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a b s t r a c t

Fisheries observer programs represent the most reliable way to collect data on fisheries
bycatch. However, their limited coverage leads to important data gaps that preclude
bycatch mitigation at the basin scale. Habitat models developed from available fisheries
observer programs offer a potential solution to fill these gaps. We focus on tropical tuna
purse seine fisheries (TTPSF) that span across the tropics and extensively rely on floating
objects (FOBs) for catching tuna schools, leading to the bycatch of other species associated
with these objects. Bycatch under floating objects is dominated by five species, including
the vulnerable silky shark Carcharhinus falciformis and four bony fishes (oceanic triggerfish
Canthidermis maculata, rainbow runner Elagatis bipinnulata, wahoo Acanthocybium solan-
dri, and dolphinfish Coryphaena hippurus). Our objective was to predict possible bycatch
hotspots associated with FOBs for these five species across two tropical oceans. We used
bycatch data collected from observer programs onboard purse seiners in the Atlantic and
Indian oceans. We developed a generalized additive model per species and per ocean
relating bycatch to a set of environmental covariates (depth, chlorophyll-a concentration,
sea surface temperature, mixed layer depth, surface salinity, total kinetic energy and the
density of floating objects) and temporal covariates (year and month). We extrapolated
modeled relationships across each ocean within the range of environmental covariates
associated with the bycatch data and derived quarterly predictions. We then detected
bycatch hotspots as the 90th percentiles of predictions. In the Atlantic Ocean, bycatch
hotspots were predicted throughout tropical and subtropical waters with little overlap
between species. By contrast in the Indian Ocean, major overlapping hotspots were pre-
dicted in the Arabian Sea throughout most of the year for four species, including the silky
shark. Our modeling approach provides a new analytical way to fill data gaps in fisheries
bycatch. Even with the lack of evaluation inherent to extrapolations, our modeling effort
represents the first step to assist bycatch mitigation in TTPSF and is applicable beyond
these fisheries.
© 2020 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Bycatch, i.e., the incidental capture of non-target species by fisheries, is a major threat to pelagic ecosystems (Ortu~no
Crespo and Dunn, 2017). Bycatch raises conservation concerns for long-lived, late maturing species that are particularly
sensitive to anthropogenic impacts (Lewison et al., 2014). Through the selective removal of species, bycatch may also alter the
structure and functioning of pelagic ecosystems (Kitchell et al., 2002). Fisheries observer programs represent the most
reliable and accurate way to collect data on bycatch (Roda et al., 2019). In the framework of these programs, scientific ob-
servers embark on fishing vessels to quantify species-specific bycatch associated with fishing operations. However, the high
financial and logistical costs induced by these programs preclude their widespread implementation. Gilman et al. (2014)
estimated that two thirds of fisheries managed by regional fisheries management organizations (RFMOs) lack adequate
observer coverage. Although observer coverage has increased since this estimate was made, observer coverage remains
undeniably heterogeneous across regions, leading to sparse bycatch data at the scale of ocean basins.

Fisheries observer programs also provide crucial information on the distribution of poorly known fish and shark species
that can be used to develop habitat models (Lezama-Ochoa et al., 2016; Lopez et al., 2020; Scales et al., 2017). Habitat models
(HMs), also called species distribution models or ecological niche models, are powerful statistical tools for predicting species
occurrences and abundances in areas of sparse data (Elith and Leathwick, 2009). Using these models, species-habitat re-
lationships estimated from available species observations and environmental data may be carefully predicted at the scale of
ocean basins within the range of environmental conditions associated with the data (Mannocci et al., 2015; Redfern et al.,
2017; Virgili et al., 2019). In this study, we combined HMs and available fisheries observer programs to predict hotspots of
bycatch in tropical tuna purse seine fisheries at the scale of two oceans.

