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Abstract 11 

Continued and substantial recruitment is one of the keys to sustainable fisheries. In the early life 12 

stage, fish larvae have extremely high mortality. Foraging success is one of the most important 13 

components of recruitment. In this study, we analyzed the influence of phytoplankton availability 14 

on the recruitment success of bigeye tuna in the Indian Ocean. Indian ocean was divided into four 15 

regions based on the spatial structure of the bigeye tuna stock assessment. The results showed prey 16 

availability has a significant positive influence on recruitment, especially in the eastern and 17 

southern Indian Ocean. 18 

 19 
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1. Introduction 22 

Bigeye tuna (Thunnus obesus Lowe, 1983) is one of the most important commercial species in the 23 

Indian Ocean, and its commercial value remain increasing over recent decades (Zudaire et al., 24 

2022). Understanding the relationship between the phytoplankton and the recruitment of bigeye 25 

tuna could enhance the efficiency of fishery management and also provide useful information for 26 

the parameter setting of the stock assessment. 27 
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Recruitment is one of the most important processes in fish population dynamics and are 28 

responsible for sustainable fishery. After the heavily harvested, the fish populations still exist or 29 

even at sustainable levels which rely on substantial compensatory and density-dependent mortality 30 

(Camp et al., 2020). The spawning of bigeye tuna has seasonal and year-round characteristics. 31 

Spawning occurs in tropical waters when the surface water temperature exceeds ~24 ℃ 32 

(Nishikawa and Kenkyūjo, 1985; Schaefer, 2001; Muhling et al., 2017). After the adults spawned, 33 

the eggs could hatch into larvae (~3mm long) in a few days, and develop foraging and swimming 34 

organs fast, then grow into juveniles in the first month of life (Miyashita et al., 2001; Reglero et 35 

al., 2014).  36 

However, throughout the hatching and early life stages, eggs experience exceedingly high levels 37 

of mortality(Anderson, 1988; Russo et al., 2022; Shropshire et al., 2022). The biotic and abiotic 38 

conditions (e.g. temperature, zooplankton biomass, and eddies) of the water column, particularly 39 

the surface layers, can strongly influence the distribution and the abundance of the fish larval stages, 40 

thereby affecting the reproductive success of many fish species (Cuttitta et al., 2018; Russo et al., 41 

2022). The feeding success of larvae is hypothesized to be an important source of larval mortality 42 

(Anderson, 1988; Llopiz and Hobday, 2015). In particular, species like bigeye tuna mainly spawn 43 

in tropical regions where prey availability may be more determinant than the temperature for larval 44 

survival (Reglero et al., 2014; Shropshire et al., 2022). Upon yolk sack absorption, tuna larvae 45 

depend entirely on zooplankton to meet their metabolic requirements (Llopiz and Hobday, 2015; 46 

Shropshire et al., 2022). Because of this shift from endogenous nutrition to exogenous, the larvae 47 

are most sensitive at this time to environmental factors, particularly food supply. A higher specific 48 

mortality rate often occurs immediately following the period of strictly endogenous yolk feeding, 49 

and during the period of first exogenous feeding. This period was hypothesized as “critical period” 50 

(Hjort, 1914).  51 

However, over the decades of research, the hypotheses of “critical period” driving recruitment 52 

success remain equivocal and controversial (Sifa and Mathias, 1987; Robert et al., 2013). The 53 

research on the larval foraging success of bigeye tuna is still limited. And the most of information 54 
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about the tunas’ recruitment and reproduction is available for the Pacific Ocean (Langley et al., 55 

2009; Zhu et al., 2010; Sun et al., 2013; Muhling et al., 2018; Woodworth-Jefcoats and Wren, 56 

2020). Therefore, our goal for this study is to test whether the “critical period” hypothesis is tenable 57 

for bigeye tuna in the Indian Ocean. We used median phytoplankton size (MD50) as the proxy for 58 

the food quality of the larval. Greater value of MD50 would mean that there are more large 59 

phytoplankton and in turn more prey available for the zooplankton upon which larval bigeye tuna 60 

feed (Polovina and Woodworth, 2012; Llopiz and Hobday, 2015). We tested the relationship 61 

between MD50 and the environment-related parameters of the Beverton-Holt stock-recruitment 62 

function (B-H function) (Beverton and Holt, 1957). And we also compared the relationships in 63 

different regions of the Indian Ocean based on the spatial stratification of the latest stock 64 

assessment model of bigeye tuna (Fu, 2019). We hope the results could help to improve the 65 

parameter setting in the bigeye tuna stock assessment. 66 

2. Materials and methods 67 

2.1 Spatial Stratification 68 

The research area of this study covered the whole Indian Ocean and was divided into four regions 69 

based on the spatial structure used in the current assessment: South-western equatorial region 70 

(R1S), North-western equatorial region (R1N), eastern equatorial region (R2) and southern region 71 

