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Abstract: The at-haulback mortality of swordfish (Xiphias gladius), a highly migratory fish, in the Indian
Ocean during tuna longline fishery is a concern of the Indian Ocean Tuna Commission Fisheries
Management. We obtained the data of 1,144 swordfish recorded in 1925 operations in the Indian Ocean
by Chinese tuna longline observers from 2012-2018. A generalized linear model was used to analyze the
at-haulback mortality of swordfish and the potential influencing factors. The overall mortality rate of
swordfish was 64.0%, and the average female size was 166.3 cm (SD = 32.5 cm), with an observed
at-haulback mortality rate of 64.3%. The average male size was 155.1 cm (SD = 25.6 cm), which was
smaller than females. The observed at-haulback mortality rate was 63.6%. No significant difference was
observed between the sexes. Quarter, longitude, hook type, and Lower Jaw-Fork Length (LJFL) had a
significant effect on the at-haulback condition when fish were retrieved onboard. Longitude and LJFL
had a significant effect on the at-haulback mortality of swordfish. When the capture position was closer
to the east, the at-haulback mortality decreased and LJFL increased. The interaction term of hook type
and LJFL had a significant effect on at-haulback mortality. When using the circle hook and other hook
types, the greater the LFJL, the greater the mortality rate; the opposite was true for Japanese tuna hooks.
We provide information for understanding the at-haulback mortality of swordfish bycatch by Chinese
tuna longline fishing fleets in the Indian Ocean and its influencing factors, which will help the future
conservation and management of swordfish.
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1. Introduction

Swordfish (Xiphias gladius) is the top predator in the food web [1] observed in pelagic
fisheries [2]. In addition, it is also a very important bycatch in tuna longline fishery. This
species is highly migratory in tropical and temperate waters [3], and the depth of migration
varies with the water temperature environment [4]. Swordfish show sexual dimorphism in
terms of the maximum size, growth rate, and age at maturity. Females grow faster and
mature later than males [5,6] and have a larger size at first maturity.

In the waters under the jurisdiction of the Indian Ocean Tuna Commission (IOTC), the
catch of swordfish from 2016 to 2019 was 30,743-33,588 tons, of which the average annual
catch of longline fishing was 1,9304.5 tons, accounting for about 60.2 % [7]. IOTC’s 19th
Working Party on Billfish (WPB) used stock synthesis to assess swordfish stock in 2020. This
assessment showed that although the population is not currently overfished and overfishing
[8], the risk of overfishing and overfishing is high [9], so studying at-haulback mortality
(hooking mortality) is very important for assessing the effect of longline fishing on the
populations of these species [10]. It can also provide a basis for reducing the negative effect of
fishing bycatch on marine ecosystems [11]. It also contributes to reducing the persistent
negative effects of tuna longline fleet bycatch on pelagic ecosystems [11].



At-haulback condition refers to the state (alive or dead) of fish when they are retrieved
onboard [12]. At-haulback mortality represents the percentage of deaths to the total number
of catches when the fishing tackle is retrieved onboard [13]. Extensive research on at-haulback
mortality has been conducted in longline fisheries worldwide. For example, in the waters
surrounding the United States of America and Australia, a wide range of at-haulback
mortality research has been carried out for species such as walleye (Sander vitreus) and sharks
[14-16]. In the Atlantic Ocean, research has been conducted on the factors affecting the
at-haulback mortality of various elasmobranchs [10,17,18]. In the Indian Ocean, research on
at-haulback mortality for sea turtles, sharks, etc. is also gradually being carried out [19,20]. In
addition to focusing on the level of at-haulback mortality of target fish species, many studies
have also assessed the potential factors affecting at-haulback mortality. These include sex and
lower jaw-fork length (LJFL), among other biological characteristics [21,22], as well as hook
type [23,24] and marine environmental characteristics [18,25].

At present, reports of swordfish at-haulback mortality are mostly focused on the Atlantic
Ocean [24,26]. However, information on this topic in the Indian Ocean tuna longline fisheries
is less, which prevents the IOTC from further improving and developing more effective
conservation and management measures [26]. Therefore, this study used a generalized linear
model (GLM) to study the at-haulback mortality of Indian Ocean swordfish based on data
from the Chinese Pelagic Fisheries Observer Program. The aim of this study is as follows: 1)
to analyze if differences are present in the level of at-haulback mortality of swordfish of
different genders and LJFL; 2) to assess the effect of a variety of potential factors, such as
biological, environmental, and operating factors, as well as fishing gear characteristics, on
at-haulback mortality; and 3) to use GLM to predict at-haulback mortality under specific
conditions. In this study, we provide useful information for the scientific community and
managers to understand the at-haulback mortality of swordfish caught by the tuna longline
fleet in the Indian Ocean.