Tropical tuna purse seine fisheries (TTPSF) catch close to 5 million tons of tuna per year across fishing grounds in the three
tropical oceans, representing two thirds of the global tuna catch (ISSF, 2019). Largemultispecies aggregations occur at floating
objects in the world’s tropical oceans and are used by TTPSF to target tropical tunas. These floating objects include natural
objects (such as logs) andman-made drifting fish aggregating devices (DFADs) that are massively deployed by fishers (Dagorn
et al., 2013a). As such, fishing on floating objects leads to up to 5 times more bycatch per tuna ton than fishing on free-
swimming tuna schools (Amand�e et al., 2010; Kaplan et al., 2014). Though bycatch in TTPSF is significantly lower than in
some other fisheries (with reported discards rates of 3.9% in TTPSF versus 12.3% in pelagic longlines fisheries for example)
(Roda et al., 2019), the sheer magnitude of TTPSF means that the amount of fishing-induced mortality is significant.

Bycatch under floating objects is dominated by few species, including the silky shark and four bony fishes (oceanic
triggerfish, rainbow runner, wahoo, and dolphinfish) (Dagorn et al., 2013b). Silky sharks are particularly vulnerable to
overexploitation due to their slow growth, late maturation and low fecundity (Cort�es et al., 2010). The bony fishes are less
sensitive to overexploitation, but form an important community whose removal may alter the pelagic ecosystem’s balance
(Dagorn et al., 2013b). Characterizing species-specific bycatch hotspots at the basin scale is of extreme importance given the
high levels of fishing pressure and extensive distribution of TTPSF.

In this study, our objective was to predict bycatch hotspots associated with floating objects for these five species at the
scale of two tropical oceans. We developed HMs to relate species-specific bycatch under floating objects derived from
observer programs onboard purse seiners in the tropical Atlantic and Indian Oceans to a suite of environmental and temporal
covariates. We then used the modeled relationships to derive predictions of potential bycatch hotspots across each tropical
ocean. Our modeling approach offers a solution to fill the current gaps in fisheries observer programs and can help direct
bycatch mitigation efforts at the basin scale.
2. Material and methods

2.1. Fisheries observer data

We used data from observer programs collected onboard French tuna purse seiners between 2014 and 2018 in the tropical
Atlantic Ocean (AO) and the western Indian Ocean (IO). Observer data were collected through the European Union Data
Collection Framework (DCF, EU regulation 199/2008), the Moratoria program of the International Commission for the Con-
servation of Atlantic Tunas (ICCAT), and the OCUP program (Observateur Commun Unique et Permanent) of the French pro-
ducer organization ORTHONGEL (Cauquil et al., 2015). During this period, mean observer coverage rates were 95% in the AO
and 42% in the IO.

All three data collection programs followed the same standardized protocol. For each fishing set, dedicated observers
recorded the date, time, geographical coordinates, and total estimated bycatch per species in number of individuals whenever
possible (or otherwise in weight), along with the estimated mean individual length. When total weight was reported, the
number of individuals was derived by dividing the total weight by the mean individual weight inferred from the recorded
length after conversion using published length-weight relationships (Cauquil et al., 2015). For this analysis, we only
considered observed fishing sets under floating objects (FOBs) because our objective was to predict bycatch associated with
FOBs.

Fisheries observer data were available for 4331 FOBs fishing sets (representing 45% of all observed sets) in the AO and for
6154 FOBs fishing sets (representing 73% of all observed sets) in the IO (Fig. A-1). Silky shark (FAO code: FAL), oceanic
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triggerfish (CNT), rainbow runner (RRU), wahoo (WAH), and dolphinfish (DOL) were the dominant bycatch species in both
oceans (Fig. A-2). Their occurrences ranged from 35% to 69% of FOBs fishing sets in the AO and from 39% to 76% in the IO
(Fig. A-3).
2.2. Environmental covariates

We selected a suite of environmental covariates based on their availability and ecological relevance to tropical pelagic
fishes (detailed in Table B-1): depth, chlorophyll-a concentration (CHL), sea surface temperature (SST), mixed layer depth
(MLD), surface salinity (SAL), total kinetic energy (TKE) and the density of floating objects (FOBs_DENS). The first six cova-
riates were extracted for the 2014e2018 study period from the NOAA National Geophysical Data Center (https://data.nodc.
noaa.gov/cgi-bin/iso?id¼gov.noaa.ngdc.mgg.dem:316), the Nasa OceanColor website (https://oceancolor.gsfc.nasa.gov/
atbd/sst/) and the EU Copernicus marine environment monitoring service (https://marine.copernicus.eu/). Their spatial
resolutions ranged from 1/60� to 1/12� and their temporal resolutions from days to months (Table B-1). All six environmental
covariates were standardized to strata of 1 � �1 � xmonth (our desired spatio-temporal resolution for basin-scale predictions)
using nearest neighbor resampling in each ocean (Figs. B-1 to B-6).

