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1 Abstract 

Close-Kin Mark-Recapture (CKMR) is a genetics-based method for estimating key population 

metrics useful for independent assessment of stock status, or as data inputs for integrated stock 

assessment models, or as inputs to management procedures. This report evaluates a range of 

sampling scenarios for Indian Ocean yellowfin tuna to provide estimates of Total Reproductive 

Output (TRO, similar to spawning stock biomass), depletion in TRO, adult mortality and mean 

recruitment. This design study evaluates the sample sizes of juveniles and adults required to give 

precise estimates of these population metrics.  

The analysis used a simplified population model that reproduced recent yellowfin tuna population 

dynamics, but in an equilibrium framework. Under these conditions, annual sampling levels of 

25,000 to 30,000 samples were predicted to yield useful insights on population metrics with 

reasonable precision in the estimates. Specifically, the depletion in total reproductive output 

(TRO), could be estimated with a coefficient of variation (CV) of 15% with 30,000 annual samples 

over 5 years. After the initial 5 years are complete, a CKMR monitoring program would build on 

the existing data set to provide ongoing information for assessment and management.    

 

2 Introduction 

The Indian Ocean yellowfin tuna stock is estimated to be overfished and subject to overfishing (Fu 

et al. 2021).  However, there is significant uncertainty in stock status due to long-standing issues, 

conflicts and inaccuracies in the data inputs and spatial structure used in the stock assessment 

(IOTC 2021). For instance, catches are not well documented for some fisheries, particularly 

artisanal fleets that harvest a large proportion of the yellowfin tuna catch. Therefore, it is difficult 

to obtain a reliable estimate of total fishing mortality. Also, standardised CPUE from longline fleets 

provide the main index of abundance, but it is unclear whether this index is reflective of 

abundance. This is due, at least in part, to operational changes in longline fishing (e.g., targeting, 

gear changes, new technology), fleet movements and declining longline effort which has led to 

significant gaps in spatial and temporal strata. The yellowfin tuna stock assessment will be 

externally reviewed in 2023 (see appendix 6c, IOTC 2021), but issues relating to uncertainty in the 

main data inputs will likely remain.   

There is a need for improved approaches to estimate abundance that are independent of the 

current data inputs and biases associated with the current stock assessment. One promising 

alternative approach for an estimate of abundance that has been identified by the Indian Ocean 

Tuna Commission (IOTC) Scientific Committee is the application of close-kin mark-recapture 

(CKMR), a method with a proven track record in the assessment and management of Southern 

bluefin tuna (Bravington et al. 2016). CKMR data can also be integrated into assessments with 

other sources of data and can be used in management procedures (e.g., Hillary et al. 2019, 2020).  

CKMR has been identified as a priority research activity for yellowfin tuna in the Working Party on 

Tropical Tuna (WPTT) Program of Work since 2017 (IOTC 2017). Kolody & Bravington (2019) 

concluded that CKMR should be logistically feasible for Indian Ocean yellowfin tuna provided that 

ample tissue samples can be obtained from appropriate locations and fisheries across the Indian 
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Ocean. They recommended that prior to an ocean basin-wide project, a detailed design study be 

undertaken that attempts to represent the biology more accurately and quantifies expected 

precision of different population parameter estimates with respect to sampling design. As such, 

this working paper outlines the preliminary results of a detailed CKMR design study for Indian 

Ocean yellowfin tuna.   

 

3 Close-kin mark-recapture overview 

CKMR uses modern genetics to identify closely related pairs of fish. The number of kin pairs 

identified and their distribution in space and time are used to estimate key population parameters 

such as absolute spawning biomass, total mortality, and connectivity (Bravington et al. 2016). 

CKMR is different to other types of mark-recapture approaches in that offspring ‘tag’ their parents 

via their DNA, and half-siblings ‘tag’ their shared parents via their shared DNA. CKMR requires 

collection of tissue samples for DNA extraction and genotyping, but these can be sampled from 

dead fish (i.e., fishery catches). In comparison to other mark-recapture approaches, there is no 

requirement to consider tag shedding, tag-induced mortality, mixing rates of tagged fish, or 

reporting rates of recaptured fish.  

The concept of CKMR is based on the fact that every individual has exactly two parents 

(Bravington et al. 2016). For a given sample from a population, we would expect to find more 

parent-offspring pairs (POPs) in a smaller population than we would from a larger population. The 

probability that any random comparison between a juvenile and adult in the population is a 

parent-offspring pair can be expressed as: 

 

Pr(𝑃𝑂𝑃) =
2

𝑁𝑝𝑎𝑟𝑒𝑛𝑡𝑠
 

 

where Nparents is the total number of parents (mature individuals) in the population and the ‘2’ 

represents the two parents of each offspring. The expected number of observed POPs, k, for a 

sample from the population can then be determined by summing the probabilities across all 

possible parent-offspring comparisons from the sample, such that: 

 

𝑘 =
2(𝑚𝑝𝑎𝑟𝑒𝑛𝑡𝑠 ×𝑚𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔

𝑁𝑝𝑎𝑟𝑒𝑛𝑡𝑠
 

𝑁𝑝𝑎𝑟𝑒𝑛𝑡𝑠 =
2(𝑚𝑝𝑎𝑟𝑒𝑛𝑡𝑠 ×𝑚𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔

𝑘
 

 

where mparents and moffspring are the number of parents and offspring sampled from the population 

respectively.   

The summary above is an oversimplification of the CKMR approach. Other factors that are 

considered in a real application include adult mortality in the interval between birth and sampling, 
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relative fecundity of fish by age or size, non-random sampling, and uncertainties with genotyping 

individuals (Bravington et al. 2016).   

Another type of useful kin probability is the probability that any two individuals share a parent 

(i.e., they are half-siblings). Both types of kin probability depend on population dynamics for the 

stock, and so can be used to derive estimates of population parameters. Parent-offspring pairs and 

half-sibling pairs provide different information in CKMR population models. Parent-offspring pairs 

primarily inform estimates of relative reproductive output, while half-sibling pairs allow us to 

estimate total mortality. We can then partition estimates of total mortality (Z) into natural 

mortality (M) and fishing mortality (F) if data on catch-at-age/size are available. The application of 

CKMR across several years also allows us to estimate relative reproductive output by size/age and 

connectivity across the sampled areas.   