2. Materials and Methods
2.1 Data collection

The data used in this study were obtained from the Indian Ocean tuna longline fishery
dataset provided by the Chinese Pelagic Fisheries Observer Program. During the period
2012-2018, scientific observers collected operational information on Chinese tuna longline
fishing vessels on 18 voyages, including 16 fishing vessels, and observed 1925 fishing sets in
total. Figure 1 shows the location distribution of the survey sites in this study. The main area
was the western Indian Ocean 40°N-11°S, 23°E-90°E. Except for one normal temperature
fishing vessel in 2014 and one normal temperature fishing vessel in 2016, all the other survey
fishing vessels were ultra-low temperature vessels. The target species were bigeye tuna
(Thunnus obesus) and albacore tuna (Thunnus alalunga). The main line of the fishing tackle is
composed of nylon braided rope or glass filament monofilament, and the length of the
mainline is approximately 70,000-249,570 m. The length of the mainline between the two
floats of the fishing tackle was 726-1102m (the number of branch lines was 16-29, branch line
set interval was 30-56.6 m), the length of the float line was 2040m, and the length of the
branch line was 18-52m. The fishing hooks used were mainly Japanese tuna hooks (88.8%),
followed by some circle hooks (2.7%), and other hook types (8.3%).

The observers measured and recorded the biological information of fish by species,
including the lower jaw-fork length, sex, and at-haulback condition. The at-haulback
condition was divided into alive (recorded as “A1/A2/A3” according to the condition of the
swordfish retrieved onboard, which are combined as “A” in this study) and death (recorded
as “D”) and used as the response variable in this study. A total of 1942 swordfish were caught
in all the voyages. Because of the incomplete records of some fish, this study used the data of
1144 swordfish for analysis.
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Figure 1. The location distribution of longline fishing survey sites in the China Ocean
Fisheries Observer Program from 2012 to 2018.

The marine environment is believed to be a factor in the at-haulback mortality of
swordfish [15,27]. Reevesa and Bruesewitz (2007) reported that water temperature has a
significant effect on the at-haulback mortality of Walleyes (Sander vitreus) [15], and Abecassis
et al. (2012) reported that dissolved oxygen (DO) affects swordfish foraging and other
behaviors [27]. We selected sea surface temperature (S5T) and DO as potential explanatory
variables. SST and DO were downloaded from the Copernicus Marine Environment
Monitoring Service (https://marine.copernicus.eu/). The time resolution of SST and DO was
the month, and the spatial resolution was 0.25° x 0.25°. The latitude and longitude
information was matched with the downloaded SST and DO and with the information of
each fish. The names, types, and ranges of all explanatory variables selected in this study are
listed in Table 1.

Table 1. The scope of each continuous explanatory variable and the classification of each
categorical explanatory variable were evaluated for importance in the at-haulback mortality

of Xiphias gladius.
Explanatory Name Type Scope / Classification
Variable
Biological Sex Categorical Female/Male
.. Lower Jaw-fork Continuous 59-273 (cm)
Characteristics

Length




. Sea Surface Continuous 13.88 - 30.37 (C)
Environmental

Factors Temperature
Dissolved Oxygen Continuous 196.87 - 247.93
Quarter Categorical First (Jan, Feb, Mar) / Second (Apr, May, Jun)
/ Third (Jul, Aug, Sept) / Forth (Oct, Nov,
Space-time Dec) (Quarter)
Elements Longitude Continuous 40 °E-81 °E
Latitude Continuous 40°N-11°S
Hook Type Categorical Japanese Tuna Hook/Circle Hook/Others
Target Fish Species Categorical Bigeye Tuna/Albacore Tuna

2.2 Data analysis

The chi-square test was performed to test the difference in the at-haulback mortality of
different gender groups, quarters, hook types, and target fish species. To eliminate linear
correlation problems between continuous variables, the variance inflation factor (VIF) of all
continuous explanatory variables was calculated, and variables with VIF values greater than
five were deleted [28]. The response variable belongs to the binomial distribution of the 0-1
response, so the relationship between the at-haulback condition and the influencing factors
was expressed by a generalized linear model in which the connection function was the
logarithmic connection function in the binomial distribution family. The formula for the
model was as follows:
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Where P is the probability of a swordfish dying after being retrieved onboard, ¢ is the
intercept of the model, (i=1, 2, 3...9) is the coefficient estimated by the maximum

likelihood method, “Sex” represents the sex of the swordfish, “LJFL” represents the lower
jaw-fork length of the swordfish, “SST” represents the sea surface temperature when the
swordfish was caught, “DO” refers the dissolved oxygen when the swordfish was caught,
“Quarter” means the quarter when the swordfish was caught, “Lon” and “Lat” refers to the
longitude and latitude where the swordfish was caught, “HT” refers to the hook type when
the swordfish is caught, and “TFP” refers to the target fish species when the hook is setting,
and  is the error term of the model.

All the above variables were used to establish a model. Subsequently, the best model for
the analysis of individual mortality was selected based on the Akaike information criterion
(AIC) backward stepwise regression method [29]. The best model was the model with the
smallest AIC value. If some explanatory variables in the model were not significant (p>0.05),
according to the magnitude of the deviance explanation of each covariate in the model, the
covariates with smaller deviance explanation were eliminated in turn until all covariates were
fitted as important variables [30]. In this step, according to the recommendations of Hosmer
and Lemeshow (2000) [31], the variables deleted during AIC screening were added to the
model for further testing to prevent the deletion of important covariates. Based on the above
model, possible interaction terms were added, and the same steps as above were used to filter
the interaction terms.

2.3 Model diagnosis and goodness of fit test

The Hosmer-Lemeshow Goodness of Fit (GOF) test was performed on the model before
and after an interaction item was added [31]. The K-fold cross-validation procedure was used
to evaluate the model’s ability to predict individual mortality. The verification process
divides the data into K sub-samples, one sample was designated as the test set, and the
remaining K-1 samples were the training set. After performing the analysis on the training set,
a model was obtained. The prediction results were compared and tested using the test set.