We also included FOBs_DENS as an environmental covariate in our HMs, processed as follows. All DFADs and some natural
objects are equipped with satellite transmitters that provide daily GPS positions (Maufroy et al., 2015). We obtained indi-
vidual objects positions from satellite transmitters belonging to the French tropical tuna purse seine fishery from2014 to 2018
and linearly interpolated them at midnight GMT on each day. Interpolated FOBs positions were then assigned to 1 � �1 � grid
cells, summed per month, and divided by the number of days in each month to derive FOBs_DENS (Katara et al., 2018). The
density of objects positions from the French fleet was considered a reasonable proxy of the overall density of FOBs. Similarly
to the other covariates, FOBs_DENS was standardized to strata of 1 � � 1 � x month (Fig. B-7).

Finally, values of all seven covariates were assigned to fishing sets based on these 1 � � 1 � x month strata (Fig. A-4).
Numbers of captured individuals per 1 � 1� x month strata are shown in Figs. A-5 to A-9.
2.3. Habitat modeling

2.3.1. Model fitting and evaluation
Wedeveloped generalized additivemodels (GAMs) (Wood, 2017) per species and per ocean using the numbers of captured

individuals per FOB fishing set as the response variable. GAMs are flexible regression techniques that rely on smooth functions
for estimating non-linear and non-monotonic relationships between a response and covariates (Wood, 2017). In these
models, a link function g() relates the mean of the response variable Y given the covariates Xi to an additive predictor as
follows:

gðEðY jXiÞÞ¼aþ
X

fiðXiÞ

where fi is a smoothing function of the covariate Xi and a is the intercept. Covariates included the seven above environmental
covariates, as well as two purely temporal covariates (month and year) to account for seasonal and inter-annual variability in
species abundance and observed fishing effort (e.g., Gilman et al., 2012). Spearman’s rank correlation coefficients between
environmental covariates ranged from 0.01 to 0.56 and from 0.02 to 0.53 in absolute value in the Atlantic and Indian oceans,
respectively (Figs. B-8 and B-9), indicating little collinearity. They could thus be included in the same model without leading
to instability in parameter estimation (Zuur et al., 2010). Environmental covariates were modeled with thin-plate regression
splines smoothers with shrinkage to allow non-significant terms to be removed from the model during fitting (Wood and
Augustin, 2002). The basis dimension of smoothers was restricted to 5 to control for overfitting (e.g., Fisher et al., 2018).
Year and month were modeled with thin-plate and cubic regression spline smoothers, respectively. In addition to these fixed
effect smoothers, random effect smoothers of observers and vessels were included to account for observer- and vessel-
specific heterogeneities in the data. All smooth terms were optimized using the restricted maximum likelihood criterion
that penalizes overfitting and leads to more pronounced optima (Wood, 2011).

Regression-based tests of the null hypothesis of equi-dispersion (i.e., Poisson GAMs) against the alternative of over-
dispersion (Cameron and Trivedi, 1990) (implemented in the ‘AER’ package (Kleiber and Zeileis, 2019)) indicated over-
dispersion for all species in both oceans. Therefore, we considered both negative binomial and tweedie distributions (with
log link function) that are well suited to model over-dispersed count data (Candy, 2009; Richards, 2008). For each species and
ocean, we ranked negative binomial and tweedie GAMs based on Akaike’s information criterion scores. We then used a
backward stepwise procedure for variable selection, considering a p-value of 0.01 as the threshold for exclusion of non-
significant covariates.