The application of CKMR involves at least five main elements:  

1. A design phase (this paper) to determine the sampling design that will yield a sufficient 

number of kin pairs to achieve the required level of precision in parameter estimates from 

CKMR. A design study evaluates the likely precision in CKMR estimates from alternative 

locations and size/age/sex structures of the samples;  

2. Collection of tissue samples from a stratified sample of the population   

3. Genotyping of the samples using a sufficient number of genetic markers that enable the 

detection of kin pairs;  

4. Kin-finding to accurately identify kin pairs. Parent-offspring pairs (POPs), and half-sibling 

pairs (HSPs) have proved feasible and sufficient in applications to date. Full-sibling pairs are 

not useful for teleost CKMR applications;  

5. A population model to find the parameters that achieve the best fit between the observed 

and expected number of kin pairs, given the sampling design and demographic covariates 

(e.g., length, age, and sex) of the population. The population model is very similar to a 

standard age-structured stock assessment model. 

 

4 Methods 

A CKMR design simulation model was implemented to estimate the sample sizes (of adults and 

juveniles) required to give reasonable precision (CV; coefficient of variation) for population metrics 

of interest (e.g., depletion, adult mortality, mean recruitment) for Indian Ocean yellowfin tuna.  

The process consisted of four main steps, summarised here and detailed below:  

i. An operating model, consisting of a simplified version of the most recent stock assessment 

model for yellowfin tuna (Fu et al. 2021), was produced to generate estimates of 

population size (in numbers) by age;  

ii. The resulting equilibrium population was sampled and aged over 5 years according to the 

candidate sampling scenario;  
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iii. The probability of observing parent-offspring-pairs (POPs) and half-sibling-pairs (HSPs) 

given the sampling scenario was computed, allowing us to derive the precision of key 

population metrics under each sampling scenario;  

iv. Alternative sampling scenarios were explored to identify sampling designs resulting in the 

highest precision for key population metrics.   

 

4.1 Operating model 

The operating model (OM) is a spatial, age-structured equilibrium model that replicates key 

features of the 2021 yellowfin tuna ‘basic’ assessment model (Fu et al. 2021). The model uses a 

quarterly timestep with an age `plus-group' of 28 quarters. The regional structure of the ‘basic’ 

assessment model (Figure 1) was retained but the 21 fisheries were simplified to retain two 

fisheries per region (where possible), one mostly targeting ‘large’ fish and one mostly targeting 

‘small’ fish (Table 1), based on their estimated selectivities. To keep the OM as simple as possible, 

key quantities estimated as part of the 2021 assessment were used as fixed inputs (e.g. juvenile 

and adult movement matrices). 

 

 

Figure 1. Four region spatial stratification of the Indian Ocean for the basic yellowfin tuna assessment model (Fu et 

al. 2021).   
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The OM was conditioned to fit (i) the overall depletion level relative to the unfished level of the 

2021 assessment; and (ii) the aggregate catch biomass by fishery and region (quarterly average 

over the last 2 years). The parameters that were allowed to vary to meet the conditioning 

constraints were the overall mean recruitment and the harvest rates by fishery and region.   

The population model is sexually dimorphic and uses the same life-history parameters (e.g., 

weight and maturity ogives, length-at-age relationship) as those of Fu et al. (2021).  

Natural mortality: Adult natural mortality (M) was left as a free parameter as it is informed by 

close-kin probabilities. As such, M-at-age was parameterised in a slightly different way to the 

assessment to allow the CKMR model to inform the estimates of adult M (since close-kin 

probabilities are impacted by adult survival rate). Juvenile mortality was based on stock 

assessment values by using the maturity ogive to transition from the stock assessment’s mortality-

at-age vector (referred here as 𝑀𝑎
𝑗𝑢𝑣

; Figure 14 of Fu et al. 2021) to a constant adult mortality 

rate: 

 
 

Assessment mortality rates in 𝑀𝑎
𝑗𝑢𝑣

were also converted from annual to quarterly. Adult natural 

mortality was estimated by the model (with a starting value of Madu = 0.15 qtr−1). The resulting 

shape and magnitude of the M vector is very similar to that of the 2021 stock assessment. 

Estimates of M were assumed to be the same for male and females across ages. 

Productivity: As this is an equilibrium model, recruitment is defined by a mean (exploited 

equilibrium) recruitment parameter with stochastic recruitment based on σR. σR was derived from 

the recruitment deviates estimated in the 2021 stock assessment. Recruitment was distributed 

across regions similarly to the basic assessment, but allowing more recruitment in region 2 and 

some recruitment in region 3 (the temperate regions).  

The Total Reproductive Output (TRO) of the mature population in each time period is also 

computed. This metric replaces Spawning Stock Biomass in CKMR models (which itself is really a 

proxy for TRO), and is the main focus of the abundance-related part of the design analysis: 

 

TRO is a function of population at age and 𝜑𝑎,𝑠, the per capita reproductive output-at-age relative 

to the age class with the largest reproductive output (see Appendix I). TRO can be aggregated 

across space when there is an adult population in a given region, and their reproductive output 

(initially) belongs to that region.  

Movement: Juvenile and adult movement matrices estimated by Fu et al. (2021) were used as 

fixed parameters to construct the overall spatial transition matrix-at-age, Φ𝑟′,𝑟,𝑎. The recent mean 

spatial recruitment fractions from the assessment were also used as fixed parameters. Stochastic 

variation in overall recruitment is estimated from the overall stock assessment deviates 

themselves to approximate σR; the spatial deviates are normalised to sum to 1, and we assume a 

variance of 𝜎𝜉  = 0.1 on the transformed scale for the random effects.  
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Fishing fleets and selectivities: Each of the 21 fisheries of the 2021 assessment were re-

assigned to a 'small' or 'large' fishery per region based on the age (or size) distribution of their 

catch, except for region 3 where no fishery for small individuals exist (Table 1). Catch for the 

resulting 7 fisheries were aggregated from the catch of each of the component fleets (Figure 2). 

