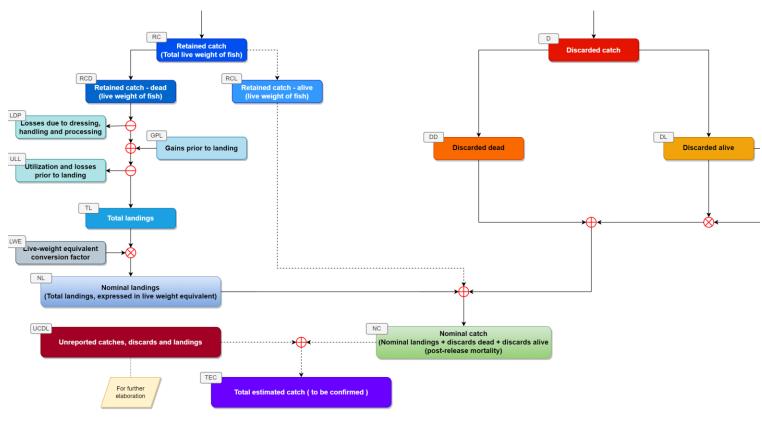


AN OVERVIEW OF THE MORPHOMETRIC DATA AVAILABLE ON SHARKS AT THE IOTC SECRETARIAT

IOTC SECRETARIAT


Purpose

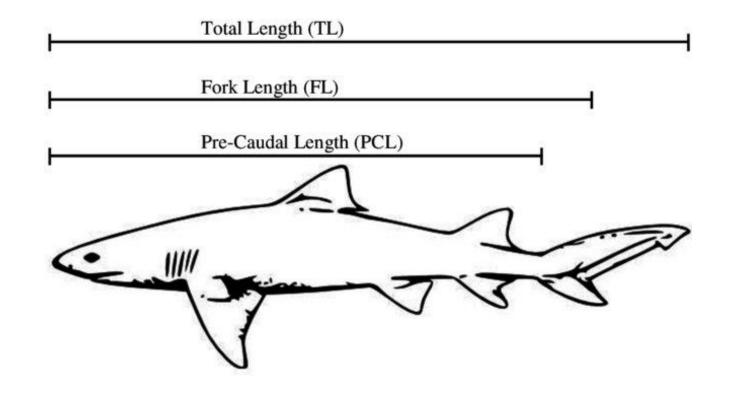
To provide participants in the 18th Session of the IOTC Working Party on Ecosystems and Bycatch (WPEB18) with a review of the morphometric data available on pelagic sharks caught or interacted with by fisheries for tuna and tuna-like species in the IOTC area of competence.

FAO-CWP CATCH CONCEPTS DIAGRAM

CWP27 proposal for a revised catch concepts diagram (FAO 2022)

Sharks are processed onboard longliners

Examples of sharks during transshipments from longliners (Source: IOTC Secretariat)



MORPHOMETRIC DATA

- To derive nominal landings (in live weight equivalent) from landings of dressed sharks;

- To estimate individual weights from length measurements;

