



IOTC-2022-WPB20-07a-BLM

# REVIEW OF THE STATISTICAL DATA AVAILABLE FOR INDIAN OCEAN BLACK MARLIN (1950-2020)

Author: IOTC Secretariat

## Abstract

The document provides an overview of the consolidated knowledge about fisheries catching black marlin (*Istiompax indica*) in the Indian Ocean since the early 1950s based on a range of data sets collected by Contracting Parties and Cooperating Non-Contracting Parties (CPCs) of the IOTC and curated by the IOTC Secretariat. The available fisheries statistics indicate that black marlins are mostly caught in artisanal fisheries which represented more than 70% of the total catch of black marlin in 2020. Total catches of black marlin with gillnets and small longlines in the coastal waters of I.R. Iran, India, Sri Lanka, Indonesia, Pakistan, and Oman have shown a major increasing trend over the last decade with catches from large-scale longline fisheries experiencing a major decline since 2008. Information available on discarding practices of black marlin in industrial fisheries indicates that discard levels are small in longline fisheries while black marlins are more often discarded in large-scale purse seine fisheries, although in small quantities. Discarding in coastal fisheries interacting with the species is poorly known but considered to be negligible. Information available on the spatial distribution of catch and effort has substantially improved over the last decade and shows that black marlins are mostly caught in the north west part of the Indian Ocean, with important catches reported along the coasts of the Arabian Sea, India, and Sri Lanka. The reporting of size-frequency data has slightly improved over the last decade but remains very limited for most artisanal and industrial fisheries.

**Keywords**: billfish | black marlin | Indian Ocean | tuna fisheries

## Introduction

The overarching objective of this paper is to provide participants in the data preparatory meeting of the 20<sup>th</sup> Session of the IOTC Working Party on Billfish (<u>WPB20</u>) with a review of the status of the information available on black marlin (*Istiompax indica*), in the Indian Ocean through temporal and spatial trends in catches and their main recent features, as well as an assessment of the reporting quality of the data sets. A full description of the data collated and curated by the Secretariat is available in IOTC (2022).

# Nominal catch

## Historical trends (1950-2020)



Industrial fisheries Artisanal fisheries

Figure 1: Annual time series of cumulative nominal absolute (a) and relative (b) catches (metric tons; t) of black marlin by type of fishery for the period 1950-2020. Data source: <u>best scientific estimate of nominal catches</u>

Table 1: Best scientific estimates of average annual nominal catches (metric tons; t) of black marlin by decade and fishery for the period 1950-2019. The background intensity color of each cell is directly proportional to the catch level. Data source: <u>best scientific estimate of nominal catches</u>

| Fishery                  | 195 <b>0</b> s | 196 <b>0</b> s | 1970s | 1980s | 1990s | 2000s  | 2010s  |
|--------------------------|----------------|----------------|-------|-------|-------|--------|--------|
| Purse seine   Other      | 0              | 0              | 4     | 65    | 96    | 193    | 481    |
| Longline   Other         | 0              | 0              | 0     | 30    | 866   | 1,809  | 692    |
| Longline   Fresh         | 0              | 0              | 24    | 55    | 596   | 1,236  | 1,165  |
| Longline   Deep-freezing | 862            | 1,661          | 1,367 | 1,669 | 962   | 724    | 842    |
| Line   Coastal longline  | 16             | 15             | 21    | 163   | 302   | 705    | 3,558  |
| Line   Trolling          | 8              | 11             | 20    | 25    | 63    | 122    | 330    |
| Line   Handline          | 1              | 1              | 1     | 259   | 361   | 197    | 516    |
| Baitboat                 | 0              | 0              | 0     | 0     | 0     | 0      | 1      |
| Gillnet                  | 26             | 31             | 44    | 368   | 1,628 | 5,306  | 8,667  |
| Other                    | 0              | 0              | 2     | 32    | 17    | 33     | 71     |
| Total                    | 912            | 1,719          | 1,483 | 2,667 | 4,891 | 10,325 | 16,322 |



Figure 2: Annual time series of cumulative nominal absolute (a) and relative (b) catches (metric tons; t) of black marlin by fishery for the period 1950-2020. Data source: best scientific estimate of nominal catches

Table 2: Best scientific estimates of annual nominal catches (metric tons; t) of black marlin by fishery for the period 2011-2020. The background intensity color of each cell is directly proportional to the catch level. Data source: <u>best scientific estimate of nominal catches</u>