Selectivity-at-age relationships for the seven fishing fleets were derived from the assessment by 

catch-weighting the base case estimates of the selectivity relationship of each of the component 

fleets and normalising the resulting relationship to a maximum value of 1 (Figure 3). Fishing fleets 

with size-based selectivity were first converted to mean-age-based selectivity by using the length-

at-age relationship from the 2021 assessment. 

 

Table 1. Classification of fisheries from the 2021 stock assessment into fisheries used within the CKMR operating 

model (‘CKMR fishery’). 

2021 Fishery Gear  CKMR region  CKMR fishery  

GI1A  Gillnet  1  Small  

HD1A  Handline  1  Large  

LL1A  Longline (distant water)  1  Large  

OT1A  Other  1  Small  

BB1B  Baitboat  1  Small  

PSFS1B  Purse seine, school sets  1  Large  

LL1B  Longline (distant water)  1  Large  

PSLS1B  Purse seine, log/FAD sets  1  Small  

TR1B  Troll  1  Small  

LL2  Longline (distant water)  2  Large  

LL3  Longline (distant water)  3  Large  

GI4  Gillnet  4  Small  

LL4  Longline (distant water)  4  Large  

OT4  Other  4  Small  

TR4  Troll  4  Small  

PSFS2  Purse seine, school sets  2  Large  

PSLS2  Purse seine, log/FAD sets  2  Small  

TR2  Troll  2  Small  

PSFS4  Purse seine, school sets  4  Large  

PSLS4  Purse seine, log/FAD sets  4  Small  

LF4  Longline (fresh tuna)  4  Large  
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Figure 2. Figure 2. Quarterly yellowfin tuna catches per fleet (coloured lines) and region (panels). The horizontal line 

denotes the equilibrium catch level used to tune the operating model. 

 

 

Figure 3. Age-based selectivity of the seven fleets (coloured lines) used in the operating model by region (panel). 

Fleets were defined based on whether they mostly catch large or small individuals. There is no ‘Small’ fleet in region 

3. 
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OM conditioning: The `basic’ case assessment model estimates a current depletion level of 

around 30% of unfished equilibrium levels. This was used as the primary conditioning target, 

together with the overall catch (in metric kilo tonnes; kt) of each of the small and large fleets.  

The convergence criteria applied when conditioning the OM were defined so that depletion was 

estimated within 0.1% of the target, and overall catch biomass by fishery was estimated within 

0.2% of the target.  

The estimate of current overall spawning biomass was around 1,100 kt with an implied SSB0 of 

around 3,600 kt. The estimates are close to the `basic’ case of the assessment which predicts a 

current overall SSB of about 1,000 kt and an SSB0 of about 3,300 kt (Figure 29 in Fu et al. 2021).   

4.2 Estimating the sampling distribution (by sex and aggregated)  

In order to compute the expected number of POPs and HSPs that will be detected for a given 

sampling scenario, we need to estimate the numbers-at-age of adult and juvenile sampled for 

each scenario.   

The population was first projected over 28 quarterly time-steps assuming equilibrium total catch 

levels based on the quarterly average for the last two years of fishing included in the `basic’ case 

assessment model, and equilibrium harvest rates as described earlier. The recruitment deviates 

are parameters of the CKMR OM.  

For adults, the distribution of samples-at-age was defined to be proportional to catch-at-age, with 

the assumption that all adult samples come from the 'large' fleets. Region-specific selectivities 

were applied to generate the proportional samples-at-age, scaled to match the proportion of 

exploitable biomass in each region.  

Juveniles were drawn from the youngest animals caught (so that movement from their natal 

region is minimal), and assumed to be about 3 quarters-old. For the spatially homogeneous CKMR 

case (see below), no regional structure was assumed when generating the juvenile samples. 

4.3 Precision of management parameters under a given sampling 
regime  

A CKMR model was developed for the spatially homogeneous case that also accounted for 

possible ageing error in the adult individuals sampled. For the spatially homogenous case, the 

adults from all regions spawn the new cohort of juveniles; the spatial regions do not act as 

localised reproductive units. Note that this basically replicates the current assumption in the 

assessment model (i.e., there is a single population of adults that produces recruits which are then 

distributed across all regions).  

The probability that adult i and juvenile j are a parent-offspring pair was computed for each 

pairwise combination of adults sampled in quarter ti with observed age at sampling ai and sex si, 

and juvenile sampled in quarter cj: 

 
 



10  |  CSIRO Australia’s National Science Agency 

where ã is the true age given the observed age ai, A is the ageing error matrix, and 𝜑ã−(𝑡𝑖−𝑐𝑖)
 is the 

proportion of the total reproductive output contributed by an individual of true age ã and sex si in 

the quarter when the juvenile was born. The identity bracket ensures that the probability outcome 

is zero if the adult was caught before the juvenile was born or born after the juvenile's birth 

quarter (see Appendix I).   

The probability of two juveniles being a half-sibling pair (HSP) was computed for each pairwise 

combination of juvenile sampling quarters. This probability differs from that for POPs in that we 

never directly observe the possible shared parent; we make inferences about its dynamics from 

the fact that we have detected two of its offspring. For the spatially homogenous reproduction 

case, there are three requirements when constructing the HSP probability:  

1. At the time of birth of the older juvenile, we need to account for the possible sex and age 

distribution of adults that could have been the individual’s parent at that time;  

2. We need to account for the mortality (natural and fishing related) the potential parent 

could have experienced between the times of birth of the older and younger juveniles 

being compared;  

3. At the time of birth of the younger juvenile we need to calculate the probability that, of all 

the animals that could have been a parent of the older juvenile, the parent of the older 

juvenile was also the parent of the younger juvenile;  

We assume that there is no ageing error when sampling juveniles because their size is 

representative of their age.  

