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ABSTRACT 

Joint CPUE standardization was conducted for the Indian Ocean bigeye tuna based on Japanese, Korean 

and Taiwanese longline fisheries data up to 2021 to provide the WPTT with information on abundance 

indices for use in the 2021 stock assessment for this stock. The intention was to produce combined 

indices by increasing the spatial and temporal coverage of fishery data. Due to the limitation of remote 

access to the data, an approach adopted among the three members for the previous analyses of tropical 

tunas for IOTC and ICCAT was used to share only aggregated data. To account for the inter-annual 

changes of the target in each fishery, information on the HBF or clustering result was used in each 

region. For standardizing the catch-per-unit-effort data, the conventional linear models and delta-

lognormal linear models were employed for the shared aggregated data of monthly and 1° grid 

resolution in each region. Broadly, the trend of CPUE was similar to that for the previous stock 

assessment with some dissimilarity in Region 3. The models were diagnosed by the standard residual 

plots and influence analyses.  

INTRODUCTION 

Tuna-RFMOs, including the IOTC, recommended that the joint CPUE of longline fisheries be developed to 

improve the stock assessments for tropical tunas, and thus the IOTC has conducted collaborative works for several 

years to produce an abundance index by combining CPUEs data from major longline fleets. An ensemble approach 

of fishery data from multiple longline fleets has been applied to the tropical and temperate tuna species for their 

stock assessments (e.g. Hoyle et al. 2018, Hoyle et al. 2019a, 2019b, Kitakado et al. 2021a, 2021b, 2022a). 

Following these customary practices used in the IOTC and other RFMOs, we conducted a collaborative study for 

developing abundance indices for the Indian Ocean bigeye tuna based on Japanese, Korean and Taiwanese longline 

fisheries data up to 2021 by updating our analyses (Kitakado et al. 2022b) reported in the WPTT24(DP) meeting. 

MATERIALS 

Data sharing protocol 

Under the pandemic circumstance, a data sharing protocol among the three countries adopted for the previous 

analyses of tropical tunas for IOTC and ICCAT and albacore for IOTC was used with a restriction of data access 

for reduced resolution of data set (not operational data but some aggregated data over 1° square grid by month by 
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vessel). The data set combined for bigeye tuna CPUE standardization were available with data fields of year and 

month of operation, location to 1° of latitude and longitude, vessel id, number of hooks, and catch by species in 

number. We classified the species into albacore (ALB), bigeye (BET), yellowfin (YFT), southern bluefin tuna 

(SBT), black marlin (BLM), blue marlin (BUM), swordfish (SWO), other billfishes (BIL), sharks (SKX) and 

others (OTH). The data period from the three mebers are as follows: 

Japan: 1979-2021  

Korea: 1979-2021 

Taiwan: 2005-2021 

Vessel ID is available from 1975 for Japanese data, but for the consistency with the previous analysis, we used 

data from 1979. For Taiwanese data, we used data from 2005 onwards due to data quality problems. As for vessel 

screening, vessels which have more than or equal to 20 data set (one data set means 1-degree grid by month by 

year by cluster) were used for standardization of CPUE. Figure 1 shows the definition of regions used in the 

analysis. Except for R3, the proportion of zero catch tends to be negligible.  

 

METHODS 

For clustering analyses to account for the change in target, the data were aggregated by 10-days duration (1st-10th, 

11th-20th, and 21st~ for each month) based on the agreement in the data sharing protocol of the trilateral 

collaborative working group. The number of clusters was determined when the relative improvement of SS within-

clusters was less than 10%. See some details shown in Wang et al. (2021). In addition to the clustering approach, 

data of HBF was used for the target index for the tropical areas.   

For standardizing the catch-per-unit-effort data, the conventional linear models and delta-lognormal linear models 

were employed for data of monthly and 1° grid resolution in each region. Considering relatively small zero-catch 

proportion, we used the lognormal models except for Region 3. Results based on those models were diagnosed by 

the standard residual plots and influence analysis.  

 

Log-normal (LN) regression models with a constant adjustment 

We used an adjustment factor (here 10% of mean of CPUE) to the CPUE data to employ conventional log-normal 

distributions as follows: 

log (���	 + �)  =  ���� ������� +  ������������ +  	���� 

Potential covariates used in the analysis were shown below: 

 Temporal component (year, quarter, year*quarter) 

 Spatial component (5° squared longitudinal and latitudinal grid) 

 Vessel ID 

 Cluster category 

 HBF averaged within aggregated data: Shallow (<=7), Medium (8<=HBF<=13) and Deep (14 <= HBF) 

 Interactions between the spatial component and quarter  

The error terms are assumed to be independently and identically distributed as the normal distribution with mean 

0 and standard deviation σ. The constant adjustment factor, c, is 10% of the overall mean as has been used in 

previous analyses.  

 

Delta-lognormal (DL) regression model 

A delta-lognormal model was also tested to account for “zero data” statistically as has been used in previous 

analyses (see e.g. Hoyle et al. 2018). For the first component of “zero” or “non-zero” is expressed as a binomial 

distribution with a probability of “non-zero” catch as a logistic relationship with some explanatory variables, and 

the second component for positive catch assumed the same regression structures used in the LN regression models 

with a constant adjustment. The logarithm of the number of hooks was also used in the delta-component of analysis.  