The evaluation indicators of the model were saved, and this step was repeated K times until
each sub-sample participated in the verification. We calculated the average of K groups of
evaluation indicators as an estimate of model accuracy and subsequently calculated the area
under the curve (AUC) below the receiver operating characteristic curve (ROC) and the 95%
confidence interval of the model after K-fold cross-validation [32]. The K value in this study
was 10. The two models were compared before and after adding the interaction term, and the
model with better performance was selected. We performed an outlier test and Cooks
distance test to observe whether data affect the accuracy of the model.

All statistical analyses were performed using the statistical software R (version 4.0.3). Firstly,
we used the “usdm” package for continuous variable VIF screening [33] and the “cvAUC”
package for cross-validation [34]. Next, we used the “visreg” package to analyze the
explanatory variables and response variables in the GLM model, mapping the relationship
between variables [35]. We used the “car” and "ResourceSelection” packages to diagnose the
residuals of the model [36]. Lastly, we used the "mapdata" and "maptools" packages to
complete the survey site map [37,38].

3. Results
3.1 Analysis of observed at-haulback mortality

Among the 1,144 swordfish captured in this study, we found a total of 732 dead samples,
and the overall at-haulback mortality of swordfish was 64.0%. Among them, the female
samples accounted for 54.4%, the average LJFL was 166.3 cm (SD=32.5 cm), and the
at-haulback mortality was 64.3%. The male samples accounted for 45.6% of the total, and the
average size was 155.1 cm (SD = 25.6 cm). The observed at-haulback mortality rate was 63.6%
(Figure 2). The chi-square test was used to test the mortality of male and female samples, and
no significant difference was found in the mortality between males and females (chi-square =
0.062, df = 1, p = 0.804). However, considering that the sex of swordfish has significant
differences in biological characteristics, sex is still used to establish a parsimonious model of
GLM. In addition, the chi-square test results showed significant differences in the at-haulback
mortality of different hook types and different target fish species (chi-square = 24.588, df = 2,
p-value <0.001; chi-square = 15.760, df = 1, p <0.001).
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Figure 2. The distribution of lower jaw-fork length of female and male swordfish in the
Indian Ocean from 2012 to 2018 in this study.

3.2 The establishment of the GLM model

The VIF value of the continuous variable was calculated, and the VIF values of the SST
and DO were both greater than 5 in the first test. After deleting DO with the largest VIF value
(16.573), the remaining four variables all cleared the test, and the VIF values were 1.024, 1.676,
3.903, and 3.418.

The model was screened according to the AIC and the important variables were fitted.
The LJFL, quarter, longitude, and hook type were all variables that had a significant effect on
the probability of dying. The pairwise interaction terms of the above four explanatory
variables were added to the model for testing, and it was found that quarter, hook type, LJFL,
and longitude were still significant in the model (p <0.05). The interaction term between hook
type and LJFL, LJFL, and longitude were also significant in the model (p <0.05) (Table 2, Table
3).

Table 2. The deviation explanation after adding the interaction terms to the generalized linear
model of the at-haulback mortality of swordfish (Xiphias gladius) in the Indian Ocean.

Df Deviance Resid.Df Resid.Dev
NULL 1143 1495.2
Quarter 3 6.4178 1140 1488.8
Hook.type 2 22.1269 1138 1466.7
LJFL 1 12.6856 1137 1454.0
Lon 1 14.3614 1136 1439.6
Hook.type:LJFL 2 7.1935 1134 1432.4
LJFL:Lon 1 24.5354 1133 1407.9

Note: “Df” is the degree of freedom, and “Deviance” is a measure of error. "Resid.Df" is the
residual degrees of freedom and "Resid.Dev" is the residual deviation. The term is not
affected by the order of addition.

Table 3. The parameter estimation and significance of the model after adding the interaction
term for studying the at-haulback mortality of swordfish (Xiphias gladius) in the Indian Ocean.

Estimate Std. Error  z value Pr(>1zl)
(Intercept) 9.141 2.942 3.107 <0.01
Quarter2 0.050 0.294 0.171 0.864
Quarter 3 0.588 0.284 2.068 <0.05
Quarter 4 0.020 0.260 0.075 0.940
Hook type Japanese tuna hook 6.607 1.843 3.585 <0.01
Hook type Others 4.417 2.220 1.989 <0.05
LJFL -0.050 0.018 -2.779 <0.01
Lon -0.247 0.045 -5.439 <0.01
Hook type Japanese tuna hook: LJFL -0.033 0.011 -3.008 <0.01
Hook type Others: LJFL -0.026 0.014 -1.900 0.057
LJFL: Lon 0.001 0.001 4.770 <0.01

Note: “Estimate” is the estimated parameter, “Std. error” is the standard error. The
significance of the explanatory variable was provided by the p-value corresponding to the z
test (p <0.05).

Regression diagnosis and comparison were performed on the model before and after the
interaction term, and the model after the interaction term was added. No overfitting or
over-spreading of the two models was observed. In terms of goodness of fit, both models
fulfilled the Hosmer-Lemeshaw test. The X-squared value of the parsimonious model was



14.501 (p = 0.070). After the interaction term was added, the model fitted better, with an
X-squared value of 12.007 (p = 0.151). By adding the interaction term, the predictive ability of
the model improved. The average AUC of a hundred cross-validation of the parsimonious
model was 0.618, with a 95% confidence level between 52.0% and 72.0%. After adding the
interaction term, the average AUC of the model was 0.655, and the confidence level was
between 55.5% and 75.3%.