The probability that two juveniles from cohorts ci and ci' share a parent of unknown sex and age is 

thus: 

 

In order to ensure that juvenile comparisons are between individuals belonging to two different 

cohorts, comparisons are only made for juvenile samples separated by at least 6 months. We also 

assumed that all HSPs could be correctly identified using genetic methods (i.e. the rate of false 

negatives is 0).  

In order to generate variance estimates for estimated population variables, a Hessian matrix is 

constructed for the key estimable parameters via an approximation to the Fisher information 

matrix constructed by summing the information from each set of pairwise CKMR comparison 

(Appendix I). The Fisher information is a metric of information content commonly used in 

mathematical statistics.  

From the Hessian, approximate estimates of the variance of derived population quantities (e.g., 

TRO, mean recruitment level) can then be obtained from the delta method. Automatic 

differentiation via the TMB package in R (Kristensen et al. 2016) is used so that all gradients and 

derived quantities are calculated to machine precision. The full process is detailed in Appendix I.  

A spatially heterogenous CKMR design was also developed (see Appendix I), with individual age 

assumed to be known exactly. Preliminary results are included for comparison with the spatially 

homogeneous case.   
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4.4 Sampling scenarios  

Two axes of sampling scenarios were defined: in the first one, the overall number of annual 

samples was varied in increments of 5,000 from 20,000 to 60,000. In the second scenario axis, the 

proportion of juveniles in the annual samples varied from 0.1 to 0.9 in increments of 0.1.  

For the spatially heterogenous case, the first axis of sampling scenarios (i.e., total sample size) was 

tested with a proportion of 50% adults in the annual samples. 

 

5 Results 

The expected number of kin pairs were estimated based on each sampling scenario (Figure 4), and 

the coefficients of variation were computed for the resulting mean recruitment, adult natural 

mortality, depletion in total reproductive output and overall total reproductive output (Figure 5). 

 

 

Figure 4. Expected number of kin pairs (numbers in cells) by kin type (panels) detected along the two axes of 

sampling scenarios: increasing proportion of juveniles in the sample (X-axis) and annual number of samples (Y-axis). 

Numbers in bold highlight the scenarios with equal proportion of adults and juveniles. 

 

A general rule of thumb for CKMR studies is that at least 50 to 100 kin pairs are required to 

generate useful estimates of population metrics. In addition, as POPs and HSPs give insights on 

different population parameters, this number should be spread across the two kin types (based on 

management priorities; see Discussion). For this design study, the total number of detected kin 

pairs increased, as expected, with annual sample numbers (Figure 4). There were also more kin 

pairs detected for the same sample number when the proportion of juveniles in the samples was 

lower, although with fewer POPs. At annual sampling levels of 25,000 and 30,000 individuals, 77 

and 112 kin pairs were detected, respectively, when equal proportions of juveniles and adults 

were sampled. 

Different levels of precision were achieved for each of the four focal population metrics, with 

highest precision achieved for depletion in total reproductive output across all sampling scenarios 

(Figure 5). For this metric, CVs of 15.3% and 12.9% were predicted under annual sampling levels of 
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25,000 and 30,000 individuals, with additional improvement in CVs with a higher proportion of 

juveniles in the sample (e.g. CVs of 13.0% and 11.1% with 70% juveniles in the annual samples of 

25,000 and 30,000). 

Given 30,000 annual samples spread evenly over adults and juveniles, CVs of 32.9%, 26.5% and 

21.8% were achieved for mean recruitment levels, adult mortality and total reproductive output 

(Figure 5). 

 

 

Figure 5. Coefficients of variation (CVs) for four population metrics under two axes of sampling scenarios: increasing 

proportion of adults in the sample (X-axis) and annual number of samples (Y-axis). Numbers in bold highlight the 

scenarios with equal proportion of adults and juveniles, with the size of the CV depicted by the coloured gradient; 

cells in grey have CV > 0.5. 

 

The main simulation results assumed no spatial structure when computing kin probabilities. A preliminary 

model accounting for movement between the region where an individual had spawned vs. where it was 

captured showed little to no inflation in CV resulting from the inclusion of movement (Figure 6). As the 

current version of the spatial model was derived assuming exact age, we also include CVs from an earlier 

version of the close-kin spatially homogeneous model assuming exact age for comparison. 
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Figure 6. Comparison of coefficients of variation (CV) for key management metric (panels) under three phases of 

development for the CKMR model (coloured bars). The spatial version of the model shows preliminary results. 

Scenarios use an even distribution of adults and juveniles in the samples. 

 

6 Sampling design considerations 

CKMR requires the collection of uncontaminated tissue samples from a mix of size classes across 

time and space. The fleets and fisheries that will most likely be of utility in undertaking large-scale 

sampling programs for the purposes of CKMR, are those currently providing length data. Getting 

an adequate spread of samples across time and space will be important to account for any 

population structuring, movement, and spatial variation relevant to stock parameters (e.g., 

mortality). A mix of size classes of yellowfin tuna will also be required to ensure that both 

potential offspring and parents are adequately sampled. The juveniles samples will need to be 

young enough to infer their region of spawning.  

To evaluate the potential to collect sufficient samples of yellowfin tuna for CKMR, we examined 

length data reported to the IOTC in each of the four stock assessment regions (Figure 1), with the 

assumption that collecting tissue samples from fish that are already measured is likely to be easier 

than establishing supplementary sampling programs. Within each of the four regions, length data 

were separated into two main size classes (<50 cm FL and >75 cm FL) to represent the juvenile and 

adult samples to be sampled for CKMR.  

There are two strong modes in the length frequency data (Figure 7) that reflect the difference in 

targeting and selectivity of gear types, and the distribution of juvenile yellowfin tuna (Fu et al. 