Model goodness of fit was evaluated by calculating the percentage of mean absolute error (PMAE), i.e., the mean absolute
error divided by the mean abundance (a PMAE > 100% would indicate an average error higher than the average abundance
and thus a poor fit). Diagnostic plots of residuals were examined, including quantile-quantile plots of deviance residuals
(Augustin et al., 2012) and plots of randomized quantile residuals (Dunn and Smyth, 1996) versus the linear predictor.
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Table 1
Summary of selected models across species and oceans. P-values are reported for all covariates and random-effects (NS correspond to non-significant
covariates with a p-value > 0.01 dropped from the models). DE: deviance explained indicating model explanatory power. PMAE: percentage mean absolute
error indicating goodness of fit (indicative values: PMAE > 100%: poor; PMAE 2 [50%e100%]: fair to good; PMAE < 50%: excellent). Environmental
covariates: CHL: chlorophyll concentration; SST: sea surface temperature; SAL: surface salinity, MLD: mixed layer depth; TKE: total kinetic energy;
FOBs_DENS: floating objects density. Statistical distributions (Stat. distrib.): Nb: negative binomial, Tw: tweedie.

Species Ocean Stat.
distri.

Environmental covariates Temporal
covariates

Random effects Dev. Expl.
(%)

PMAE
(%)

DEPTH SST CHL MLD TKE SAL FOBs_
DENS

Year Month Observer Vessel

Silky shark (FAL) Atlantic Nb <
0.001

<
0.001

<
0.001

<
0.001

NS NS < 0.001 <
0.001

<
0.001

< 0.001 <
0.001

20.1 74.7

Indian Nb <
0.005

NS NS <
0.005

NS <
0.001

NS <
0.001

<
0.001

< 0.001 <
0.001

12.7 52.8

Oceanic triggerfish
(CNT)

Atlantic Tw <
0.001

<
0.001

<
0.001

<
0.001

NS <
0.001

< 0.001 <
0.001

<
0.001

< 0.001 <
0.001

25.0 70.3

Indian Tw <
0.005

<
0.001

NS <
0.005

<
0.005

NS NS <
0.001

<
0.001

< 0.001 <
0.005

20.4 77.2

Rainbow runner
(RRU)

Atlantic Tw <
0.001

<
0.001

NS <
0.001

<
0.005

NS < 0.001 <
0.001

<
0.001

< 0.001 <
0.001

29.4 80.2

Indian Tw <
0.005

NS <
0.001

NS NS <
0.001

NS <
0.001

<
0.001

< 0.001 NS 19.1 68.9

Wahoo (WAH) Atlantic Nb <
0.001

<
0.001

<
0.001

<
0.001

NS <
0.005

< 0.001 <
0.005

<
0.001

< 0.001 <
0.005

26.9 75.6

Indian Nb <
0.001

<
0.001

NS NS NS <
0.001

NS NS <
0.001

< 0.001 NS 16.7 71.4

Dolphinfish (DOL) Atlantic Nb <
0.001

<
0.001

NS NS NS <
0.001

NS <
0.001

<
0.001

< 0.001 NS 22.5 71.2

Indian Tw NS <
0.001

NS <
0.001

NS <
0.001

NS <
0.005

<
0.001

< 0.001 <
0.005

17.5 64.9
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GAMs were developed using the ‘mgcv’ package (Wood, 2019) in R.

2.3.2. Predictions of bycatch at the basin scale
For each species and ocean, the best selected model was used to predict bycatch (in number of individuals per fishing set)

across strata of 1 � � 1 � x month. Predictions assumed that (i) the vulnerability of species to bycatch and (ii) the modeled
relationships between species-specific bycatch and environmental covariates remained constant across geographic space. To
avoid misleading extrapolation to novel environmental conditions, predictions were constrained to the individual ranges of
the environmental covariates associated with the observed sets. Monthly predictions were then averaged quarterly. Uncer-
tainty in our model predictions was estimated using maps of coefficients of variation (CVs), which were derived by dividing
the standard errors of the GAM coefficients by the mean predictions.