- To harmonize length measurements and derive sizefrequency data

LENGTH-LENGTH RELATIONSHIPS

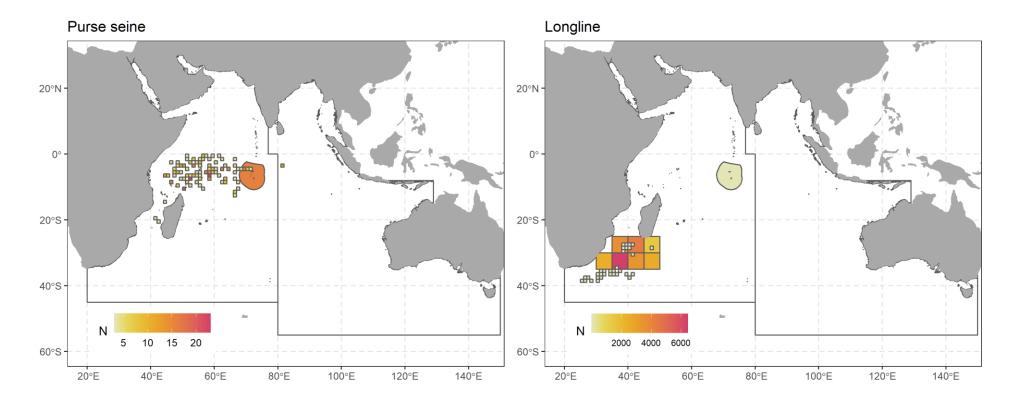
Species	Equation	а	b	N	MinFL	MaxFL	Reference	
Blue shark	TL = a + b x FL	-2.133820	1.2165450	10			Anderson et al. 2011*	
	PCL = a + b x FL	-0.831809	0.9145784				Coelho et al. 2017	
	TL = a + b x FL	-4.417651	1.2172855					
	TL = a + b x FL	5.319706	1.1680878	6,485	68	352	Ariz et al. 2007	
Silky shark	TL = a + b x FL	2.900000	1.2000000	265			Filmalter et al. 2012	
	PCL = a + b x FL	0.400000	0.9090909	214				
	TL = a + b x FL	4.404965	1.2168411	192			Anderson et al. 2011	
	TL = a + b x FL	10.136700	1.1436000	520	66	247	Ariz et al. 2007	

Compilation of published length-length relationships for Indian Ocean sharks. * indicates IOTC current reference relationships (<u>IOTC-2022-WPEB18(AS)-DATA11</u>)

LENGTH-WEIGHT RELATIONSHIPS

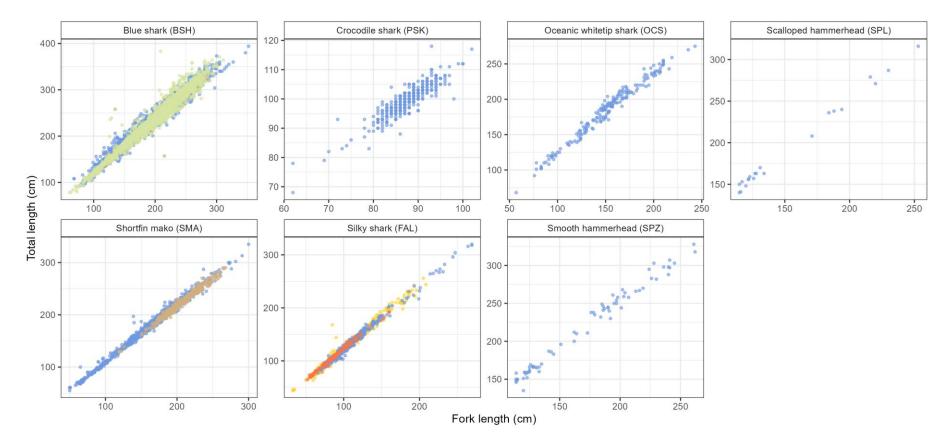
Species	Equation	а	b	N	MinFL	MaxFL	Reference	
	RD = a x FL^b	0.000015900000	2.84554	2,842	57	311	Romanov and Romanova 2009	
	RD = a x FL^b	0.000002796800	3.16970	2,279	81	298	Ariz et al. 2007	
Blue shark	HG = a x FL^b	0.000000401890	3.36200	2,129	82	352		
Blue shark	HG = a x FL^b	0.000001609450	3.09904	289	150	260	Garcia-Cortés and Mejuto 2002	
	HG = a x FL^b	0.000001901630	3.07615	164	93	253	Espino et al. 2010	
l	HG = a x FL^b	0.000002331003	3.03269	5,039	1,633	3,406	Ramos-Cartelle et al. 2022	
	RD = a x FL^b	0.000016000000	2.91497	687	66	281	Romanov and Romanova 2009	
	RD = a x FL^b	0.000004725500	3.17710	369	66	244	Ariz et al. 2007	
Silky shark	HG = a x FL^b	0.000012977000	2.83230	94	97	269		
	HG = a x FL^b	0.000011329400	2.91484	411	50	220	Garcia-Cortés and Mejuto 2002	
	HG = a x FL^b	0.000006610192	2.97421	1,387	53	290	Ramos-Cartelle et al. 2022	
	RD = a x FL^b	0.000018428000	2.92450	93	57	219	Ariz et al. 2007*	
Oceanic whitetip shark	HG = a x FL^b	0.000080431000	2.44780	131	94	243	Ariz et al. 2007	
	HG = a x FL^b	0.000002984460	3.15417	567	65	215	Garcia-Cortés and Mejuto 2002	
Shortfin mako	RD = a x FL^b	0.000034900000	2.76544	906	70	342	Romanov and Romanova 2009	
Bigeye tresher	RD = a x FL^b	0.000014130000	2.99565	185	110	256		
Tiger shark	RD = a x FL^b	0.000026140000	2.82374	676	50	351	Romanov and Romanova 2012	
Great hammerhead	RD = a x FL^b	0.000002930000	3.23475	143	107	335		
Scalloped hammerhead	RD = a x FL^b	0.000021010000	2.88029	197	94	257		

