Using data-limited approaches to assess data-rich Indian Ocean bigeye tuna: data quantity evaluation and critical information for management implications

Yanan Li^{1}, Jiangfeng Zhu ${ }^{1,2^{*}}$, Xiaojie Dai ${ }^{1,2}$, Dan Fu^{3}
${ }^{1}$ College of Marine Sciences, Shanghai Ocean University, 999 Hucheng Huan Road, Shanghai 201306, China
${ }^{2}$ Key Laboratory of Oceanic Fisheries Exploration, Ministry of Agriculture, 999 Hucheng Huan Road, Shanghai 201306, China
${ }^{3}$ Indian Ocean Tuna Commission, Victoria, 361, Seychelles

Abstract

The majority of fishery stocks in the world are data limited, which limits formal stock assessments. Identifying the impacts of input data on stock assessment is critical for improving stock assessment and developing precautionary management strategies. We compare catch advice obtained from applications of various data-limited methods (DLMs) with forecasted catch advice from existing data-rich stock assessment models for the Indian Ocean bigeye tuna (Thunnus obesus). Our goal was to evaluate the consistency of catch advice derived from data-rich methods and data-limited approaches when only a subset of data is available. The Stock Synthesis (SS) results were treated as benchmarks for comparison because they reflect the most comprehensive and best possible scientific information of the stock. This study indicated that although the DLMs examined appeared robust for the Indian Ocean bigeye tuna, the implied catch advice differed between datalimited approaches and the current assessment, due to different data inputs and model assumptions. Most DLMs tended to provide more optimistic catch advice compared with the SS, which was mostly influenced by historical catches, current abundance and depletion estimates, and natural mortality, but was less sensitive to life-history parameters (particularly those related to growth). This study highlights the utility of DLMs and their implications on catch advice for the management of tuna stocks.

Keywords: stock assessment, bigeye tuna, data-limited, fisheries management, Indian Ocean

1 Introduction

Fisheries stock assessment provides critical information necessary for the conservation and management of fish stocks. Stock assessment models estimate fish stock parameters, determine stock status, and provide management advice on optimal fishing levels (Hilborn and Walters, 1992). The evolvement of stock assessment methods and the advancement of computing power enabled sophisticated stock assessment models to be built that make use of multiple datasets to inform a wide range of population and fishing processes. Both the richness of data and the complexity of assessment models have increased overtime (Maunder and Punt, 2013). Assessment models range from very simple models that utilize only a single data source (e.g., catch-only method) to highly integrated analysis, which is capable of simultaneously analyzing a large number of data inputs including environmental and ecosystem drivers.

Integrated analysis methods have become the preferred approach for conducting stock assessments since the publication of a seminal paper by Fournier and Archibald in 1982 (Fournier and Archibald, 1982; Fournier et al., 1998; Bull et al., 2012; Methot and Wetzel, 2013; Doonan et al., 2016; Punt et al., 2020). Integrated analysis such as Stock Synthesis (SS, Methot and Wetzel, 2013) are commonly employed because they are able to integrate multiple data sources, simultaneously model various processes, and are flexible in terms of model configuration (Cope, 2013; Methot and Wetzel, 2013). Integrated models are based on a coherent mathematical and statistical framework, which governs the population and fishing processes, and links the system dynamics to observational data (Maunder and Piner, 2017). Integrated analysis typically requires more data in order to support the modelling of population dynamics at a finer scale. However, for many stocks, data collected from different sources may have conflicting signals, often due to inadequate sampling processes, resulting in poor model fits. In some instances, conflicts among data sets can be caused by model misspecification as some population processes are not well understood (Maunder et al., 2017; Sagarese et al., 2019). Data conflict can introduce significant bias and uncertainty to the estimates of essential parameters and derived quantities which are difficult to quantify, and potentially result in inadequate management recommendations (Maunder et al., 2017; Griffiths and Fay, 2015; Van Beveren et al., 2017; Zhu and Kitakado, 2019).

Comparing different modelling approaches helps us better understand population dynamics, allows us to evaluate the influence of crucial data inputs that on the assessment, and to identify appropriate data-limited approaches for coping with data limitations (Arnold and Heppell, 2015; Sagarese et al., 2019; Zhu and Kitakado, 2019). As data-limited methods (DLMs) was often used as interim solutions to allow time for data collection (e.g., Berkson and Thorson, 2015; Newman et al., 2015), understanding the impact of data quantity on stock assessment is important for
improving stock assessment and developing precautionary management strategies (Cummings et al., 2014; Sagarese et al., 2019).