2.3.3. Detection of species-specific bycatch hotspots
We used the 90th percentile of species-specific bycatch predictions (corresponding to the top 10% predicted bycatch

values) as the global threshold for identifying bycatch hotspots. For each species and ocean, we calculated the 90th percentile
of quarterly bycatch predictions. We then extracted the prediction cells exceeding this threshold and converted them to
polygons. Polygons formed by single isolated cells (representing between 1.4 and 8.6% of the hotspots cells in the Atlantic
Ocean and between 0.4 and 4.6% in the Indian Ocean) were removed. We then combined species-specific hotspots polygons
into a single quarterly map per ocean and smoothed them with a Gaussian kernel using the ‘smoothr’ package (Strimas-
Mackey, 2018). Hotspots corresponding to the 75th percentile of species-specific bycatch predictions were also extracted
using the same procedure for comparison.
3. Results

3.1. Models overview

The selected models included 5 to 8 covariates in the AO and 4 to 6 covariates in the IO and resulted in overall lower
deviances explained in the IO (mean deviances explained across species: 25% in the AO and 17% in the IO) (Table 1). The most
significant environmental covariates across models were DEPTH and SST, while MLD, TKE, and FOBs_DENS were rarely sig-
nificant. Temporal covariates and random effects were significant in most models. Model goodness-of-fit was satisfying based
on residual diagnostics (Figs. C-1 to C-5) and values of PMAE (which were overall lower in the IO) (Table 1).
4
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3.2. Bycatch-environment relationships

Overall, modeled relationships between species-specific bycatch and covariates (compared on the same environmental
covariate ranges) were dissimilar between oceans (Fig. 1). Several opposite relationships were found between oceans (e.g., for
WAH with SST, DOL with SST, WAH with MLD) and relationships were overall more significant in the AO (e.g., for RRU with
MLD, FAL with SST, CNTwith CHL). The few comparable relationships between oceans included the relationships ofWAHwith
DEPTH, DOL with SAL, and CNT with MLD. Modeled relationships also appeared dissimilar between species in the same ocean
(very few exceptions included the almost identical relationships with DEPTH for FAL and DOL in the AO and the comparable
relationships with SAL for all species except CNT in the IO).
3.3. Predictions of bycatch hotspots in the Atlantic Ocean

In the Atlantic Ocean, the prediction envelope excluded the north and south subtropical gyres characterized by deeper
mixed layer depth and higher salinity (except for FAL and RRU for which SAL was non-significant) (Fig. 2). The prediction
envelope also excluded the Benguela current characterized by lower sea surface temperatures. Bycatch hotspots were pre-
dicted throughout tropical and subtropical waters with little overlap between species (Fig. 2, Table 2). FAL hotspots were
predicted in the coastal waters of northwestern Africa (year-round) and Gabon and Angola (in quarter 3). FAL hotspots were
also predicted in the north and south subtropical gyres (in quarters 1e2 and 4). CNT hotspots were predicted in equatorial
waters year-round inside the core area of purse seine fishing. For RRU, WAH and DOL, hotspots were predicted in the coastal
waters of Brazil and in offshorewaters of thewestern and central Atlantic (with limited overlap between hotspots). In general,
CVs were highest at the northern and southern geographic limits of the prediction envelope (Figs. D-1 to D-5), reflecting the
low confidence of relationships with SAL and MLD at the limits of the observed covariate ranges (Fig. 1). Highest CVs were
Fig. 1. Statistical relationships between species-specific bycatch (numbers of individuals per FOB fishing set) and environmental covariates. To facilitate com-
parisons between species and between oceans, plots have the same x and y axes and include relationships with non-significant covariates (dropped from the
models). Violin plots show the density of observed sets in covariate space (revealing differing ranges of environmental covariates between oceans). Portions of
relationships beyond the 5th and 95th quantiles of the data indicated by vertical dotted lines are associated with lower confidence. We note that relationships are
undistinguishable in the Indian Ocean for DOL and WAH with TKE, and for WAH, DOL and FAL shark with FOBs_DENS. Species: FAL: silky shark; CNT: oceanic
triggerfish; RRU: rainbow runner; WAH: wahoo; DOL: dolphinfish. Environmental covariates: CHL: chlorophyll-a concentration; SST: sea surface temperature;
SAL: surface salinity, MLD: mixed layer depth; TKE: total kinetic energy; FOBs_DENS: floating objects density. Sources for species drawings: https://www.
wikipedia.org/, http://www.fao.org, http://www.efishalbum.com.
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Fig. 2. Predicted bycatch hotspots associated with FOBs for the five species in the Atlantic Ocean, using the 90th percentile of predictions for defining the
hotspots. Hotspots were smoothed with a Gaussian kernel. Dashed polygons represent the spatial extents of the tropical purse seine fisheries across all flags
derived from the public databases of RMFOs. Black squares delimit areas where predictions would result in misleading extrapolations to novel covariate ranges
(except for species for which these covariates were non-significant and therefore dropped for prediction, e.g., salinity for FAL in the AO). Species-specific bycatch
predictions and associated CVs are shown in Figs. D-1 to D-5. Maps of bycatch hotspots defined as cells exceeding the 75th percentile of predictions are also
provided in Appendix E. Species: FAL: silky shark; CNT: oceanic triggerfish; RRU: rainbow runner; WAH: wahoo; DOL: dolphinfish. Quarters: 1: JanuaryeMarch;
2: AprileJune; 3: JulyeSeptember; 4: OctobereDecember.