Compilation of published length-weight relationships for Indian Ocean sharks. * indicates IOTC current reference relationships (IOTC-2022-WPEB18(AS)-DATA11)


MORPHOMETRIC DATA SETS COLLATED FROM CPCs

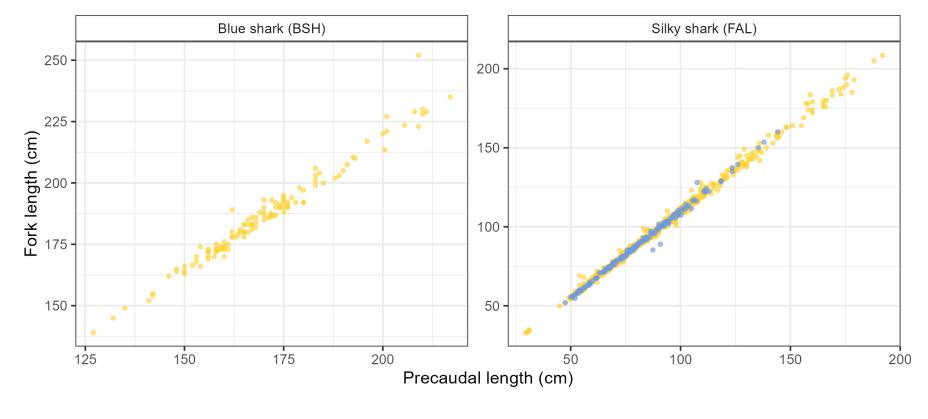
SOURCE	PROJECT	Ν	
BRT	Market monitoring	754	
IEO	National observer program	8,331	
IEO	Pilot action	9,344	
ютс	ROS	934	
IPMA	National observer program	2,864	
IRD	Fimalter PhD.	183	
YUGNIRO	Scientific cruises	2,852	

