modeled for surface to 

500 m depth, respectively, increasing at 100 m intervals) 

 

Figure 8 Results of the Jackknife method of averaging environmental factors across depth layers (A-F are 

modeled for surface to 500 m depth, respectively, increasing at 100 m intervals) 

 

3.4 Relationship between HSI and CPUE 

The linear relationship between swordfish CPUE (ln(CPUE)) and HSI for the different depth 

models is evident in the graph (Fig. 9). Regression analysis showed that the HSI correlations for 

the different depth models were all statistically significant at the 0.05 level, but there was not a 

strong correlation. 
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Figure 9 Comparison of CPUE and HSI for each depth layer (A-F are models for surface to 500 m depth, 

respectively, increasing at 100 m intervals) 

4 Summary 

We used a maximum entropy model, using three years of catch data from the longline fleet, 

by gradually adding subsurface variables to the model with the view to simulating that swordfish 

meet suitable realistic habitat conditions in the area. With the gradual increase in subsurface 

variables, the model's effectiveness showed an increasing trend and stabilized after 300 m. In the 

model at all depths, T, DO and NPP were strongly correlated with swordfish habitat distribution in 

the model. These provide some lessons for adult swordfish habitat in the Indian Ocean region. 

Also, the CPUE data of swordfish did not show a significant correlation with the model results. 

Considering the three-dimensional environment into the model gives more realistic results than 

considering the habitat as a two-dimensional model result. Develop an explicit three-dimensional 

approach to better represent the distribution of marine species. 
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