Residual analysis was performed on the model after adding the interaction term. The
final verification of the residual analysis did not reveal any significant outliers. The Cook
distance determined several data points, whose values were relatively higher than the rest,
but these points do not affect the estimated model parameters, so they were not removed
from the final model.

3.3 Predictions of the probabilities of at-haulback mortality

In the model with the interaction term added, the hook type was still the factor that has
the greatest influence on the probability of swordfish dying at haulback. The predictions of
the probabilities of swordfish dying at-haulback if caught by circle hooks and others were
28.0% and 33.1%, respectively, and swordfish caught by Japanese tuna hooks had a
significantly higher probability (59.7%) of dying (Figure 3a). The quarter was the factor with
the least effect on the probability of death of swordfish. The highest mortality was found in
the third quarter, and the differences in mortality rates in the first, second, and fourth
quarters were less (Figure 3b).
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Figure 3. The impact of different hook types (a) and different catch quarters (b) on the
at-haulback mortality of Indian Ocean swordfish. The black solid line represents the
predicted probability of death of the hook type, and the gray shaded represents the 95%
confidence interval of the categorical variable. The short line segments at the top and bottom
indicate the number of fish species under different classifications of the variable. The top
indicates the number of deaths, and the bottom indicates the number of survivors.

The LJFL of swordfish and the longitude also had a certain effect on the predictions of
the probabilities of at-haulback mortality. The smaller the LJFL of swordfish, the greater the
probabilities of mortality, and the range of change was between 43.0% and 72.7%, which was
slightly smaller than the range of probabilities of mortality for different longitudes (39-75%).
Predictions showed that the mortality of the captured swordfish was lower when the capture
location was closer to the east (Figure 4).
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Figure 4. Effects of Lower Jaw-Fork Length (LJFL) variation (a) and longitude variation (b) on
at-haulback mortality in Indian Ocean swordfish. The solid line represents the change in the predicted
mortality with LJFL and longitude, and the gray shaded part represents the 95% confidence interval of
the explanatory variable. The short lines at the top and bottom of the picture indicate the number of
samples that died and survived at a certain longitude.

The interaction between hook type and LJFL showed that the effect of LJFL on swordfish
at-haulback mortality varies depending on the hook type. As the LJFL increases, the
probability of the swordfish dying at-haulback decreases when using Japanese tuna hooks.
Swordfish caught by circle hooks and other hook types showed the opposite trend. As the
length of the LJFL increased, the probability of dying at-haulback increased. For swordfish
with a smaller LJFL, the probability of death if caught by circle hooks was significantly lower
(Figure 5).
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Figure 5. The effect of the interaction term between hook type and lower jaw fork length
(LJFL) on the at-haulback mortality of Indian Ocean swordfish. The different boxes indicate
the variation of the at-haulback mortality of the Indian Ocean swordfish with the LJFL when
the hook type (circle hook, Japanese tuna hook, others) is used. The short lines at the top and
bottom of the picture respectively indicate the number of samples that died and survived
under the LJFL.



The interaction term of LJFL and longitude also had a significant effect on the probabilities of
at-haulback mortality (Figure 6). Generally, the larger the LJFL of swordfish, the smaller the
probability of dying. When the capture longitude was about 60°E, the difference in the
at-haulback mortality between different LJFLs was the smallest. However, the predicted
mortality of swordfish caught around 69°E increased gradually with LJFL.
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Figure 6. The effect of the interaction term between longitude and lower jaw fork length
(LJFL) on the at-haulback mortality of Indian Ocean swordfish. The different boxes indicate
the variation of the at-haulback mortality with LJFL for swordfish caught at different
longitudes. The short lines at the top and bottom of the picture respectively indicate the
number of samples that died and survived under the LJFL.

4. Discussion

The mortality rate of swordfish caught in longline fisheries has attracted the attention of
many scholars around the world. These mortality rates include natural mortality [39,40],
post-release mortality [41,42], and at-haulback mortality [24,26,43,44].

4.1 Observed at-haulback mortality

In this study, the number of dead swordfish samples accounted for 64.0% of the total
number of samples, which was close to Epperly et al. (2012) average at-haulback mortality
rate of 67.5% for North Atlantic longline swordfish. However, it was significantly lower than
other studies in the Atlantic, which was about 85.0 % [26,45] and higher than the average
level of 43.2% of swordfish caught by longline fishing in Hawaiian waters [43]. The difference
in the level of at-haulback mortality may be related to many factors, such as the hook type
used by the specific fleet, operating time, location, operating habits, and marine environment.

It should be pointed out that the swordfish at-haulback mortality analyzed in this study
was short-term at-haulback mortality, and the released individuals will still die due to fishing
injuries. Research on the post-release mortality of swordfish based on pop-up satellite
archival tags has shown that 22.0% and 38.0% of swordfish died after being released in the
North Atlantic and East Pacific waters, respectively [41]. West et al. (2012) found that the
post-release mortality of Indian Ocean swordfish was 64.0% [42]. Therefore, considering the



post-release mortality levels estimated by multiple studies, the overall mortality rate of
swordfish caused by longline fishing may reach 71.9-87.0% (Overall mortality rate = survival
rate x post-release mortality + at-haulback mortality).