Table 2
90th percentile thresholds used for detecting bycatch hotspots (in numbers of individuals rounded to the nearest unit) across species and oceans.

Species Ocean Quarter 1 Quarter 2 Quarter 3 Quarter 4

Silky shark (FAL) Atlantic 3 5 5 3
Indian 9 7 10 10

Oceanic triggerfish (CNT) Atlantic 77 87 112 122
Indian 126 153 243 172

Rainbow runner (RRU) Atlantic 155 156 207 137
Indian 79 67 96 90

Wahoo (WAH) Atlantic 19 8 15 21
Indian 7 14 22 14

Dolphinfish (DOL) Atlantic 6 3 9 10
Indian 22 20 23 27

L. Mannocci, F. Forget, M.T. Tolotti et al. Global Ecology and Conservation 24 (2020) e01393
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associated with FAL andWAH hotspots predicted in offshore waters (ranging from 50 to 80%). In contrast, CVs associated with
FAL hotspots in coastal waters and with hotspots of other species were relatively low.
3.4. Predictions of bycatch hotspots in the Indian Ocean

In the Indian Ocean, the prediction envelope excluded the northern Arabian Sea characterized by higher salinity and the
Gulf of Bengal and south China Sea characterized by higher chlorophyll-a concentration and lower salinity (except for CNT for
which these covariates were non-significant) (Fig. 3). The prediction envelope also excluded colder waters in the southern
Indian Ocean (except for FAL and RRU) and deeper waters in the eastern Indian Ocean. Major bycatch hotspots were predicted
for four species in the Arabian Sea with strong overlap between species (for FAL, WAH and DOL year-round, and for these
three species plus RRU in quarters 2e4) (Fig. 3, Table 2). Other bycatch hotspots were predicted in eastern offshore waters for
RRU, WAH and DOL and near the southern geographic prediction limit for these three species and FAL. Contrary to other
species, predicted hotspots for CNT were concentrated in offshore equatorial waters year-round. CVs were overall lower than
in the Atlantic Ocean but highest (up to 40%) for the predicted hotspots in the Arabian Sea (Figs. D-6 to D-10), reflecting the
lowest confidence of relationships with SAL at the upper limits of the observed SAL range (Fig. 1).
Fig. 3. Predicted bycatch hotspots associated with FOBs for the five species in the Indian Ocean, using the 90th percentile of predictions for defining the hotspots.
Same caption as Fig. 2. Species-specific bycatch predictions and associated CVs are shown in Figs. D-6 to D-10. Maps of bycatch hotspots defined as cells exceeding
the 75th percentile of predictions are also provided in Appendix E.