(R3) (Fu, 2019). The western equatorial region (R1) was partitioned at the equator to account for 72 

differences in the distribution of tags. 73 

2.2 Environmental data 74 

MD50 (cell size) in equivalent spherical diameter (ESD) in μm is transformed from cell mass (MB50) 75 

which is calculated as Equation 1: 76 

 77                  (1) 78 

 79 

Where chla is chlorophyll-a in mg/m3, and SST is sea surface temperature in °C. Then convert 80 

MB50 to MD50 as Equation 2: 81 
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                                                      (2) 83 

 84 

As we can’t find continuous chl-a data before 2000, chl-a data was selected from 2000 to 2018 85 

conducted by NASA mission Moderate-resolution Imaging Spectroradiometer (MODIS) Terra 86 

Chlorophyll Data (Terra/MODIS) (NASA Goddard Space Flight Center, 2018). SST data come 87 

from NOAA Extended Reconstructed SST v5 (Huang et al., 2017). 88 

 89 

2.3  Beverton-Holt stock-recruitment function 90 

The B-H Stock-recruitment functions express the production of new recruits to a fish population 91 

and the dependence of that production on the spawning component of the population (Miller and 92 

Brooks, 2021). The basic function as Equation 3: 93 

 94 

                                               (3) 95 

where R is the number of recruits, S is the spawning biomass. The parameters α and β are related 96 

two types of mortality. In which, β refers to the mortality caused by external (or density-97 

independent) factors, such as temperature, wind, currents, and prey availability. Whereas, α is 98 

mainly related to density-independent mortality rates (Beverton and Holt, 1957; Miller and 99 

Brooks, 2021). Therefore, we turn to study the relationship between MD50 and β. If there have 100 

any significant linear regression, the relationship between MD50 and recruitment could be 101 

described by the B-H function. 102 

Mace and Doonan (Mace et al., 1988) then introduced the alternative parameterization for the B-103 

H function in terms of steepness Δ, equilibrium unexploited recruitment R0 or spawning biomass 104 

S0, and the unexploited spawning biomass per recruit S0/R0= φ0. Francis (Francis, 1992) 105 

introduced h for steepness after, which is more frequently used. We extracted h, R0, and S0 data 106 

from the bigeye tuna stock assessment model (Fu, 2019), which used the stock synthesis Model 107 

Version 3.24z (SS3). The B-H function was defined in the SS3 model as: 108 
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                                    (4)              109 

Where Sy and Ry is the spawning biomass and recruitment during year y. Then combined with the 110 

basic function, α can be calculated as: 111 

  112 

                                                                 (5) 113 

Therefore, β would be:  114 

  115 

                                                   (6) 116 

Bigeye tuna has been routinely assessed by the Indian Ocean Tuna Commission (IOTC). As we 117 

mentioned before, we extracted the h, R0, Sy, and Ry data from the 2018 stock assessment SS model 118 

conducted by the IOTC (Fu, 2019). In the model, the annual data were compiled into quarters 119 

(Jan−Mar, Apr−Jun, Jul−Sep, Oct−Dec), and a quarterly time step is treated as a model year in the 120 

SS3 model. And also, SS3 followed the spatial structure. Therefore, we can gain the values of β 121 

for each region by quarter. Based on the spatial and temporal stratification, we calculated the mean 122 

values of MD50 correspondingly. 123 

 124 

2.4 Z Score Transformation 125 

As the data sets have dissimilar metrics, we standardized them by Z-Score transformation which 126 

converts separate distribution into standardized distribution. The z-score formula is: 127 

 128 

                                                    (7) 129 

Where X is the original data value,  and s are the mean and standard deviation, respectively. The 130 

transformed variable Z will have a mean of 0 and a variance of 1.  131 

 132 
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3. Results 133 

To display directly, we plotted the distributions of reversed  (refer to recruitment) and  for 134 

each region (Figure2). As  is in the denominator in the B-H function, the positive relationship 135 

between reversed  and  means higher  will bring higher recruitment. In Figure 2, 136 

the  showed positively related to the reversed parameter  as we hypothesized. However, 137 

for each region, there have some outliers that showed the opposite correlation. For these outliers, 138 

although  are low, the reversed  are still at the high level. We grouped these points by 139 

season, the plots indicated that mainly outliers come from the same season. For the R1N, R2, and 140 

R3, outliers mostly in season 2 (Apr−Jun). For the R1S, outliers primarily come from season 3 141 

(Jul−Sep). These “anomalous” seasons offset the correlations of other seasons to some extent. 142 

Therefore, we tested two datasets for each area. One is the original data that covered all the time 143 

series, another dataset removed the “anomalous” season data. Figure 3 showed the time series of 144 

reversed  and . For all regions, the time series of reversed  and  have significant 145 

similar seasonal trends, especially for the right half of the Figure3 which datasets exclude the 146 

“anomalous” season. 147 

As the variables follow the nominal distribution, we used linear regression to analyze the 148 

relationships. The models based on the all-seasons data and removed “anomalous” season were 149 

defined as Model 1 and Model 2, respectively. The results of linear regression were shown in Table 150 