Tuna are among the world's most commercially valuable species, and are exploited by fleets from more than 70 countries. The most important species for commercial and recreational tuna fisheries are yellowfin (Thunnus albacares), bigeye (Thunnus obesus), bluefin (Thunnus thynnus), albacore (Thunnus alalunga), and skipjack (Katsuwonus pelamis) (ISSF, 2018). Assessing and managing these highly migratory species has been the focus of regional tuna fisheries management organizations (tRFMO). Integrated models such as MULTIFAN-CL and SS are commonly used by most tRFMOs to assess tuna stock status and provide management advice (ISSF, 2018). These integrated models are known to be able to capture well a range of uncertainty, including input uncertainty (uncertainty about input data or the quality of the information), statistical uncertainty (parameter estimation), and structural uncertainty (uncertainty associated model configurations or assumptions) (ISSF, 2018). One, or a combination of these uncertainties, is usually considered when determining stock status for providing management advice.

The Indian Ocean bigeye tuna (BET) is a large epi- and mesopelagic species distributed in the tropical and sub-tropical waters of the Indian Ocean. BET is a high-value species caught in large volumes by industrial fleets, subject to intense data collection. Thus, there is relatively more information collected on this species that allows the undertaking of fully quantitative stock assessments. Indian Ocean BET has been subject to stock assessment using SS3 (Fu, 2019), on the weight-of-evidence available in 2019, the BET stock is determined to be not overfished but subject to overfishing (IOTC Secretariat, 2020). The assessment has particularly highlighted the input uncertainty with respect to data quality and quantity ($\mathrm{Fu}, 2019$). The research effort to evaluate and reduce the input uncertainty for improving management advice has been recommended by the IOTC Scientific Committee (ISSF, 2018).

In this study, we applied the DLMs to the Indian Ocean BET stock, and quantitatively compare the input data sets to identify their impacts on the stock assessment and the formulation of management strategies. Incorporating multiple sources of input uncertainty in a stock assessment can better account for the risks associated with proposed management options and promote decisions that are more robust to such uncertainties. The results are also relevant to many other commercial target and bycatch species under the IOTC mandate (e.g., neritic tuna, billfish, and shark), with most of these species lacking sufficient biological or exploitation information to produce a defensible quantitative stock assessment, as their data collection and reporting mechanisms are limited to the artisanal and semi-industrial fleets. Thus, another objective of this study is to evaluate if it is possible to use DLMs to provide fisheries management advice for datalimited stocks.

2 Materials and methods

2.1 Data-rich model: Stock Synthesis

SS (version v.3.30.15; Methot et al., 2020) is an age- and size-structured assessment model in the class of models termed integrated analysis models. The SS model has a population sub-model that simulates a stock's growth, maturity, fecundity, recruitment, movement, and mortality processes, an observation sub-model estimates expected values for various observed data, a statistical sub-model characterizes the data's goodness of fit and obtains best-fitting parameters with associated variance, and forecast sub-model projects needed management quantities (Methot, 2009; Cope, 2013; Methot et al., 2020). The SS model outputs the quantities with confidence intervals required to implement risk-averse fishery control rules. SS has been applied in a wide variety of fishery assessments globally (Methot et al., 2020). The latest stock assessment for Indian Ocean BET was conducted using SS3 in 2019 (Fu, 2019). The SS3 assessment implements an ageand spatially structured model that reflected the population and fishery dynamics of the species. The assessment model covers the period 1975-2018 with the inclusion of composite longline CPUE indices, length compositions, and tag release/recovery data (Table 1). To date model development has focused on accounting for the differences in regional exploitation patterns, resolving data conflicts, and exploring seasonal movement patterns.

2.2 Data-limited Methods

The Data-Limited Methods Toolkit (DLMtool, version 5.4.5; Carruthers and Hordyk, 2018, 2020 is a software library for evaluating the performance of data-limited MPs. The DLMtool R package offers a robust, transparent approach for comparing, selecting, and applying various datalimited management methods. DLMtool uses utilize parallel computing to make powerful diagnostics accessible (Punt et al., 2016; Carruthers and Hordyk, 2020). The DLM tool has two distinct components, a management strategy evaluation (MSE) simulation module and an application module which estimates the target catch using available data input. We used the application portion of DLMtool (and not the MSE), which has a wide range of built-in methods of varying complexity, but also allows users to specify their own options or to modify the existing methods. In this study, various DLMs were applied in setting target catches to the Indian Ocean BET stock, and these results were compared with those obtained with the SS3 assessment model.