7
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4. Discussion

4.1. Applicability for bycatch mitigation

The limited coverage of fisheries observer programs leads to large data gaps in bycatch distribution worldwide, impeding
bycatch mitigation across ocean basins. Our habitat modeling approach applied to available fisheries observer programs in
TTPSF offers a newway to fill these data gaps. In these fisheries, high bycatch volumes of five dominant species occur at FOBs,
raising growing concerns about the impacts of this fishing strategy on pelagic biodiversity (Dagorn et al., 2013b). We com-
bined available fisheries observer programs and environmental data to predict potential species-specific bycatch hotspots
associated with FOBs across the tropical Atlantic and Indian oceans.

Evenwith the lack of evaluation inherent to such extrapolations (discussed in section 4.4), thismodeling effort can serve as
a first step to assist bycatch mitigation in TTPSF. In the Indian Ocean, the superposition of predicted bycatch hotspots in the
Arabian Sea and at the north of the core fishing area for silky shark and three bony fish species suggests that the silky shark
may constitute an ‘umbrella’ species (Roberge and Angelstam, 2004) whose protection would benefit the wider pelagic
community. By contrast, the limited overlap of predicted bycatch hotspots in Atlantic waters suggests that species-specific
measures would be needed for bycatch mitigation in the Atlantic Ocean. Our predictions also help anticipate bycatch risks
associated with possible spatial expansions of TTPSF. For example, they show that expansions off northwestern Africa may
lead to the bycatch of silky sharks and that further expansions in the Arabian Seamay result in high volumes of bycatch of four
species.

4.2. Ecological interpretation

Our results revealed pronounced differences in bycatch-environment relationships between oceans. These differences
probably arose from the use of readily available covariates that represent indirect drivers of resource availability (e.g., CHL and
TKE) and have different ecological meaning in different oceanographic regimes (Byrne et al., 2019). There are indeed marked
differences in oceanographic regimes of the Atlantic and Indian oceans. For example, productivity is driven by coastal up-
welling along west Africa in the AO (Mittelstaedt, 1991), while in the IO, productivity events are driven by an alongshore
alignment of summer monsoon winds producing localized upwelling off the coasts of Somalia and the Arabian peninsula
(Schott et al., 2009). The use of more direct drivers of resource availability as covariates in HMs would probably result in more
consistent species-environment relationships between oceans. Such covariates could be derived from the outputs of
ecosystem models such as APECOSM (Maury, 2010), as these model outputs become more accurate at the regional scale.

This study represent the first effort to relate captured individual numbers from fisheries observer programs to the density
of floating objects. FOBs form an important component of pelagic ecosystems in tropical oceans (Dagorn et al., 2013a) and
their density has importantly increased due to the substantial rise in DFAD deployments in the last decade (Maufroy et al.,
2017). In the AO, the estimated inverse relationships between individual numbers and the density of floating objects for
some species (e.g., rainbow runner) could indicate higher fragmentation of fish schools above a certain density of objects, as
demonstrated theoretically (Sempo et al., 2013). In the IO, weaker relationships for all species could be explained by the larger
population sizes in this ocean, potentially leading to more uniform distributions of individuals among FOBs (theoretical work
of Sempo et al. (2013)). Future studies should seek to quantify the overall densities of floating objects by combining data from
transmitters across all fishing fleets, or ideally, by conducting fishery-independent surveys.

4.3. Habitat modeling assumptions

A central assumption to our habitat modeling approach is the constant vulnerability of species to the fishery across
geographic space. When developing HMs from fisheries data, it is important to keep in mind that sampling is conditional on
catchability, which reflects both the abundance and the vulnerability of species to the fishing gear (Arreguín-S�anchez, 1996).
Catchability is considered a reasonable proxy of species relative abundance when species vulnerability can be assumed
constant (Scales et al., 2017). Because our study species nearly exclusively occupy epipelagic waters above the thermocline
(Forget et al., 2015; Theisen and Baldwin, 2012; Whitney et al., 2016), it was reasonable to assume they would be consistently
vulnerable to the fishery across their distributional ranges.