2021). Longline and free school purse seine sets generally catch yellowfin tuna greater than 75cm, 

while log/FAD set purse seine and bait boats generally catch yellowfin tuna less than 50cm (Figure 

8). Most length data have been reported from Region 1 and Region 4 and these are also the main 
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regions where large numbers of small yellowfin tuna (<50cm) are reported. This is to be expected 

as yellowfin tuna spawn in tropical, equatorial waters and juveniles are less common in more 

temperate waters (Zudaire et al. 2013). Large yellowfin tuna (>75cm) are routinely reported in all 

regions except for Region 3 where sampling is relatively sparse due to substantially reduced fishing 

effort in this region. 

 

 

Figure 7. Average annual length frequency distribution of sampled Indian Ocean yellowfin tuna by region (panels) 

from 2010-2020 with two vertical dashed lines denoting potential offspring (<50cm) and parents (>75cm). Note 

independent y-axes. 

 

Results from the CKMR design simulation suggest that approximately 30,000 samples of yellowfin 

tuna per year over five years (150,000 samples in total) would be required to achieve adequate 

recaptures of kin pairs to provide acceptable levels of precision for key population metrics. Based 

on Figure 5, a sampling regime of 70% offspring and 30% adults provides optimal results in terms 

of precision. Given this information, and if uniform sampling was assumed across the four regions 

and two size classes, this would require around 2,250 large yellowfin tuna (>75cm) sampled each 

year from each region, and 10,500 small yellowfin tuna (<50cm) from Region 1 and Region 4 (as 

very few juveniles are likely to be sampled from Region 2 and Region 3).   
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Figure 8. Average annual length frequency distribution of yellowfin tuna by fishery in the Indian Ocean from 2010-

2020 by region (panels) and gear (colour). Vertical dashed lines denoting potential offspring (<50cm) and parents 

(>75cm). BB = Bait boat. GI = Gillnet. HD = Handline. LF = Longline fresh. LL = Longline. OT = Other. PSFS = Purse 

seine free set. PSLS = Purse seine log set. TR = Troll. 

 

 

This level of sampling intensity is already achieved across most region and size class combinations 

in the length data collection programs currently implemented by IOTC member countries (Figures 

9 & 10). For small yellowfin tuna (<50cm), more than 10,000 individuals have been sampled on 

average in Region 1 and Region 4 each year from 2010-2020 (Figure 9). In Region 1, >10,000 

samples are taken from the bait boat fishery alone. However, in Region 4 length samples are more 

evenly dispersed across gear types and may require a more comprehensive sampling program to 

collect adequate numbers. For large yellowfin tuna (>75cm), more than 2,000 individuals have 

been sampled annually on average from 2010-2020 across all regions, although the sampling 

intensity in Region 3 is much lower than other regions (Figure 10). An informed and substantial 

sampling program will be required to collect this number of samples across regions and size 

classes throughout the Indian Ocean. This will require collaboration and cooperation from 

numerous member nations, institutes, organisations and most importantly fishers, observers, and 

port samplers.   
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Figure 9. Top three fisheries that provide length samples of small yellowfin tuna (<50 cm) by region in the Indian 

Ocean and the average number of samples they have provided per year by gear type from 2010-2020. BB = 

Baitboat. HD = Handline. LL = Longline. PSLS = Purse seine log set. OT = Other. TR = Troll. 

 

Figure 10. Top three fisheries that provide length samples of large yellowfin tuna (>75 cm) by region in the Indian 

Ocean and the average number of samples they have collected per year by gear type from 2010-2020. GI = Gillnet. 

HD = Handline. LL = Longline. LF = Longline fresh. OT = Other. TR = Troll. 
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7 Discussion 

This report evaluates a range of sampling scenarios designed to estimate key population metrics of 

Indian Ocean yellowfin tuna using CKMR. The analysis used a simplified population model that 

reproduced recent yellowfin tuna population dynamics, but in an equilibrium framework. Under 

these conditions, annual sampling levels of 25,000 to 30,000 samples were predicted to yield 

informative insights on population metrics based on the resulting precision in these estimates. 

Specifically, the depletion in total reproductive output (TRO), a metric with a similar interpretation 

to the depletion in spawning stock biomass, could be estimated with a CV of 15% given 30,000 

annual samples after 5 years.   

CKMR approaches allow us to gain insights on population parameters that were previously hard to 

estimate using conventional methods, such as adult natural mortality rates. While precision in 

adult M is not as high as for depletion in TRO, improvement in the precision of this quantity can be 

achieved by collecting a higher proportion of juveniles. This is because more HSPs are expected to 

be detected with higher proportions of juveniles sampled, and half-sibling probabilities are 

impacted by adult survival rates. For instance, by decreasing the proportion of adults sampled to 

30% (i.e., 70% juvenile samples), we can improve the precision in CV of adult M by about 4 points.  

Collecting a higher proportion of juveniles as part of the annual samples is also practical from a 

sampling logistics perspective, because more juveniles (<50 cm) than adults (>75 cm) are currently 

measured as part of existing length frequency sampling programs in the IOTC, and it will be easier 

to collect genetic samples from these fish than to implement supplementary sampling programs. 

There is no loss in the precision of management quantity estimates as long as at least 20-30% of 

the annual samples are taken from adults.  

Of note, even if population dynamics based on the 2021 stock assessment are not representative 

of true population status, CKMR would still yield useful information. If fewer kin pairs are detected 

than expected, it implies that absolute levels of population abundance are higher than those 

predicted by the 2021 stock assessment (used for the simulation). Conversely, if more kin pairs are 

detected than expected, absolute levels of population abundance are lower than those predicted 

by the 2021 stock assessment, but CKMR-based estimates of population abundance will be more 

precise. In addition, new insights about stock structure would be achieved by looking at the spatial 

distribution of detected kin pairs (e.g., see Trenkel et al. 2022).  