 

Diagnostics and impacts of covariates (Residual plots, Q-Q plots, influence plots) 
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The standard residual plots were for the diagnosis for fitting of models to the data and Q-Q plots (only for the 

positive catch component in DL models). In addition, we used influence plots (Bentley et al. 2012) to interpret the 

contribution of each covariate to the difference between nominal and standardized temporal effects.  

 

Extracts of abundance indices from models with interactions 

Once the model fitting and model evaluation were conducted, the final output of the abundance index is extracted 

through an exercise of the least square means (so-called LS means) to account for heterogeneity of amount of data 

over covariate categories (as well as the standardized probability of "non-zero" catches in DL models). 

 

RESULTS 

Some comparisons of selected results were shown in Figures 4 and 5. Also, the diagnostics and influence plots 

were shown in Figure 6. General and specific observations are given below:  

 For Regions R1N, R1S, and R2, only the lognormal (LN) model was used. The results with the clustering 

method for accounting target changes showed relatively slow declines compared to those with the HBF and 

residual plots also showed slightly better shapes in the model with cluster information, but the trend of CPUEs 

were broadly similar to that for the previous CPUEs. As was suggested in the previous meetings and the 

continuation of the approach, results with the HBF could be used in the tropical region.   

 For region R3, in addition to the LN model, a delta lognormal (DL) model was also applied. Although these 

results are similar, some difference was observed around 2000 between the previous and new estimates.  

 Overall, while not a perfect match, the std-CPUE series selected for this paper shows a generally similar 

pattern to the CPUE used previously in the 2019 assessment except for R3, as shown in the superimposed 

figures in Figure 5.  

 The current use of aggregated data means that if there is at least one operation in each data grid (1° grid 

resolution) for each month of each year in each cluster, all three fisheries' data from three fisheries will be 

equally weighted in the likelihood. However, the degree of information may vary depending on the actual 

number of operations. This is one of the disadvantages in analysis with aggregated data.  

 The results obtained for R1N show a large spike around 2010, which may be due to piracy effects, but cannot 

be successfully removed in this analysis. In the stock assessment this year, care must be taken in handling 

this data as in the previous stock assessment. 
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Table 1.  

 

 

 

 

 

Figure 1. Definition of the regions used in the analysis.  

  

Delta-component Positive-component
Model Distribution YrQtr LonLat Target Vessel Ln(Effort) Interaction YrQtr LonLat Target Vessel Interaction
Region 1N LN X X X (HBF) X Qtr:LonLat
Region 1S LN X X X (HBF) X Qtr:LonLat
Region 2 LN X X X (HBF) X
Region 3 DL X X X (Clust) X (offset) X X X (Clust) X Qtr:LonLat
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Figure 3(a): Species composition for each cluster in Japanese fisheries.  
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b) Korea 
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Figure 3(b): Species composition for each cluster in Korean fisheries.  
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c) Taiwan 
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Figure 3(c): Species composition for each cluster in Taiwanese fisheries.  
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Figure 4(a). Comparison of quarterly (top) and annual (bottom) standardized CPUEs in R1N.  
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Figure 4(b). Comparison of quarterly (top) and annual (bottom) standardized CPUEs in R1S.  
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Figure 4(c). Comparison of quarterly (top) and annual (bottom) standardized CPUEs in R2.  
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Figure 4(d). Comparison of quarterly (top) and annual (bottom) standardized CPUEs in R3.  
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Figure 5(a). Comparison of quarterly region-wise standardized CPUEs (top) and differences between previous 

(red) and new (black) standardized CPUEs (bottom).  
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Figure 5(b). Comparison of annual region-wise standardized CPUEs (top) and differences between previous (red 

or green) and new (black) standardized CPUEs (bottom).  
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(Cluster model) 

   
 

 

(HBF model) 

 
 

Figure 6(a). Diagnostics and influence plots for the Cluster and Vessel effects for Model LN: YrQ + LonLat + 

Cluster/HBF + Vessel + LonLat*Q in R1N.  
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(Cluster model) 

  
 

 

(HBF model) 

 
 

Figure 6(b). Diagnostics and influence plots for the Cluster and Vessel effects for Model LN: YrQ + LonLat + 

Cluster/HBF + Vessel + LonLat*Q in R1S. 

  



17 

 

 

(Cluster model) 

 
 

 

(HBF model) 

 
 

Figure 6(c). Diagnostics and influence plots for the Cluster and Vessel effects for Model LN: YrQ + LonLat + 

Cluster/HBF + Vessel in R2. 
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(delta-lognormal model) 

[Delta component]  

 
[Positive component] 

 
 

(log-normal model) 

 

 
Figure 6(d). Diagnostics and influence plots for delta-lognormal model c1v0e1r0_c1v1r1 (DL: YrQ + LonLat + 

Cluster + log(Effort), LM: YrQ + LonLat + Cluster +Vessel+ LonLat*Q) in R3.  