We categorized the DLMs into five categories: catch-based methods, abundance-based methods, index-based methods, length-based methods, and age-based methods. A summary of these methods was highlighted and is presented in Table 2. Catch-based methods have generally been employed where insufficient data exist for determining an overfishing limit (OFL) using more
sophisticated methods (Carruthers et al., 2014). Several catch-based methods have been adopted for the neritic and tuna assessments in the past several years and were deemed the best choice for the available data in the IOTC (Zhou et al., 2019). As an alternative to DLMs that rely solely or primarily on catch data and/or depletion estimates, there are also abundance-based and index-based methods. We tested a class of methods relying on estimates of current abundance and FMSY. We also explored length-based methods and age-based methods, as length and age composition data are the second-most abundant information held by the IOTC Secretariat, which potentially provides information on fishery status we note that we focus only the DLMs that can be applied to the bigeye tuna fishery and not all the DLMs in the toolkit were tested.

142 Table 1. Data extracted from the 2019 Indian Ocean BET SS assessment model file for DLMs

Input	Description	Data Inputs* - point estimate or range (coefficient of variation, CV)	
		Value or range	CV
Year	Years corresponding to data	1975-2018	-
t	Number of years	44	-
Units	metric tonnes	-	-
Life history			
MaxAge/y	Maximum age	11	-
Mort/y ${ }^{-1}$	Natural mortality rate	0.29	0.20
steep	Steepness of the Beverton Holt stock-recruitment relationship	0.8	0.20
vbLinf/cm	Von Bertalanffy Linf parameter	150.91	0.10
vbK	Von Bertalanffy K parameter	0.11	0.10
vbt0	Von Bertalanffy $t 0$ parameter	-1.16	0.10
wla	Weight-Length parameter alpha	$2.22 \mathrm{e}-05$	0.10
wlb	Weight-Length parameter beta	3.01	0.10
L50/cm	Length at 50 percent maturity	44.25	0.10
L95	Length increment from 50 percent to 95 percent maturity	52.64	0.10
Fishery			
Cat	Annual sum of total catch (1975-2018)	40020-93515	0.10
AvC	Average catch (Cat) over period with depletion estimates (1975-2018)	960008.67	0.20
LFC	Length at first capture	13.35	0.20
LFS	Shortest length fully vulnerable to fishing	30.94	0.20
Cref	Reference or target catch set to MSY	86235.60	0.20
Bref	Reference or target biomass set to spawning biomass at MSY	555249	0.20

[^0]| Ind | Relative total abundance index (1975-2018) | Longline CPUE indices: | 0.20 |
| :---: | :---: | :---: | :---: |
| | | 1.50-0.51 | |
| Dt | Depletion over time $\mathrm{t} S S B_{\text {(now) }} / S S B_{\text {(now }-t+1)}$ | 0.34 | 0.25 |
| Dep | Stock depletion $S S B_{\text {(current) }} / S S B_{\text {(unfished) }}$ | 0.31 | 0.25 |
| Abun | Current abundance (2018) (spawning biomass) | 688529 | 0.25 |
| Composition | | | |
| CAA | Catch at Age data (1975-2018) | 44yr x 11ages | - |
| CAL | Catch-at-length data (1975-2018) | $44 \mathrm{yr} \times$ 95length bins | - |
| CAL_bins | The values delimiting the length bins for the catch-at-length data | $10-200 \mathrm{~cm}$ | - |
| | | 2 cm bins | |
| ML | Mean length time series (1975-2018) | $121.46-71.90 \mathrm{~cm}$ | - |
| Reference (2019 SS assessment) | | | |
| BMSY_B0 | The most productive stock size relative to unfished | 0.25 | 0.045 |
| FMSY_M | An assumed ratio of FMSY to M | 0.90 | 0.25 |
| Ref | Reference OFL(A reference quota level) | 61931.40 | - |

144 Table 2. Description of DLMs applied and model inputs

Type	Method Abbreviation	Description	Input	Reference
Catch-based	AvC	Average catch over entire time series	Cat	Newman et al. (2014) Carruthers and Hordyk (2020)
	CC1	Recent mean catch (last 5 years) Constant catch linked to average catches (TAC = Caverage)	Cat	Geromont and Butterworth (2015b) Carruthers et al. (2016) Carruthers and Hordyk (2020)
	DCAC	Depletion-corrected average catch.	$A v C, B M S Y_{-} B 0, D t, F M S Y_{-} M$, Mort	MacCall (2009) Harford and Carruthers (2017) Carruthers and Hordyk (2020)