SPATIAL DISTRIBUTION OF THE SAMPLES



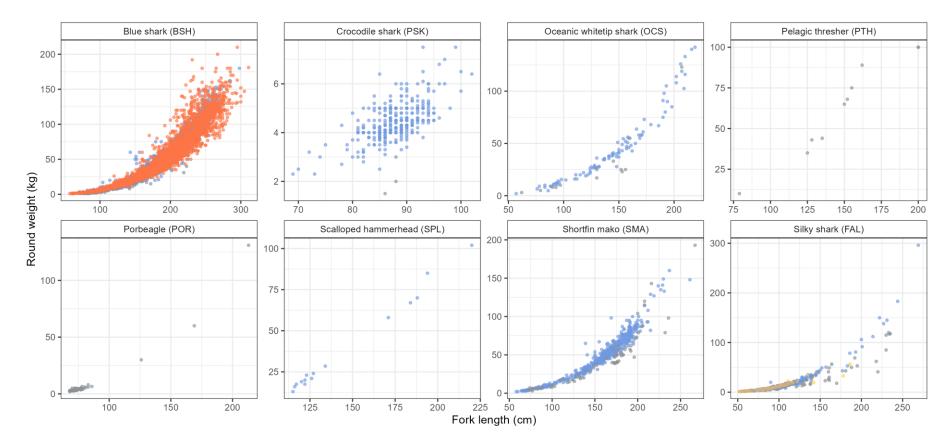
Spatial distribution of samples for which geographic information was made available (n = 10,429)

FORK LENGTH VS. TOTAL LENGTH



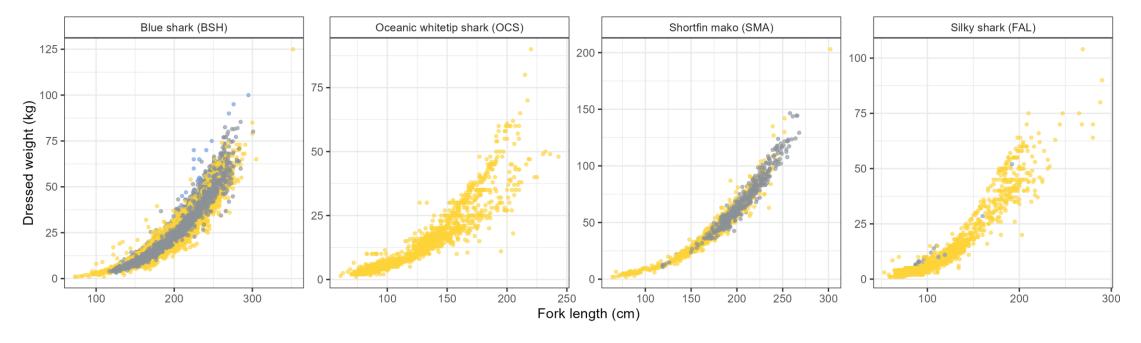
BRT
IEO
IOTC
IPMA
IRD
YUGNIRO

PRECAUDAL LENGTH VS. FORK LENGTH



• BRT • IRD

FORK LENGTH VS. ROUND WEIGHT



BRT
IEO
IOTC
IRD
YUGNIRO

FORK LENGTH VS. DRESSED WEIGHT

• IEO • IOTC • IPMA

CONCLUSIONS

- Current relationships mainly borrowed from other oceans and need to be updated;
- Several data sets collected for sharks in the Indian Ocean through monitoring and research programmes;
- Combination of different data sets to derive robust statistical relationships and conversion factors;
- Development of a biological database at the Secretariat to host morphometric and other biological data.

ndian Ocean Tuna Commission

iotc ctoi

ommission des Thons de l'Océan Indien

References

Ariz, J., Delgado De Molina, A., Ramos, M.L., and Santana, J.C. 2007. Length-weight relationships, conversion factors and analyses of sex-ratio, by length range, for several species of pelagic sharks caught in experimental cruises on board Spanish longliners in the South Western Indian Ocean during 2005. *In* IOTC Proceedings. IOTC, Victoria, Seychelles, 11-13 July 2007. p. 24. Available from https://www.iotc.org/documents/length-weight-relationships-conversion-factors-and-analyses-sex-ratio-length-range-several.

Ramos-Cartelle, A., Garcia-Cortés, B., Mejuto, J., Gonzalez-Gonzalez, I., Carroceda, A., and Fernandez-Costa, J. 2022. Length-weight relationships for several large pelagic sharks from the indian ocean. IOTC, Virtual meeting, 5-9 September 2022. p. 23. Available from <u>https://iotc.org/documents/length-weight-relationships-several-large-pelagic-sharks-indian-ocean</u>.