4.2 Factors affecting the at-haulback mortality of swordfish

In this study, hook type was the single largest factor affecting swordfish at-haulback
mortality. Previous studies in the Atlantic ocean, Pacific ocean, Mediterranean sea, and the
Gulf of Mexico in the United States have found that hook type has a significant effect on the
at-haulback mortality of swordfish, tuna, sharks, and sea turtles [12,24,46]. These studies
generally indicate that circle hooks can effectively reduce their at-haulback mortality
compared with other types of hooks. However, some studies believe that hook types have no
significant effect on the at-haulback mortality of target species [15,45]. In this study of Indian
Ocean swordfish, the swordfish caught by the circle hook had the lowest at-haulback
mortality, whereas the mortality of swordfish caught by Japanese tuna hooks was
significantly higher. This was believed to be due to the difference in the shape of the various
hooks and the position where the hook enters the fish’s body [23]. After the fish was hooked,
the circle hook usually hooks the fish’s mouth or jaw and rotates in the mouth, so the fish
caught by the circle hook had no obvious injuries [23]. The Japanese tuna hook usually enters
deeper positions, such as the throat or intestine of the fish [47], causing greater damage to the
fish body or even death, resulting in higher mortality when retrieved onboard.

The interaction between hook type and LJFL has a significant effect on the at-haulback
mortality of swordfish. However, with other hook types, the LJFL had a different effect on the
probability of death of the swordfish (Figure 5). Many studies have found that LJFL is an
important factor affecting at-haulback mortality. A study on the at-haulback mortality of
swordfish and blue sharks (Prionace glauca) caught by J-style hooks (“J-style hooks” and “tuna
hooks”) in the Atlantic longline fishery found that as LJFL increases, the mortality rate
gradually decreases [10,26]. Japanese tuna hooks in this study support this pattern. For circle
hooks and other hook types, Morgan and Carlson (2010) studied sharks in the Atlantic Ocean
and found that the at-haulback mortality increased with an increase in LJFL [16]. This may be
due to the larger mouth of the larger shark. Due to the special shape of the circle hook, the
hook was more likely to slide deeper into the fish (viscera, etc.), causing damage to the fish.
On the other hand, the Japanese tuna hook was easier to hook the snout of the fish rather than
slipping down to the internal organs. However, whether this phenomenon is universal in the
fish species caught in longline fishing needs further investigation because Neilson et al. (1989)
analyzed the Atlantic halibut (Hippoglossus hippoglossus) caught by the circle hook in the
longline fishery and found that the at-haulback mortality rate decreased with an increase in
body length [48].

Longitude was the second largest single factor affecting swordfish at-haulback mortality.
Longitude also has a greater effect on the at-haulback mortality of swordfish, showing a trend
of lower mortality rates closer to the East Indian Ocean (Figure 4). Coelho et al. (2019) studied
a variety of elasmobranchs in the Atlantic Ocean and found that this change was affected by
the location and species of capture [26]. Blue sharks and crocodile sharks (Pseudocarcharias
kamoharai) have higher at-haulback mortality in the equatorial and South Atlantic regions,
whereas shortfin Mako (Isurus oxyrinchus) has a lower mortality rate in the northeastern
Atlantic Ocean. The interaction between longitude and LJFL showed that the greater the LJFL,
the greater the at-haulback mortality when the capture position was closer to the west. When
the capture position was closer to the east, the mortality decreased gradually with the
increase in LJFL. Coelho et al. (2013) found that the interaction term between LJFL and
longitude had a significant effect on the at-haulback mortality of the blue shark in the Atlantic
Ocean. The greater the LJFL of the blue shark caught in the longer longitude area, the lower
the mortality rate, which is consistent with the results of this study [18].

The quarter was the factor that had the least effect on swordfish at-haulback mortality.
The differences in mortality between quarters can be due to the different L]JFL of swordfish in



different quarters [49] and can also be affected by different temperatures in different quarters
[50]. Poisson and Fauvel (2009) found that Indian Ocean swordfish were larger during the
spawning period (October to April) [49]. In this study, swordfish caught in the third quarter
(July to September) had the highest mortality rate, matching the pattern of relatively higher
at-haulback mortality for swordfish with smaller LJFL. The influence of quarters on the
at-haulback mortality rate of swordfish can be caused by temperature differences in different
quarters [50]. Muoneke (1992) found that quarter and temperature affect at-haulback
mortality at the same time. Quarters with high temperatures have a higher risk of at-haulback
mortality [50]. The studies of Epperly et al. (2012) and Coelho et al. (2019) on the at-haulback
mortality of swordfish in the case of Portuguese longline fishing fleets in the Atlantic also
support this view. The ocean temperature has a significant effect on the mortality of
swordfish, and the at-haulback mortality increases when the ocean temperature increases
[26,51]. However, in this study, SST was not a significant variable of the model. Whether this
is caused by differences in the marine environments requires further research.

Sex had no significant effect on at-haulback mortality of swordfish in this study. Braccini
et al. (2019) found that sex did not significantly affect at-haulback mortality in Atlantic
Sandbar shark (Carcharhinus plumbeus), Milk shark (Rhizoprionodon acutus), and Spot-tail shark
(Carcharhinus sorrah) [52]. However, Coelho et al. (2013) [18] found that sex was an important
variable affecting at-haulback mortality in a study of Atlantic blue sharks, and a study of
crocodile sharks also reached the same conclusion [10]. This was due to the different
distribution of LJFL in different sexes [10]. In this study, both the chi-square test and the GLM
model showed no significant difference between males and females. Further research is
needed on whether sex affects swordfish at-haulback mortality.