## IOTC-2022-WPB20-07a-BLM

| Fishery                  | 2011   | 2012   | 2013   | 2014   | 2015   | 2016   | 2017   | 2018   | 2019   | 2020   |
|--------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Purse seine   Other      | 417    | 412    | 621    | 428    | 429    | 406    | 707    | 393    | 590    | 555    |
| Longline   Other         | 2,212  | 1,516  | 661    | 304    | 60     | 73     | 55     | 48     | 54     | 50     |
| Longline   Fresh         | 1,549  | 562    | 1,510  | 1,572  | 770    | 874    | 932    | 932    | 1,566  | 730    |
| Longline   Deep-freezing | 445    | 1,223  | 653    | 866    | 1,461  | 2,038  | 857    | 216    | 216    | 215    |
| Line   Coastal longline  | 1,254  | 1,662  | 2,285  | 3,831  | 5,810  | 5,856  | 4,028  | 5,347  | 4,407  | 4,201  |
| Line   Trolling          | 223    | 218    | 347    | 263    | 212    | 1,275  | 117    | 261    | 224    | 194    |
| Line   Handline          | 386    | 383    | 458    | 536    | 606    | 872    | 540    | 511    | 504    | 875    |
| Baitboat                 | 0      | 0      | 0      | 0      | 6      | 5      | 0      | 1      | 0      | 1      |
| Gillnet                  | 6,810  | 6,854  | 8,197  | 10,400 | 9,696  | 10,930 | 7,910  | 11,020 | 10,463 | 10,799 |
| Other                    | 72     | 71     | 82     | 74     | 73     | 69     | 77     | 55     | 64     | 94     |
| Total                    | 13,370 | 12,902 | 14,813 | 18,276 | 19,122 | 22,397 | 15,222 | 18,785 | 18,088 | 17,714 |



Figure 3: Annual time series of nominal catches (metric tons; t) of black marlin by fishery group for the period 1950-2020. Data source: best scientific estimate of nominal catches

## Main fishery features (2016-2020)

Table 3: Mean annual catches (metric tons; t) of black marlin by fishery between 2016 and 2020. Data source: best scientific estimate of nominal catches

| Fishery                  | Fishery code | Catch  | Percentage |
|--------------------------|--------------|--------|------------|
| Gillnet                  | GN           | 10,224 | 55.4       |
| Line   Coastal longline  | LIC          | 4,768  | 25.9       |
| Longline   Fresh         | LLF          | 1,007  | 5.5        |
| Longline   Deep-freezing | LLD          | 708    | 3.8        |
| Line   Handline          | LIH          | 660    | 3.6        |
| Purse seine   Other      | PSOT         | 530    | 2.9        |
| Line   Trolling          | LIT          | 414    | 2.2        |
| Other                    | ОТ           | 72     | 0.4        |
| Longline   Other         | LLO          | 56     | 0.3        |
| Baitboat                 | BB           | 1      | 0.0        |



Figure 4: Mean annual catches (metric tons; t) of black marlin by fleet and fishery between 2016 and 2020, with indication of cumulative catches by fleet. Data source: best scientific estimate of nominal catches



Figure 5: Annual catch (metric tons; t) trends of black marlin by fishery group between 2016 and 2020. Data source: best scientific estimate of nominal catches



Figure 6: Annual catch (metric tons; t) trends of black marlin by fishery group and fleet between 2016 and 2020. Data source: best scientific estimate of nominal catches

#### 0.10 -Difference in nominal catches (x1,000 t) 0.05 0.00 -0.05

Changes from previous WPB

Figure 7: Differences in the available best scientific estimates of nominal catches (metric tons; t) of black marlin between this WPB and its previous session (<u>WPB19</u> meeting held in September 2021)



### Uncertainties in nominal catch data

Figure 8: (a) Annual nominal catches (metric tons; t) of black marlin estimated by quality score and (b) percentage of nominal catches fully or partially reported to the IOTC Secretariat for all fisheries and by type of fishery, in the period 1950-2020



## **Discard levels**

Figure 9: Size (fork length; cm) frequency distribution of black marlin retained and discarded at sea in purse seine and longline fisheries as available in the ROS regional database



Figure 10: Distribution of black marlins discarded at sea in the western Indian Ocean purse seine fisheries with information on condition at release as available in the ROS regional database



Figure 11: Distribution of black marlins discarded at sea in the Indian Ocean longline fisheries with information on condition at release as available in the ROS regional database

## **Geo-referenced catch**

## Spatial distribution of catches

### Geo-referenced catches by fishery and decade (1950-2009)



Figure 12: Mean annual time-area catches in weight (metric tons; t) of black marlin, by decade, 5x5 grid, and fishery. Data source: <u>time-area</u> <u>catches</u>