The application of CKMR requires an estimate of age for the individuals that are sampled to 

determine birth year and age-specific parameters for the calculation of kinship probabilities. While 

we can predict the age of juvenile yellowfin tuna (<50 cm) from length with reasonable precision, 

estimating the age of adult yellowfin tuna from length is more problematic, due to large variation 

in size-at-age and asymptotic growth (Farley et al. 2021). Otoliths currently provide the most 

reliable estimates of age for tunas, but it is unlikely that sufficient otoliths could be collected, 

processed and analysed each year for adult yellowfin tuna. Recent advances in epigenetic ageing 

using DNA methylation have demonstrated encouraging results across a range of species (Mayne 

et al. 2020, 2021). This would present a more viable option for CKMR sampling of yellowfin tuna as 

the same tissue sample could be used for both genotyping and epigenetic ageing. The results from 

this CKMR simulation are robust to potential ageing error from epigenetic ageing because the 

ageing error we applied in our CKMR model (CV=0.15 across ages) approximates the ageing error 
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observed in epigenetic ageing for other species. Of note, sex can also be obtained from the DNA 

sample, which negates the need to collect gonad tissue and reduces the potential error associated 

with macroscopic determination of sex by observers.  

We arbitrarily chose a program length of 5 years for this analysis as a reasonable starting point for 

a sampling program. Other timelines could also be explored. Of note, once a CKMR sampling 

program has been established (i.e., it achieves satisfactory CVs for population parameters of 

interest), ongoing sampling can proceed at lower intensity while continuing to yield updated 

estimates of similar (or better) precision. This is because, within reasonable time frames, the pool 

of possible kin comparisons grows exponentially with the number of samples.   

The next steps in the development of the CKMR methodology for Indian Ocean yellowfin tuna will 

include finalising the spatial CKMR model to account for imprecise age, explorations of spatial 

scenarios refining juvenile sampling and ageing given the distribution of juvenile-targeting 

fisheries and the current understanding of juvenile movement. In addition, inclusion of adult 

samples in half-sibling probability computations could be considered, however these would be 

complicated by the need to account for movement by both potential sibling and their potential 

parent. As such, development of adult HSP probabilities is likely to remain a low priority.   

While developments to the CKMR model for Indian Ocean yellowfin tuna are ongoing, we deem 

the current version sufficient to inform discussions by the Working Party on Methods, Working 

Party on Tropical Tuna, and the Scientific Committee with regards to the implementation and 

logistics of a CKMR sampling program for yellowfin tuna.  
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Appendix I

This section provides supplementary information detailing:

1. The construction of the relevant CKMR kin probabilities for the spatially homogeneous and

the spatially-structured case;

2. The technical derivation of the approach used to translate the CKMR kin probabilities into

a parameter covariance matrix to generate approximate uncertainty estimates of key popu-

lation dynamics variables.

Key parameters of the operating model

The CKMR design process uses a pre-specified set of estimable model parameters, θ, and the

theory behind the concept of the Fisher information (see below), to derived approximate uncer-

tainty estimates in key model outputs (e.g. adult abundance and mortality) for a given sampling

strategy. The set of possible model parameters we explore is restricted to ones that we would

expect the CKMR data to be informative on:

• Overall abundance scaling parameter (mean recruitment)

• Reproductive output-at-age in adults

• Adult movement patterns (for spatial reproductive structure)

To define the adult population, for each sex, we use a generalisation of the spawning stock

biomass concept:

ϕa,s =
ma,sw

ψs
a,s

maxi{mi,sw
ψs

i,s}

This functional relationship was initially defined for Southern Bluefin tuna (SBT) where the as-

sessment includes both POPs and HSPs. The parameters ψs (which could differ by sex) define

the degree to which the concept of SSB needs to be generalised to accommodate the realised

per capita output of each age class. Values of ψs = 1 coincide with the SSB; values greater than

1 (e.g. for SBT they are closer to 2) mean older, heavier animals contribute more to the production

of newborn animals than would be assumed to be true in the SSB paradigm. The age structure of

the POPs in particular, but also the ratio of POPs to HSPs, are the main informative CKMR data

on these parameters. It is sensible to normalise somehow these numbers when using a power

parameter approach such as this. We normalise to the maximum across all ages which leads to
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the following interpretation for ϕa,s: the per capita reproductive output-at-age relative to the age

class with the largest reproductive output. This then leads to the concept of the Total Reproductive

Output (TRO) as the key variable of overall adult population “size”:

TROt,s =
A∑
a=0

Nt,a,sϕa,s

This replaces the SSB (itself a proxy for TRO), and is the main focus of the abundance-related

part of the design analysis. It also generalises spatially when we have an adult population in a

given region and their reproductive output (initially) belongs to that region. For recruitment we

account for the stochastic variability in both overall and spatial relative recruitment by using the

empirical variation from the assessment to define σR and an assumed value of σξ = 0.1 for

the generalised-logit transformed spatial recruitment variates. This ensures that we are being

more precautionary in our estimates of uncertainty by implicitly including this variability in the

calculations. For the spatially stratified reproduction case we must expand our parameter vector

to include the parameters required to define adult movement between regions: Φadu. We use

juvenile and adult movement matrices from the 2021 stock assessment (Fu et al. 2021) with the

following parameterisation to achieve an overall age specific spatial transition matrix:

Φr′,r,a = Φjuv
r′,r(1− m̄a) + Φadu

r′,rm̄a,

and m̄a is the sexually-averaged maturity-at-age. For R spatial regions, the transition matrix is an

R×R matrix whose rows sum to 1, which takes R× (R− 1) free parameters to fully define. So,

we get an additional 12 degrees of freedom for the spatially stratified reproductive case when we

include the 4 spatial regions (Figure 1, main section) as reproductive “units”.