Sea surface temperature was also an insignificant variable in this study. However,
Reeves and Bruesewitz (2007) found that the at-haulback mortality was lower when the water
temperature was low, and the higher water temperature resulted in higher at-haulback
mortality [15]. Dotson (1982) and Nuhfer et al. (1992) also observed the same phenomenon
[53,54]. The insignificance of SST in this study can be because swordfish are generally
distributed in a water layer of about 350 m [55] and SST cannot completely represent the real
water temperature where swordfish are located.

In addition to existing influencing factors, bait type, hook size, hook location, soak time,
and hook depth can also potentially affect at-haulback mortality [15,43,44,56]. Epperly et al.
(2012) found that the bait type was an important factor affecting the at-haulback mortality of
the Atlantic swordfish [44]. Curran and Bigelow (2011) also included the hook size to study
the at-haulback mortality of the target species [43]. Reeves and Bruesewitz (2007) found that
different hook sizes and hook positions have different effects on the at-haulback mortality of
swordfish, which are mainly affected by the different LJFL of the fish and the different
positions where hooks the fish [15]. Morgan et al. (2007, 2010) studied Atlantic sharks and
found that soak time had an effect on at-haulback mortality, and measures that limit soak
time in longline fishing can reduce bycatch mortality [16,57]. Orbesen et al. (2019) also
concluded that hook depth had no significant effect on at-haulback mortality in the bluefin
tuna from the Gulf of Mexico [58]. These results need to be obtained using a targeted
experimental design or specialized instruments, and further analysis is recommended in
future studies.

Acknowledgements

We thank the Tuna Technical Group of the China Ocean Fisheries Association for
providing the fishery scientific observer data of the Chinese fleet for this study. We are also
deeply grateful for the collaboration of 17 observers and 16 tuna longline fishing vessels.

References

1. Kitchell, J.F,; Martell, S.J.D.; Walters, C.J.; Jensen, O.P.; Kaplan, 1.C.; Watters, J.; Essington, T.E,;
Boggs, C.H. Billfishes in an ecosystem context. Bull. Mar. Sci. 2006, 79, 669-682.



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Nakamura, I. Vol. 5: billfishes of the world. An annotated and illustrated catalogue of marlins,
sailfishes, spearfishes and swordfishes known to Date. FAO Fish. 1985, 125.

Neilson, J.D.; Smith, S.; Royer, F.; Paul, S.D.; Porter, ].M.; Lutcavage, M. Investigations of
horizontal movements of Atlantic swordfish using pop-up satellite archival tags. Tagging and
tracking of marine animals with electronic devices. vol. 9. SpringerLink 2009, pp. 145-159.
Takahashi, M.; Okamura, H.; Yokawa, K.; Okazaki, M. Swimming behaviour and migration of a
swordfish recorded by an archival tag. Mar. Freshwater. Res. 2003, 54(4), 527-534.

Poisson, F.; Fauvel, C. Reproductive dynamics of swordfish (Xiphias gladius) in the southwestern
Indian Ocean (Reunion Island). Part 1: oocyte development, sexual maturity and spawning. Aquat.
Living. Resour. 2009, 22, 45-58.

Wang, S.P.; Lin, C.H.; Chiang, W.C. Age and growth analysis of swordfish (Xiphias gladius) in the
Indian Ocean based on the specimens collected by Taiwanese observer program.
IOTC-2010-WPB-08-rev1. 2010.

IOTC. Nominal catches by fleet, year, gear, IOTC area and species. IOTC-2021-WPB19-DATA03.
2021.

IOTC. Outcomes of the 23rd Scientific Committee meeting. IOTC-2021-WPB19-03. 2021.

Wang, S.P. Stock assessment of swordfish (Xiphias gladius) in the Indian Ocean using A Stock
Production Model Incorporating Covariates (ASPIC). IOTC-2017-WPB15-21. 2017.

Coelho, R.; Fernandez-Carvalho, J.; Lino, P.G.; Santos, M.S. An overview of the hooking mortality
of elasmobranchs caught in a swordfish pelagic longline fishery in the Atlantic Ocean. Aquat.
Living. Resour. 2012, 25, 311-319.

Carruthers, E.H.; Neilson, ].D.; Smith, S.C. Overlooked bycatch mitigation opportunities in pelagic
longline fisheries: Soak time and temperature effects on swordfish (Xiphias gladius) and blue shark
(Prionace glauca) catch. Fish. Res. 2011, 108(1), 112-120.

Gilman, E.; Huang, HW. Review of effects of pelagic longline hook and bait type on sea turtle
catch rate, anatomical hooking position and at-vessel mortality rate. Rev. Fish. Biol. Fisher. 2017,
27(1), 43-52.

Muoneke, M.I; Childress, W.M. Hooking mortality: a review for recreational fisheries. Rev. Fish.
Sci. 1994, 2, 123-156.

Payer, R.D.; Pierce, R.B.; Pereira, D.L. Hooking mortality of walleyes caught on live and artificial
baits. N. Am. |. Fish. Manage. 1989, 9(2), 188-192.