	IT5	Iterative Index Target method. Maximum annual changes in TAC are 5 per cent.	Ind, Iref	Carruthers and Hordyk (2020)
	Iratio	Mean Index Ratio	Cat, Ind	Jardim et al. (2015) ICES (2012)
	SBT1	Make incremental adjustments to TAC recommendations based on index levels relative to target levels ($B_{M S Y} / B_{0}$) and catch levels relative to target levels (MSY).	Cat, Ind	Li (2011) Carruthers and Hordyk (2020)
	SPmod	Surplus production based catch-limit modifier	Cat, Ind	Carruthers et al. (2016) Carruthers and Hordyk (2020)
	GB_slope	Geromont and Butterworth index slope Harvest Control Rule	Cat, Ind	Carruthers and Hordyk (2020) Geromont and Butterworth (2015b)
Abundancebased	SPslope	Catch trend surplus production MSY	Abun, Cat, Ind	Carruthers et al. (2016) Carruthers and Hordyk (2020)
	Fratio	FMSY/M ratio method Requires an estimate of current abundance	Abun, FMSY_M, Mort	Gulland (1971) Walters and Martell (2002); Martell and Froese (2013) Carruthers and Hordyk (2020)
	DepF	Depletion Corrected Fratio	Abun, Dep, FMSY_M, Mort	Gulland (1971) Walters and Martell (2002) Martell and Froese (2013) Carruthers and Hordyk (2020)
	DynF	Dynamic Fratio MP	Abun, Cat, FMSY_M, Ind, Mort	Carruthers and Hordyk (2020)
	Fadapt	Adaptive Fratio	Abun, Cat, FMSY_M, Ind, Mort	Carruthers et al. (2016) Maunder (2014)
	Fratio4010	Paired with the 40-10 rule that throttles back the OFL to zero at 10 percent of unfished biomass	Abun, Dep, FMSY_M, Mort	Gulland (1971) Walters and Martell (2002) Martell and Froese (2013) Carruthers and Hordyk (2020)
	BK	Beddington and Kirkwood life history method	Abun, LFC, vbK, vbLinf	Beddington and Kirkwood (2005); Carruthers and Hordyk (2020)

\(\left.$$
\begin{array}{lllll}\hline \begin{array}{l}\text { Length- } \\
\text { based }\end{array} & \text { LstepCC1 } & \begin{array}{l}\text { Step-wise constant catch using mean length (catch adjusted } \\
\text { based on ratio of recent to reference mean length) }\end{array} & \text { Cat, ML } & \begin{array}{l}\text { Geromont and Butterworth } \\
\text { (2015a) }\end{array}
$$

Carruthers et al. (2016)

Carruthers and Hordyk (2020)\end{array}\right]\)	Geromont and Butterworth
(2015a)	

2.3 Species information and data

The data used in the bigeye tuna assessment consist of catch and length composition data, longline CPUE indices, and tag release-recapture data. The data inputs for the SS3 assessment were extracted from IOTC Working Party on Tropical Tuna meeting website (https://iotc.org/WPTT/21/Data/14-SA-BET). Specific details on the data sources required for the DLMs are provided in Table 1. Fig. 1 shows the stock trajectory from stock assessments of bigeye tuna in the Indian Ocean (1975-2020). The age-frequency and length-frequency distributions for bigeye tuna are shown in Fig.2-3 (every five years). The stock depletion SSBcurrent/SSBunfinished (Dep), natural mortality rate (Mort), the most productive stock size relative to unfished (BMSY_BO), an assumed ratio of $F M S Y$ to $M\left(F M S Y_{-} M\right)$, Von Bertalanffy K parameter, Von Bertalanffy Linf parameter distributions from stock assessments of bigeye tuna in the Indian Ocean are shown in Fig.4.