Another important assumption that underlies all HMs is that individuals sampled through the data occupy suitable
habitats for their persistence (Guisan and Thuiller, 2005). An emerging but yet unproven theory proposes that DFADs act as
ecological traps potentially driving their associated species to unsuitable habitats with detrimental consequences on their
biology (as reflected by their poor body condition) (Hallier and Gaertner, 2008). Using HMs to relate species body condition to
environmental covariates (Champion et al., 2020), rather than just abundance, would be helpful for quantifying habitat
suitability from a biological standpoint, but at the cost of an important effort in biological sampling across fisheries. Ulti-
mately, fisheries-independent data collected for all species in both oceans would be needed to disentangle the environmental
drivers of species abundances. While deployments of pop-up archival transmitting (pSAT) tags have revealed large-scale
movements of silky sharks in the IO (Queiroz et al., 2019), such deployments remain challenging on the other four species
due their smaller sizes. To date, fisheries observer programs with both high spatio-temporal coverage and high-quality
training of observers remain one of the most cost-effective means to learn about the spatial ecology of these species.
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4.4. Confidence in extrapolations

In this study, we geographically extrapolated model predictions beyond core purse seine fishing areas within the range of
environmental covariates associated with the observed fishing sets. As such, we avoided extrapolations in areas with dis-
similar environmental conditions on a-per covariate basis (Mannocci et al., 2015), but not in areas with novel covariates
combinations. Approaches excluding novel combinations of covariates, e.g., by delimiting convex hulls in environmental
space, would have considerably reduced the geographical extent of extrapolations (Authier et al., 2017). We opted for a less
conservative approach that allowed geographical extrapolation over the presumed tropical distributional ranges of our study
species (Gaither et al., 2016). The CVs associated with the predictions were highest at the margins of prediction envelopes
where environmental covariates values approached their sampled limits. This corresponded in the Atlantic Ocean to the
offshore area (spanning hotspots for FAL and WAH), and in the Indian Ocean to the Arabian Sea (spanning hotspots for four
species). Both the lowest predicted individual numbers and the lowest densities of sampled covariate values (as shown on the
violin plots in Fig. 1) could explain the overall highest CVs in the Atlantic Ocean.

Like in all extrapolation exercises, the quantitative evaluation of predictions is hindered by the lack of species distribution
data beyond surveyed regions (Derville et al., 2018; Mannocci et al., 2015; Virgili et al., 2019). Oceanic triggerfish and rainbow
runner are principally captured by artisanal fisheries in which reporting is extremely limited (e.g., Pinheiro et al., 2011).
Wahoo and dolphinfish are captured by pelagic longlines (Huang and Liu, 2010), but are not subject to mandatory reporting
requirements by RFMOs. Silky sharks are caught by pelagic longlines in both the Atlantic Ocean (Coelho et al., 2012; Fr�edou
et al., 2015) and the Indian Ocean (Huang and Liu, 2010) and are subject to mandatory reporting in fishers logbooks (IOTC
resolution 15/01 and ICCAT Recommendation 11/08). However, information on shark occurrences remains highly incomplete
because of inconsistent reporting by some fleets and uncertain species identification (Fiorellato et al., 2019). Despite this
incomplete information, it is worth noting the correspondence between high catches of sharks (all species combined) re-
ported in multiple fisheries in the Arabian Sea and our predicted silky shark hotspots in this region (Fiorellato et al., 2019).
Until accurate data can be a collected from fisheries observer programs in these tropical regions, our modeling approach can
serve as an initial step to fill the existing gaps.

5. Conclusions

This study offers a novel approach for predicting bycatch hotspots in areas of sparse data by combining fisheries observer
and environmental data through habitat models. Our model predictions help address data gaps in the distribution of bycatch
in TTPSF, laying a foundation for bycatch mitigation efforts at the basin scale. Our predictions can also serve to anticipate
bycatch risks associated with future expansions of these fisheries. This is particularly important as the use of GPS transmitters
and echosounders attached to DFADs has already contributed to the expansion of the purse-seine fishing grounds in tropical
oceans. Using habitatmodels to anticipate the potential consequences of such expansions on pelagic communities is critical to
move towards an ecosystem approach to fisheries management. Our modeling approach can be more generally applied to
derive predictions of bycatch hotspots for other fisheries, species, and data-poor ecosystems.
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