Reeves, K.A.; Bruesewitz, R.E. Factors influencing the hooking mortality of walleyes caught by
recreational anglers on Mille Lacs, Minnesota. N. Am. . Fish. Manage. 2007, 27(2), 443-452.

Morgan, A.; Carlson, J.K. Capture time, size and hooking mortality of bottom longline-caught
sharks. Fish. Res. 2010, 101, 32-37.

Campana, S.E.; Joyce, W.; Manning, M.]. Bycatch and discard mortality in commercially caught
blue sharks Prionace glauca assessed using archival satellite pop-up tags. Mar. Ecol. Prog. Ser. 2009,
387, 241-253.

Coelho, R.; Infante, P.; Santos, M.N. Application of generalized linear models and generalized
estimation equations to model at-haulback mortality of blue sharks captured in a pelagic longline
fishery in the Atlantic Ocean. Fish. Res. 2013, 145, 66-75.

Coelho, R.; Lino, P.G.; Santos, M.N. At-haulback mortality of elasmobranchs caught on the
Portuguese longline swordfish fishery in the Indian Ocean. IOTC-2011-WPEB07-31. 2011.

Poisson, F.; Filmalter, ].D.; Vernet, A.L.; Laurent, D. Mortality rate of silky sharks (Carcharhinus
falciformis) caught in the tropical tuna purse seine fishery in the Indian Ocean. Can. . Fish. Aquat. Sc.
2014, 71(6), 795-798.

Eddy, C.; Brill, R.; Bernal, D. Rates of at-vessel mortality and post-release survival of pelagic sharks
captured with tuna purse seines around drifting fish aggregating devices (FADs) in the equatorial
eastern Pacific Ocean. Fish. Res. 2016, 174, 109-117.

Butcher, P.A.; Peddemors, V.M.; Mandelman, ].W.; McGrath, S.P.; Cullis, B.R. At-vessel mortality
and blood biochemical status of elasmobranchs caught in an Australian commercial longline
fishery. Glob. Ecol. Conserv. 2015, 3, 878-889.

Cooke, S.J.; Suski, C.D. Are circle hooks effective tools for conserving freshwater and marine
recreational catch-and-release fisheries? Aquat. Conserv.: Mar. Freshwat. Ecosyst. 2004, 14, 299-326.
Reinhardt, J.F.; Weaver, J.; Latham, P.J.; Dell'Apa, A.; Serafy, ]J.E.; Browder, J.A.; Christman, M.;
Foster, D.G.; Blankinship, D.R. Catch rate and at-vessel mortality of circle hooks versus J-hooks in
pelagic longline fisheries: A global meta-analysis. Fish. Fish. 2018, 19(3), 413-430.



25.

26.

27.

28.

29.

30.

31.
32.

33.
34.
35.
36.
37.
38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

Butcher, P.A.; Peddemors, V.M.; Mandelman, J.W.; McGrath, S.P.; Cullis, B.R. At-vessel mortality
and blood biochemical status of elasmobranchs caught in an Australian commercial longline
fishery. Glob. Ecol. Conserv. 2015, 3, 878-889.

Coelho, R.; Mufioz-Lechuga, R. Hooking mortality of swordfish in pelagic longlines: comments on
the efficiency of minimum retention sizes. Rev. Fish. Biol. Fisher. 2019, 29, 453-463.

Abecassis, M.; Dewar, H.; Hawn, D.; Polovina, J. Modeling swordfish daytime vertical habitat in
the North Pacific Ocean from pop-up archival tags. Mar. Ecol. Prog. Ser. 2012, 452: 219-236.

Ghani, I. M.M.; Ahmad, S. Stepwise multiple regression method to forecast fish landing. Procedia.
Soc. Behav. Sci. 2010, 8, 549-554.

Akaike, H. Information theory and an extension of the maximum likelihood principle. Bull. Int.
Stat. Inst. 1973, 50, 267-281.

Xue, Y.; Chen, L.P. Statistical Modeling and R Software, first ed. Tsinghua University Press: Beijing,
2007.

Hosmer, D.W.; Lemeshow, S. Applied Logistic Regression, second ed. Wiley. New York. 2000.
Fushiki, T. Estimation of prediction error by using K-fold cross-validation. Stat. Comput. 2011, 21,
137-146.

Naimi, B. usdm: Uncertainty analysis for species distribution models. R package version 2017,
1.1-18.

LeDell, E.; Petersen, M.; Laan, M.V.D. cvAUC: Cross-Validated Area Under the ROC Curve
Confidence Intervals. R package version 1.1.0. 2014.

Breheny, P.; Burchett, W. Visualization of regression models using visreg. R. ]. 2017, 9:2, 56-71.

Fox, J.; Weisberg, S. Car: Companion to Applied Regression. R package version 3.0-12. 2019.
Brownrigg, M.R. Mapdata: Extra Map Databases. R package version 2.3.0. 2007.

Lewin-Koh, N.J.; Bivand, R.; Pebesma, ]J. maptools: Tools for Handling Spatial Objects. R package
version 0.8-6. 2012.

Sun, C.L.; Wang, S.P.; Porch, C.E.; Yeh, S.Z. Sex-specific yield per recruit and spawning stock
biomass per recruit for the swordfish, Xiphias gladius, in the waters around Taiwan. Fish. Res. 2005,
71(1), 61-69.