Fig.1. The stock trajectory from the stock assessments of BET in the Indian Ocean (1975-2018)

Fig.2. Age-frequency distributions form stock assessments of BET in the Indian Ocean (1975-2018)

Fig.3. Length-frequency distributions form stock assessments of BET in the Indian Ocean (1975-2018)

Fig.4. Parameter distributions form stock assessments of BET in the Indian Ocean (1975-2018)

2.4 Sensitivity to data inputs

A sensitivity analysis was conducted for all DLMs to explore which data inputs most affect catch advice (Carruthers and Hordyk, 2020). Sensitivity analysis is a method in DLMtool that determines the inputs for a given DLM of class output and then analyse the sensitivity of catch advice estimates to marginal differences in each input (Carruthers and Hordyk, 2020). The variation assigned to each input determines the range of values over which the sensitivity is evaluated. In this way, the sensitivity test is standardized to be commensurate with the uncertainty ascribed to each parameter. The input data explored included bigeye tuna life history data, fishery data, abundance data, composition data and reference data depending on the different DLMs.

2.5 Comparison of catch advice from data-rich and data-limited assessments

Data-limited catch advice was produced for the years following the terminal year of data and was held constant between assessments. The SS catch advice equivalent to the overfishing limit was determined by the prescribed optimal target reference point and current stock status and was extracted from SS projections (via the forecast submodel) three years after the terminal assessment
year (Table 1). To enable comparisons of catch advice from DLMs with SS-derived catch advice, 34 DLMs were used to produce catch advice.

For each data-limited approach, a probability density function of catch advice was derived using 10000 random draws from parameter distributions defined by the input mean and CV (Table 1). The median of the probability density function was used for the purpose of comparison (Carruthers et al., 2016). The distribution of the catch recommendation from SS was assumed to be normal and was obtained using a maximum likelihood approach. Because catch advice was set for a number of years in advance (to account for time lags caused by data collation and assessment implementation), assumed catches are fixed at predetermined quota levels for the first two years of the projection in SS. Thus, the third year of the projection represents the first year of catch advice; therefore, the forecasted catch (extracted as a point estimate with standard deviation) was used for comparison. Although the years being compared are not identical (e.g., terminal year of data $=2018$, data-limited catch advice $=2019$, SS catch advice $=2021$), the approach to developing catch advice is similar (i.e., produce catch advice for the next possible year).

To quantitatively compare catch advice from each DLMs to the data-rich SS model (i.e., datarich projection from current stock assessment model; OFL assessment), we calculated the relative absolute error (RAE) for the OFL (Dick and MacCall, 2011) with the following equation:

$$
\begin{equation*}
\text { RAE }=\frac{\left|D L M-O F L_{\text {assessment }}\right|}{O F L_{\text {assessment }}} \tag{1}
\end{equation*}
$$

where $\mathrm{OFL}_{\text {assessment }}$ was extracted from projections using the base SS assessment model as discussed above. The median of the probability density function was used for the purpose of comparison (Carruthers et al., 2016). Data-limited catch advice was produced for the year following the terminal year of data and was held constant between assessments. Larger RAE values indicate higher data-limited catch advice compared with SS catch advice, whereas smaller RAE values suggest similar catch advice between methods (close to zero). Inherently we assume that derived products and parameters from SS reflect the "known truth" for the purpose of addressing whether simpler models can produce similar results, an assumption that may not be accurate.

3 Results

3.1 Sensitivity of performance to inputs and value of information

Sensitivity analyses revealed that input data tended to affect the catch advice for all methods included in this study, and detailed information on the input data is provided in Table 1. For almost all DLMs catch advice was sensitive to catch data (Cat, $A v C$) (Table 3). The majority of DLMs requiring an estimate of natural mortality (Mort) in the input, catch advice was particularly
sensitive. Other inputs such as depletion estimates, abundance, $B M S Y _B 0$ and $F M S Y _M$ were also influential in deriving catch advice (Table 3). In instances in which catch data was required as data inputs, these recommendations were seldom sensitive to life-history parameters related to growth such as weight-length parameter (wla,wlb) and the theoretical age at length zero (vbt0).

For bigeye tuna life-history data (Table 1), except for natural mortality rate (Mort), the historical life history data of bigeye tuna was not sensitive to catch advice using catch-based methods (Table 3). This result indicated that for most catch-based methods, the bigeye tuna fishery life-history data had little influence on catch advice. However, for Delay-Difference Stock Assessment (DD and DD4010), the sensitivity analysis results showed that the catch advice was more sensitive to the current level of stock depletion (Dep) and Length at 50 percent maturity (LFS), where catch advice was positively correlated to Dep and negatively correlated to LFS (Table 3). For the abundance-based method, the catch advice of Beddington and Kirkwood life history method (BK) was sensitive to life-history parameters Von Bertalanffy Linf (vbLinf) and Von Bertalanffy $K(v b K)$, and we also found that catch advice from BK was fairly linearly related to the level of $v b$ Linf and $v b K$ over which sensitivity was tested. Length-based (Lratio_BHI, Lratio_BHI2, Lratio_BHI3) and age-based (BK_CC) methods have similar results (Table 3).