1 and the values of the Pearson correlation coefficient were shown in Table 2. Based on the Model 151 

1,  showed significant negative relationships with  in R1S (p = 0.003, r = -0.333), R2 (p 152 

< 0.001, r = -0.371) and R3 (p < 0.001, r = -0.546). No correlation was found in R1N (p = 0.152, 153 

r = -0.166). After removing the “anomalous” season, the correlations improved notably in Model 154 

2.  and  have significant correlations (p < 0.001) in all regions. Correlation coefficients 155 

are -0.544 in R1N, -0.561 in R1S, -0.665 in R2, and -0.677 in R3. The residual diagnostics of the 156 

linear regression models were shown as Q-Q plots in Figure 4. 157 



IOTC-2022-WPTT24-06 

 158 

4. Discussion 159 

In this study, we didn’t consider the time-lag effects. In the stock assessment, model, new 160 

recruitment was defined as occurring in every season (Fu, 2019). As we aimed to verify the food 161 

availability in the early life stage, the time of  and  should be matched. 162 

Our results provide support to the hypotheses of “critical period”. For all regions, reversed  and 163 

 fit significant positive relationships. With the same scale of degree of freedom, we found 164 

that the highest value of correlation coefficient is in the R3 and the second highest value is in the 165 

R2. The eastern Indian Ocean (R2 in our study) is believed as the main spawning area of bigeye 166 

tuna (Reglero et al., 2014; Muhling et al., 2017). Due to the high density of larvae, food availability 167 

becomes more important than R1S and R1N. In the stock assessment model, it’s assumed that the 168 

recruitment also occurred in R3. R3 is a temperate area which is not an optimal environment for 169 

larvae survival. Thus, we speculate that the survival of larvae is more dependent on the food than 170 

the equatorial areas.  171 

The results also showed strong seasonal characteristics. Seasons 1 and 4 have lower recruitment 172 

and correspond to lower  values in all regions. Seasons 2 and 3 have higher recruitment. 173 

However,  are low in season 2 in R1N, R2, and R3. We suppose that season 2 is the spawning 174 

season for bigeye tuna. Even though the food is limited, enormous eggs could also bring a high 175 

recruitment level. However, we still can’t explain why the spawning season that we supposed is 176 

different in R1S. What’s more, very limited studies showed that the spawning season of bigeye 177 

tuna is from January to April in the western Indian Ocean and December to January and June in 178 

the eastern Indian Ocean, which is not consistent with our results (Nootmorn, 2004; Zudaire et al., 179 

2022). As the model time step is artificially divided, we think that the spawning season may be 180 

more flexible in real situations. More studies are still needed to explain these results. 181 

 182 

 183 
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 260 

 261 

Figure 1: Spatial structure of the stock assessment of the bigeye tuna in the Indian Ocean. 262 

 263 
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Figure 2. Scatter plots of  and reversed  with fitted linear regression lines in four regions. 268 

R1N_exs2: exclude season 2 data in R1N. R1S_exs3: exclude season 3 data in R1S. R2_exs2: 269 

exclude season 2 data in R2. R3_exs2: exclude season 3 data in R3.  270 

 271 
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 272 

Figure 3. Time series of reversed   (green) and   (blue) from 2000 to 2018. R1N_exs2: 273 

exclude season 2 data in R1N. R1S_exs3: exclude season 3 data in R1S. R2_exs2: exclude season 274 

2 data in R2. R3_exs2: exclude season 3 data in R3. 275 

 276 
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Table 1 Summary of regression analysis on  and  in four regions. Data in Model 1covered all-seasons data and in Model 2 277 

removed “anomalous” season. SE: stand error; DF: degree of freedom. 278 

 279 

 Model1 
 

Model 2 

 Regression equation SE DF p Adjusted-r² 
 

Regression equation SE DF p Adjusted-r² 

R1N  0.11 74 0.152 0.014 
 

 0.13 55 < 0.001 0.28 

R1S  0.11 74 0.003 0.1 
 

 0.1 55 < 0.001 0.31 

R2  0.11 74 < 0.001 0.13 
 

 0.09 55 < 0.001 0.43 

R3  0.09 74 < 0.001 0.29 
 

 0.08 55 < 0.001 0.45 

 280 

Table 2. Correlation coefficient between   and   in four regions. Dataset1 covered all-seasons data and Dataset 2 removed 281 

“anomalous” season. 282 

283 

 Dataset1 (r) 
 

 Dataset 2 (r) 

R1N -0.166  -0.544 

R1S -0.333 
 

-0.561 

R2 -0.371  -0.665 

R3 -0.546 
 

-0.677 
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 284 

Figure 4. Residual diagnostics of linear regression models as Q-Q plots for four regions. R1N_exs2: 285 

exclude season 2 data in R1N. R1S_exs3: exclude season 3 data in R1S. R2_exs2: exclude season 286 

2 data in R2. R3_exs2: exclude season 3 data in R3. 287 
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