Spatially homogeneous CKMR probabilities

The spatially homogeneous case is the simplest case explored here, where the adults across all

regions give rise to the overall number of juveniles, and the spatial regions do not act as localised

reproductive units. Note that this essentially replicates the current assumption in the assessment

model: there is a single parental stock and it produces the total number of recruits, which are then

distributed across the regions as specified.

ii



Parent-Offspring Pairs (POPs)

The key covariates required to compute the probability that a juvenile is the offspring of a possible

parent are, for the juvenile, its (known) birth cohort, cj , and, for the adult, time ti of sampling, age

ai at sampling, and, possibly, also its sex, si. Given spatially homogeneous reproduction we sum

across regions to get the spatially aggregated abundance and TRO:

Nt,a,s =
R∑
r=1

Nt,a,s,r

TROt,s =
A∑
a=0

Nt,a,sϕa,s

We can now define the sex-specific POP probability as follows:

P (POP | {i, j}) = I(cj < ti < cj + ai)
ϕai−(ti−cj),si
TROcj ,si

The indicator bracket, I(), ensures that (a) the adult was not caught before the juvenile was born

(and, hence, could not be its parent); and (b) that it was born before the juvenile was. If the sex of

the adult is unknown we simply sum the maternal and paternal POP probabilities together. Note

here that we make the simplifying assumption that adults in the plus-group can be ignored when

doing the comparisons.

This formulation assumes we have perfect knowledge of the age of the adult at the time of sam-

pling; realistically, it is more likely that we will have an estimate of age (e.g., otolith, epigenetic

age), not the true age. To deal with ageing error we propose to use an ageing error matrix; specif-

ically we construct a matrix A where each row in the matrix is the probability of the true age ã

given the observed age a, so that
∑

ãAa,ã = 1. The modified POP probability is then:

P (POP | {i, j}) =
∑
ã

(
I(cj < ti < cj + ã)

Aai,ãϕã−(ti−cj),si
TROcj ,si

)
For the ageing error case, we need to explicitly deal with the plus-group, as any possible parent

might belong to the plus-group given ageing error. To do this we assume ϕa,s to be based on

the expected age in the plus group, which can be derived from the mortality parameters. This

is an approximation to the full problem, which would require integrating across all ages in the

plus-group.
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Half-Sibling Pairs (HSPs)

Half-sibling pairs are typically focussed on comparisons between juveniles, i and i′, to ensure

as much accuracy as possible in the cohorts, ci and ci′ , of the two animals. HSPs differ from

POPs because we do not directly observe the putative shared parent; we make inferences about

its characteristics (e.g., age, sex, ...) from the fact that we have detected two juveniles that share

that parent. For the spatially homogenous reproduction case there are three factors to take into

account of when constructing the HSP probability:

1. At the time of birth of the older juvenile, what was the possible age distribution and sex of

adults that could have been its parent at that time?

2. What is the chance that the putative parent survived from the time of birth of the older

juvenile to the time of birth of the younger juvenile, ci to c′? This should account for both

natural and fishing-related mortality.

3. At the time of birth of the younger juvenile, what is the probability that, of all the animals

that could have been a parent of the older juvenile, it was in fact the parent of the younger

juvenile?

Since we do not observe the potential parent, HSP computation integrates over all possible par-

ent ages. As such, ageing error of adult samples is not a factor for HSPs so there is a single

formulation for the HSP probability:

P (HSP | {i, i′}) =
∑
s

∑
a

(
Nci,a,sϕa,s
TROci,s

×
[
ηa+δi,sNci′ ,a+δi,s

Nci,a,s

]
× ϕa+δi,s
TROci′ ,s

)
,

where δi = ci′− ci is the elasped time between the birth of the two juveniles, and ηa+δi,s is a term

to deal with the case where the age of the adult at time ci′ is in the plus group (what fraction of

the true age a + δi is actually in the plus group). Each of the successive fractional terms in the

above equation corresponds to each of the three processes in the HSP probability as described

above. Note that we assume here that juvenile age is known without error.

Spatially structured CKMR probabilities

The next level of complexity in the design modelling is to account for spatial structure in the re-

productive output (and hence the CKMR probabilities). We limit the spatial CKMR work to adult

movement only for this first instance of a fully developed CKMR design paper submitted to the
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Scientific Committee. We do not assume to know where a sampled adult was in when the juve-

nile was born, but we assume that we are able to select juveniles for the sampling program at a

sufficiently young size/age that we can be sure they were born within the region of sampling. If

we cannot make this assumption, we need to build in additional complexity to the CKMR proba-

bilities accounting for the probability that the juvenile was born in a natal region where the parent

spawned given the regions where juvenile and possible parent were captured. We also assume

that adult age is known exactly, but it is straightforward to extend the probabilities to account for

ageing error as outlined above.

Parent-Offspring Pairs (POPs)

The juvenile covariates required for this computation are the birth time and region, {cj, rj}; for the

adult covariates age, sex and region, {ti, ai, si, ri} are required. Given we assume to know the

birth location of the juvenile, the additional factor we need to account for in the POP probability is

the probability that the adult was, at the birth time of the juvenile, in the birth region of the juvenile

conditional on the observation that, some time later, it was sampled in a (potentially) different

region.

We thus require the following probability: P({cj, αi,j, si, rj} | {ti, ai, si, ri}), where αi,j = ai −
(ti − cj). From a Bayesian perspective, we can easily calculate the following probability:

P({ti, ai, si, ri} | {cj, αi,j, si, rj}) i.e., the probability that the adult was alive and aged ai at time

ti and in region ri given it was alive etc. at time cj in region rj . This probability is computed from

the mortality and movement rates as follows: set the vector (of length 4, the number of spatial

regions) u0 as a unit vector with value 1 at location rj and zero elsewhere. For the time periods

between cj and ti, we update this vector as follows:

ut+1,r =
∑
r′

ut,r′Φr′,r,at exp(−Mat,si) (1− hat,r′)

where at = αi,j + t and until t + 1 = ti − cj . We can assume that there would be no prior

information on the adult’s state of nature at the birth time of the juvenile before we observed it.

So, from Bayes’ theorem, the probability can be computed as follows:

P({cj, αi,j, si, rj} | {ti, ai, si, ri}) =
P({ti, ai, si, ri} | {cj, αi,j, si, rj})∑
r′
P({ti, ai, si, r′} | {cj, αi,j, si, rj})

which then becomes:
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P({cj, αi,j, si, rj} | {ti, ai, si, ri}) =
uti−cj−1,ri∑
r′
uti−cj−1,r′

The spatial POP probability can now be defined as:

P (POP | {i, j}) = I(cj < ti < cj + ai)× P({cj, αi,j, si, rj} | {ti, ai, si, ri})
ϕαi,j ,si

TROcj ,si,rj

Half-Sibling Pairs (HSPs)

The only adjustment we need to make to the HSP probability for the spatial scenario pertains to

the survival of adults between the birth times of the two juvenile cohorts (i.e., point 2 of the HSP

processes described above). We now need to also account for the fact that the adult could also

have moved between areas during this time (and thus experienced different levels of mortality).