However, for composition data (Table 1), the sensitivity analysis results of age-based methods showed that age composition data were not sensitive to catch advice (Table 3). For $B M S Y _B 0$ and $F M S Y _M$, all methods that require these two parts of the data were sensitive, especially for catchbased and abundance-based methods. The catch advice was positively correlated to $F M S Y_{-} M$, and negatively correlated with $B M S Y _B 0$.

Table 3．Sensitivity analysis（SA）of input data needed for DLMs

Method	Input data																						
	Life history						Fishery								Abundance					Com＊		Ref＊	
		$\stackrel{3}{3}$	岂	$\frac{5}{4}$	$\underset{\square}{5}$	$\frac{\Xi}{む}$	$\frac{\Xi}{V}$	$\stackrel{F}{6}$	E.	\cong	$\frac{\vec{d}}{\hat{c}}$	沓	零	$\underset{\sim}{\ddot{0}}$		E	$\underset{\sim}{\square}$	$\begin{aligned} & \text { تِ } \\ & \text { O} \end{aligned}$	$\underset{E}{n}$	$\frac{8}{3}$	\mathbb{B}		萣
Catch－based																							
AvC										SA													
CC1										SA													
DCAC		SA									SA						SA					SA	SA
DCAC＿40		SA									SA											SA	SA
DCAC4010		SA									SA						SA					SA	SA
DBSRA			SA	SA	SA			SA		SA								SA				SA	SA
DBSRA＿40			SA	SA	SA			SA		SA												SA	SA
DBSRA4010			SA	SA	SA			SA		SA								SA				SA	SA
DD	SA		SA						SA														
DD4010	SA		SA						SA														
SPMSY	SA		SA	SA	AS			SA		SA													
Index－based																							
Islope 1										SA						SA							
Itarget1										SA						SA							
IT5																SA							
Iratio										SA						SA							
SBT1										SA						SA							
SPmod										SA						SA							
GB＿slope										SA						SA							
Abundance－Based																							

3.2 Comparison of catch advice between DLMs and SS

Catch advice derived from data-limited approaches for bigeye tuna in the Indian Ocean was shown in Table 4. We found that catch advice for data-limited approaches was highly variable and uncertain, with standard deviations (SDs) greatest for BK_CC (244970) and smallest for DynF (60). Among the five categories of DLMs, the age-based method has a larger SDs than the other four categories, and the corresponding $C V$ was also the largest (Table 4). Among the 34 DLMs, the catch advice varies so much between the different methods, BK (227622 mt) has the highest catch advice and Itarget1 (54681 mt) has the lowest catch advice. The index-based and lengthbased methods had lower catch advice than the other three categories of methods.

We also compared the distributions of relative absolute errors between SS and DLMs for Indian Ocean BET (Fig. 5). The majority of catch-based, index-based, and length-based tested (excluding DBSRA, SPMSY) resulted in RAEs less than 1 (Fig. 5). Most abundance-based and age-based methods resulted in RAEs greater than 1 (Fig. 5). Only Itarget1, DCAC4010, Islope1 and IT5 produced an RAE below 0.1, and relatively similar OFL distributions compared to SS (Fig. 5, 6). The median catch advice of these four DLMs was within 10% of the OFL of SS, and OFL distribution peaked near the OFL distribution of SS (Fig. 6).

The comparison of the OFL estimated by the SS model and DLMs for Indian Ocean BET was showed in Fig. 6. Most methods resulted in wider OFL distributions (median range: 54681 [Itarget1] -227 622 mt [BK]) compared to SS (61 931 mt) (Table 4). This indicated a substantial amount of uncertainty when compared to the OFL distribution produced by the data-rich SS model. For catch-based methods, except DBSRA4010, DCAC4010, CC1, SPMSY, the OFL distributions of the other seven methods were relatively narrow (Fig. 6a). For index-based methods, only Itarget 1 OFL distribution was relatively close, and the catch advice was smaller than SS (Table 4, Fig. 6b). The OFL distribution of IT5 was similar to SS; OFL distribution peaked near the OFL distribution of SS (Fig. 6b). For the abundance-based methods, Fratio, DepF and Fratio4010 result in high and relatively wide OFL distributions (Fig. 6c). This showed that these three methods have higher uncertainty. The OFL distribution of the Length-based method was more uniform and narrower than the other four types of DLMs methods (Fig. 6d). The OFL distribution of the three age-based methods was wider, and the catch advice was much higher than the catch advice based on SS (Fig. 6e).