Figure 13: Mean annual time-area catches in numbers of black marlin, by decade, 5x5 grid, and fishery. Data source: time-area catches

Geo-referenced catches by fishery, last years (2016-2020) and decade (2010-2019)



Figure 14: Mean annual time-area catches in weight (metric tons; t) of black marlin, by year / decade, 5x5 grid, and fishery. Data source: timearea catches



Figure 15: Mean annual time-area catches in numbers of black marlin, by year / decade, 5x5 grid, and fishery. Data source: time-area catches



### Uncertainties in catch and effort data

Figure 16: (a) Annual nominal catches (metric tons; t) of black marlin estimated by quality score and (b) percentage of nominal catch for which geo-referenced catches were reported to the IOTC Secretariat in agreement with the requirements of Res. 15/02 for all fisheries and by type of fishery, in the period 1950-2020

# Size composition of the catch



### Samples availability

Figure 17: Availability of black marlin size-frequency data as absolute number of samples (left) and relative number of samples (right) per year and fishery group. Data source: <u>standardized size-frequency dataset</u>

#### Longline fisheries



Figure 18: Spatial distribution (average number of samples per grid per year) of available black marlin size-frequency data for longline fisheries in the period 2016-2020. Data source: <u>standardized size-frequency dataset</u>

#### **Gillnet fisheries**



Figure 19: Spatial distribution (average number of samples per grid per year) of available black marlin size-frequency data for gillnet fisheries in the period 2016-2020. Data source: <u>standardized size-frequency dataset</u>

#### Line fisheries



Figure 20: Spatial distribution (average number of samples per grid per year) of available black marlin size-frequency data for line fisheries in the period 2016-2020. Data source: <u>standardized size-frequency dataset</u>

#### Purse seine fisheries



Figure 21: Spatial distribution (average number of samples per grid per year) of available black marlin size-frequency data for purse seine fisheries in the period 2016-2020. Data source: <u>standardized size-frequency dataset</u>



Figure 22: Availability of black marlin size-frequency data as absolute number of samples per year longline fishery. Data source: <u>standardized</u> <u>size-frequency dataset</u>



Figure 23: Spatial distribution (average number of samples per grid per year) of available black marlin size-frequency data in deep-freezing longline fisheries in the period 2016-2020. Data source: <u>standardized size-frequency dataset</u>



Figure 24: Spatial distribution (average number of samples per grid per year) of available black marlin size-frequency data in fresh longline fisheries in the period 2016-2020. Data source: <u>standardized size-frequency dataset</u>



### **Gillnet** fisheries

Figure 25: Availability of black marlin size-frequency data as absolute number of samples per year and gillnet fishery. Data source: <u>standardized</u> <u>size-frequency dataset</u>



Figure 26: Availability of black marlin size-frequency data as absolute number of samples (left) and relative number of samples (right) per year and line fishery type. Data source: <u>standardized size-frequency dataset</u>



Figure 27: Spatial distribution (average number of samples per grid per year) of available black marlin size-frequency data by line (coastal longline) fisheries in the period 2016-2020. Data source: <u>standardized size-frequency dataset</u>



S-F availability (size samples / year)

Figure 28: Spatial distribution (average number of samples per grid per year) of available black marlin size-frequency data by line (handline) fisheries in the period 2016-2020. Data source: <u>standardized size-frequency dataset</u>



Figure 29: Spatial distribution (average number of samples per grid per year) of available black marlin size-frequency data by line (trolling) fisheries in the period 2016-2020. Data source: <u>standardized size-frequency dataset</u>



Figure 30: Availability of black marlin size-frequency data as absolute number of samples per year and purse seine fishery. Data source: standardized size-frequency dataset



Figure 31: Spatial distribution (average number of samples per grid per year) of available black marlin size-frequency data by purse seine fisheries (other) in the period 2016-2020. Data source: <u>standardized size-frequency dataset</u>



Temporal patterns and trends in size distributions

Figure 32: Relative size distribution (fork length; cm) of black marlin caught by purse seine (Other) and gillnet fisheries. Other = no information provided on school association. Fill intensity is proportional to the number of samples recorded for the year, while the green dot corresponds to the median value. Data source: standardized size-frequency dataset

## **Size distribution by fishery and fleet** Gillnet fisheries



Figure 33: Relative size distribution of black marlin (fork length; cm) recorded for gillnet fisheries by year and main fleet. Data source: standardized size-frequency dataset