It is a similar problem to that of the POP calculation, except we want to know the probability of

where the adult will be (and if it would still be alive) conditional on the fact that, if it was a shared

parent of the juveniles, it was in region ri at time ci and in region ri′ at time ci′ .

As with the spatial POP probability, we set the vector u0 (of length 4, the number of spatial regions)

as a unit vector with value 1 at location ri and zero elsewhere. For the time periods between ci
and ci′ we update this vector as follows:

ut+1,r =
∑
r′

ut,r′Φr′,r,at exp(−Mat,si) (1− hat,r′)

where at = a + t and until t + 1 = δi − 1 (where δi = ci′ − ci), and a is the unobserved age of

the putative shared parent at time ci. The vector ut at t = δi − 1 is the probability that the adult

is both alive and in a specific region at that time, given it was in region ri at time ci. Frow this we

can construct the spatially explicit HSP calculation:

P (HSP | {i, i′}) =
∑
s

∑
a

(
Nci,a,s,riϕa,s
TROci,s,ri

× uδi−1,ri′ ×
ϕa+δi,s

TROci′ ,s,ri′

)
.

Generating uncertainty estimates of population variables

Analyses of this kind would traditionally first simulate the data, then back-estimate the key param-

eters for the given models used to simulate them. If workable, this can yield both the potential
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bias and parameter uncertainty properties for the pre-agreed data collection regime. This can be

both difficult to do in practice (getting models to both converge and obtain uncertainty estimates

for all simulated data sets), and not always necessary if previous work has explored the bias

properties associated with these types of models. In this case, the predominant issue is obtaining

uncertainty estimates, if either the bias properties are known (and can be accommodated), or the

models are essentially unbiased for the kinds of sampling regimes under consideration.

An idea originally proposed for exploring the uncertainty of adult abundance and mortality in-

formation via close-kin mark-recapture (CKMR) was outlined in Bravington et al. (2016), and in

a conventional spatial capture-recapture design context in Hillary & Day (2017). These models

generally have a Bernoulli/binomial likelihood function as they relate to pairwise comparisons of

animals and whether they are related in a specific way or not—e.g., parent-offspring. The general

idea is to construct the Hessian matrix for the key estimable parameters (which defines the ap-

proximate parameter covariance matrix) via an approximation to the Fisher information (FI) at the

base information level for each data source.

The Fisher information is defined in two ways. The first is in terms of the expected value of the

square of the score (gradient of log-likelihood) at the maximum likelihood estimate:

I(θ) =

∫ (
∂

∂θ
ln `(X |θ)

)2

`(X |θ)dX = EX
[(

∂

∂θ
ln `(X |θ)

)2
]
, (0.1)

where `(X | θ̂) is the likelihood function. The Fisher information (see further below) can also be

written in terms of the second derivative of the log-likelihood (the Hessian):

I(θ) = −EX
[
∂2

∂θ2 ln `(X |θ)

]
(0.2)

For a Bernoulli process with probability p, the FI is given by 1/(p(1− p)); for a binomial process

with sample size n this becomes n/(p(1 − p)). For the Bernoulli process a conservative ap-

proximation to the FI is simply 1/p—for things such as tag recapture data when the probability of

recapture is small, this basically is a minor under-estimation (and associated minor over-estimate

of uncertainty) in the FI.

In our case, the probability of occurrence is actually a function of the parameters we are really

interested in, p(θ). The Fisher information of the parameter vector is defined as follows:

I(θ) = I(p)

(
dp

dθ

)2

=
1

p

(
dp

dθ

)2

, (0.3)
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which, to improve numerical stability given small probabilities, can be shown (see further below)

to be equivalent to the following:

I(θ) = 4

(
d
√
p

dθ

)†(d√p
dθ

)
(0.4)

This gives us the (approximate) Hessian matrix for the data at their base level covariates, z. A

very useful result is that the overall Hessian matrix, H , can be defined in terms of the sum over

all the unique covariate groups of the individual Hessian matrices H(z) as defined in (0.4):

H =
∑
z∈Z

nzH(z), (0.5)

where Z is the set of possible covariates, and nz is the number of observations of that covariate

type in the data set. The assumed independence between the different data sets (e.g., total

recaptures, spatial recapture distribution, and length frequency) means the overall Hessian matrix,

from which we can form the approximate covariance of the parameter vector as a whole, is the

sum of the data set specific Hessian matrices as defined in (0.5). The parameter covariance

matrix, Σθ, is then the inverse of this overall Hessian matrix. Approximate estimates of the

variance of parameters derived from θ (such as spawning stock biomass, mean recruitment level,

biomass depletion, and so on) via some differentiable function g(θ) can be derived with the delta

method:

V(g(θ)) ≈
(
dg

dθ

)†
Σθ

(
dg

dθ

)
. (0.6)

Evidence of over-dispersion in any of the key processes (e.g. such as often encountered in

conventional mark-recapture data Hillary & Day (2017)) is simple to account for in the construction

of the overall Hessian matrix for the parameters. Given an estimate of the variance inflation factor,

φ, we simply divide the Hessian matrices by the variance inflation factor, which will inflate the

overall variance appropriately.

We use automatic differentiation (AD) to ensure all these calculations are done accurately, specifi-

cally the TMB package (Kristensen et al. (2016)) in R. With AD, all gradients and derived quantities

are calculated to machine precision. This is a complex derivation given it leans quite heavily on

statistical theory, but, once done, obtaining the uncertainty estimates of interest, given the data

collection settings, becomes quick and simple relative to both simulating data and back-estimating

parameter.
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