Fig.5. Comparison of relative absolute error (RAE) of DLMs for Indian Ocean BET

(c) Abundance-based methods

293

294
(e) Age-based methods

Fig.6. Comparison of the overfishing limits (OFL) estimated by the data-rich SS

4 Discussion

Identifying the impacts of input data quality and quantity was critical for improving stock assessment and developing precautionary management strategies. This analysis aimed to investigate whether similar assessment results could be achieved with DLMs as opposed to more complex conventional stock assessment methods for Indian Ocean BET. We applied a DLM sensitivity analysis to explore which input data most affect catch advice. Catch-based, index-based, and length-based DLMs tended to produce similar results across life-history stages, other methods included abundance-based and age-based DLMs also produced viable results for Indian Ocean BET. This analysis focused on the range of DLMs commonly applied to date. While most methods examined in the study were feasible for bigeye tuna based on available data inputs, the resulting OFL distributions were not necessarily accurate or robust to uncertainty. Many DLMs produced relatively wide OFL distributions, suggesting a substantial amount of uncertainty. For almost all applicable DLMs, catch advice was particularly sensitive to catches (Cat), natural mortality (Mort), abundance estimates (Abun), depletion estimates (Dep), and $F M S Y_{-} M$ with higher data inputs corresponding to higher quotas (positive correlation). In some instances, catch advice was also sensitive to life-history parameters relating to growth ($v b \operatorname{Linf}, v b K$) and $B M S Y _B 0$.

In recent years, the IOTC explored various DLMs for some small tuna species, including application of catch-based methods and length-based methods s (Dick and McCall, 2011; Martell and Froese, 2013; Cope, 2013; Hordyk et al., 2015; Hordyk, 2019; Froese et al., 2017, 2018; Rudd, 2018; Rudd and Thorson, 2018). There was generally substantial uncertainty in the estimation of stock status, and the results were susceptible to input parameters. The examination of data-rich assessment management frameworks using DLMs has revealed common patterns and highlighted potential challenges in developing catch advice for data-poor stocks. The catch-based, index-based, or length-based methods showed considerable promise. Index-based methods and length-based methods in particular often outperformed other DLMs in reproducing the OFL that is consistent with the SS model. Yet, additional testing using a management strategy evaluation framework is required to adequately evaluate the performance of both methods based on representative stock life histories and fleet characteristics. The closed-loop simulation studies such as MSE should be considered most appropriate to determine the most feasible management strategy. Data-limited applications can provide much-needed insight into stock dynamics within data-poor stocks (such as small tuna or like-species tuna) until data collection improves, time series of abundance lengthen, and/or analytical resources expand.

In this study, the output from SS was taken as the "truth" or more realistic reflection of "true" fisheries dynamics, an approach which sought to determine whether simple models could obtain
similar results to a more complex model. Neither the aforementioned assumption nor the statistical procedures necessarily imply that any of the models were correct. In the practice of setting harvest recommendations, complex models were often regarded as more reputable sources. However, for data-poor stocks, complex models may also be biased due to violation of assumptions (e.g., constant fishing efficiency) or model misspecification, and some key parameters (e.g., steepness, natural mortality, etc.) are often inestimable (Carruthers et al., 2014). Therefore, we recommend that more DLMs be explored for data-poor stocks using data-limited assessment methods and MSE.

For data-poor species, the lack of consistent and long-term fishery-independent surveys exacerbates uncertainty in assessing stock dynamics (Cummings et al., 2014). Simple management procedures based on an index of abundance and length have gained momentum in recent years (Geromont and Butterworth, 2015a, 2015b). They thus warrant additional efforts to quantify the relative abundance. For length-based methods, mean length information was relatively easy to obtain even in data-poor fisheries. Closed-loop simulation studies such as management strategy evaluation should be considered to determine the most feasible management. DLMs to bigeye tuna can serve as a learning experience for managing data-limited stocks in the Indian Ocean. With their sensitivity to data inputs in the analyses of results, DLMs can provide much-needed insight into the stock dynamics of data-poor stocks (such as small tuna or like-species tuna) until data collection, time series of abundance length and/or analytical resources expand.