## Uncertainties in size-frequency data

Figure 34: (a) Annual nominal catches (metric tons; t) of black marlin estimated by quality score and percentage of nominal catches for which geo-referenced size-frequency data were reported to the IOTC Secretariat in agreement with the requirements of Res. 15/02 for all fisheries and by type of fishery, in the period 1950–2020

## References

IOTC (2022) <u>Review of the statistical data available for Indian Ocean billfish</u>. IOTC, Virtual meeting, 12-15 September 2022

# Appendix

## Appendix I: Changes in best scientific estimates of nominal catches from previous WPB

Some improvements were made to the best scientific estimates of nominal catches of black marlin since the 19<sup>th</sup> session of the IOTC Working Party on Billfish (WPB19), with overall small modifications in the time series of annual catches (**Fig. 7**). The changes covering the period 2016-2019 were due to: (i) some revision of the Seychelles (SYC) longline and line catches, (ii) updates of billfish catches by Yemen (YEM) as available in the <u>FAO global capture</u> production database, (iii) changes in the Indian Ocean major areas for longline fisheries from China (CHN) and most fisheries from Sri Lanka (LKA), (iv) re-assignment of line catches from the fleet EU,France (EUFRA) to EU,Mayotte (EUMYT), and (v) assignment of catches from EU,United Kingdom (EUGBR) to the new CPC *United Kingdom of Great Britain and Northern Ireland* (GBR) following the withdrawal of the United Kingdom from the European Union (**Table 4**).

Table 4: Changes in best scientific estimates of average annual nominal catches (metric tons; t) of black marlin by year, fleet, fishery group and main Indian Ocean area, limited to absolute values higher than 10 t

| Year | Fleet | Fishery group | Area                 | Current (t) | Previous (t) | Difference (t) |
|------|-------|---------------|----------------------|-------------|--------------|----------------|
| 2019 | EUGBR | Longline      | Western Indian Ocean | 0           | 13           | -13            |
|      | GBR   | Longline      | Western Indian Ocean | 13          | 0            | 13             |
|      | IND   | Gillnet       | Eastern Indian Ocean | 522         | 568          | -46            |
|      |       | Line          | Eastern Indian Ocean | 3,105       | 2,991        | 114            |
|      |       | Line          | Western Indian Ocean | 58          | 84           | -26            |
|      | LKA   | Gillnet       | Eastern Indian Ocean | 1,202       | 848          | 353            |
|      |       | Gillnet       | Western Indian Ocean | 76          | 430          | -353           |
|      |       | Line          | Eastern Indian Ocean | 856         | 534          | 322            |
|      |       | Line          | Western Indian Ocean | 0           | 322          | -322           |
|      |       | Longline      | Eastern Indian Ocean | 159         | 58           | 101            |
|      |       | Longline      | Western Indian Ocean | 761         | 862          | -101           |
|      |       | Purse seine   | Eastern Indian Ocean | 56          | 8            | 48             |
|      |       | Purse seine   | Western Indian Ocean | 0           | 23           | -23            |
|      | SYC   | Line          | Western Indian Ocean | 19          | 0            | 19             |
| 2018 | EUGBR | Longline      | Western Indian Ocean | 0           | 15           | -15            |
|      | GBR   | Longline      | Western Indian Ocean | 15          | 0            | 15             |
|      | IND   | Gillnet       | Eastern Indian Ocean | 905         | 965          | -60            |
|      | LKA   | Gillnet       | Eastern Indian Ocean | 939         | 816          | 123            |
|      |       | Gillnet       | Western Indian Ocean | 39          | 162          | -123           |
|      |       | Line          | Eastern Indian Ocean | 2,167       | 2,150        | 17             |
|      |       | Line          | Western Indian Ocean | 0           | 17           | -17            |
|      |       | Longline      | Eastern Indian Ocean | 271         | 105          | 166            |
|      |       | Longline      | Western Indian Ocean | 405         | 571          | -166           |
|      | SYC   | Line          | Western Indian Ocean | 30          | 0            | 30             |
|      |       | Longline      | Western Indian Ocean | 51          | 81           | -29            |
| 2017 | 1     | Line          | Western Indian Ocean | 31          | 0            | 31             |
|      |       | Longline      | Eastern Indian Ocean | 0           | 11           | -11            |
|      |       | Longline      | Western Indian Ocean | 601         | 615          | -15            |
| 2016 | 1     | Line          | Western Indian Ocean | 22          | 0            | 22             |
|      |       | Longline      | Western Indian Ocean | 1,015       | 1,037        | -22            |