Punt, A.E.; Campbell, R.A.; Smith, A.D.M. Evaluating empirical indicators and reference points for
fisheries management: application to the broadbill swordfish fishery off eastern Australia. Mar.
Freshw. Res. 2001. 52, 819-832.

Dewar, H.; Prince, E.D.; Musyl, M.K.; Brill, RW.; Sepulveda, C.; Luo, ].G.; Foley, D.; Orbesen, E.S.;
Domeier, M.L; Nasby-lucas, N.; Snodgrass, D., Laurs, RM.; Hoolihan, J.P.; Block,B.A,;
Mcnaughton, L.M. Movements and behaviors of swordfish in the atlantic and pacific oceans
examined using pop-up satellite archival tags. Fish. Oceanogr. 2011, 20(3), 219-241.

West, W.M.; Kerwath, S.E.; Silva, D.C.; Wilke, C.G.; Marsac, F. Horizontal and vertical movements
of swordfish tagged with pop up-satellite transmitters in the south-west Indian ocean, off south
Africa. IOTC-2012-WPB10-16. 2012.

Curran, D.; Bigelow, K. Effects of circle hooks on pelagic catches in the Hawaii-based tuna longline
fishery. Fish. Res. 2011, 109(2-3), 265-275.

Epperly, S.P.; Watson, ].W.; Foster, D.G.; Shah, A.K. Anatomical hooking location and condition of
animals captured with pelagic longlines: the grand banks experiments 2002-2003. B. Mar. Sci. 2012,
88(3), 513-527.

Huang, HW.; Swimmer, Y.; Bigelow, K.; Bigelow, K.; Gutierrez, A.; Foster, D.G. Influence of hook
type on catch of commercial and bycatch species in an Atlantic tuna fishery. Mar. Policy. 2016, 65:
68-75..

Godin, A.C; Carlson, J.K.; Burgener, V. The effect of circle hooks on shark catchability and
at-vessel mortality rates in longlines fisheries. B. Mar. Sci. 2012, 88(3), 469-483.

Aneesh Kumar, K.V.; Paresh, S.K,; Pravin, P.; Madhu, V.R.; Meenakumari, B. Effect of hook design
on longline catches in Lakshadweep Sea, India. Indian J. Fish. 2013, 60, 21-27.

Neilson, D.J.; Waiwood, G.; Smith, S.J. Survival of Atlantic Halibut (Hippoglossus hippoglossus)
caught by longline and otter trawl gear. Can. . Fish. Aquat. Sci. 1989, 46, 887-897.

Poisson, F.; Fauvel, C. Reproductive dynamics of swordfish (Xiphias gladius) in the southwestern
Indian Ocean (Reunion Island). Part 2: fecundity and spawning pattern. Aquat. Living Resour. 2009,
22(1): 59-68.

Muoneke, M.I. Seasonal hooking mortality of bluegills caught on natural baits. N. Am. . Fish.
Manage 1992, 12(3), 645-649.



51.

52.

53.

54.

55.

56.

57.

58.

Epperly, S.P.; Watson, ].W.; Foster, D.G.; Shah, A.K. Anatomical hooking location and condition of
animals captured with pelagic longlines: the grand banks experiments 2002-2003. B. Mar. Sci. 2012,
88(3), 513-527.

Braccini, J.M.; Waltrick, D. Species-specific at-vessel mortality of sharks and rays captured by
demersal longlines. Mar. Policy 2019, 99, 94-98.

Dotson, T. Mortalities in trout caused by gear type and angler-induced stress. N Am | Fish Manag.
1982, 2(1): 60-65.

Nuhfer, A].; Alexander, G.R. Hooking mortality of trophy-sized wild brook trout caught on
artificial lures. N Am | Fish Manag. 1992, 12(3): 634-644.

West, W.M.; Kerwath, S.E.; Silva, D.C.; Wilke, C.G.; Marsac, F. Horizontal and vertical movements
of swordfish tagged with pop up-satellite transmitters in the south-west Indian ocean, off south
Africa. IOTC-2012-WPB10-16. 2012.

Veiga, P.; Gongalves, ].M. S.; Erzin, K. Short-term hooking mortality of three marine fish species
(Sparidae) caught by recreational angling in the south Portugal. Fish. Res. 2011, 108(1), 58-64..
Morgan, A.; Burgess, G.H. At-vessel fishing mortality for six species of sharks caught in the
northwest Atlantic and Gulf of Mexico. Gulf. Caribb. Res. 2007, 19, 123-129.

Orbesen, E.S.; Brown, C.A.; Snodgrass, D.; Serafy, Joseph, E.; Walter, III.; John, F. At-vessel and
postrelease mortality rates of bluefin tuna (Thunnus thynnus) associated with pelagic longline gear
in the northern Gulf of Mexico. Fish. B-Noaa. 2019, 117, 15-32.



	1. Introduction
	Swordfish (Xiphias gladius) is the top predator in
	In the waters under the jurisdiction of the Indian
	2. Materials and Methods
	2.1 Data collection
	2.2 Data analysis
	2.3 Model diagnosis and goodness of fit test

	3. Results
	3.1 Analysis of observed at-haulback mortality
	3.2 The establishment of the GLM model
	3.3 Predictions of the probabilities of at-haulbac

	4. Discussion
	4.1 Observed at-haulback mortality
	4.2 Factors affecting the at-haulback mortality of

	References