References

Arnold L M, Heppell S S. 2015. Testing the robustness of data-poor assessment methods to uncertainty in catch and biology: a retrospective approach. ICES Journal of Marine Science, 72(1): 243-250, doi: 10.1093/icesjms/fsu077

Beddington J R, Kirkwood G P. 2005. The estimation of potential yield and stock status using lifehistory parameters. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1453): 163-170, doi: 10.1098/rstb.2004.1582

Beverton R J H, Holt S J. 1993. On the dynamics of exploited fish populations. UK: Springer Dordrecht, 35-38

Berkson J, Thorson J T. 2015. The determination of data-poor catch limits in the United States: is there a better way?. ICES Journal of Marine Science, 72(1): 237-242, doi: 10.1093/icesjms/fsu085

Bull B, Francis R IC C, Dunn A, et al. 2012. CASAL (C++ algorithmic stock assessment laboratory) user manual v2.30-2012/03/21. NIWA Technical Report 135, Wellington: The National

Institute of Water and Atmospheric Research. http://docs.niwa.co.nz/library/public/NIWAtr135.pdf[2012-3-21/2020-6-1]

Carruthers T, Hordyk A R. 2020. Data-limited methods toolkit (DLMtool 5.4.2). Vancouver, Canada: UBC. https://dlmtool.github.io/DLMtool/userguide/introduction.html[2020-2-24/ 2020-6-1]

Carruthers T R, Hordyk A R. 2018. The Data-Limited Methods Toolkit (DLMtool): an R package for informing management of data-limited populations. Methods in Ecology and Evolution, 9(12): 2388-2395, doi:10.1111/2041-210X. 13081

Carruthers T R, Kell L T, Butterworth D D S, et al. 2016. Performance review of simple management procedures. ICES Journal of Marine Science, 73(2): 464-482, doi: 10.1093/icesjms/fsv212

Carruthers T R, Punt A E, Walters C J, et al. 2014. Evaluating methods for setting catch limits in data-limited fisheries. Fisheries Research, 153: 48-68, doi: 10.1016/j.fishres.2013.12.014

Carruthers T R, Walters C J, McAllister M K. 2012. Evaluating methods that classify fisheries stock status using only fisheries catch data. Fisheries Research, 119-120: 66-79, doi: 10.1016/j.fishres.2011.12.011

Cope J M. 2013. Implementing a statistical catch-at-age model (Stock Synthesis) as a tool for deriving overfishing limits in data-limited situations. Fisheries Research, 142: 3-14, doi 10.1016/j.fishres.2012.03.006

Cummings N J, Karnauskas M, Michaels W L, et al. 2014. Report of a GCFI workshop. Evaluation of current status and application of data-limited stock assessment methods in the larger Caribbean Region. Corpus Christi: Gulf and Caribbean Fisheries Institute

Dick E J, MacCall A D. 2010. Estimates of sustainable yield for 50 data-poor stocks in the Pacific Coast Groundfish Fishery Management Plan. NOAA-TM-NMFS-SWFSC-460, Dick E J, MacCall A D. 2011. Depletion-Based Stock Reduction Analysis: a catch-based method for determining sustainable yields for data-poor fish stocks. Fisheries Research, 110(2): 331-341, doi: 10.1016/j.fishres.2011.05.007

Doonan I, Large K, Dunn A, et al. 2016. Casal2: new Zealand's integrated population modelling tool. Fisheries Research, 183: 498-505, doi: 10.1016/j.fishres.2016.04.024

Fournier D, Archibald C P. 1982. A general theory for analyzing catch at age data. Canadian Journal of Fisheries and Aquatic Sciences, 39(8): 1195-1207, doi: 10.1139/f82-157

Fournier D A, Hampton J, Sibert J R. 1998. MULTIFAN-CL: a length-based, age-structured model for fisheries stock assessment, with application to South Pacific albacore, Thunnus alalunga. Canadian Journal of Fisheries and Aquatic Sciences, 55(9): 2105-2116, doi: 10.1139/f98-100

Froese R, Demirel N, Coro G, et al. 2017. Estimating fisheries reference points from catch and resilience. Fish and Fisheries, 18(3): 506-526, doi: 10.1111/faf. 12190

Froese R, Winker H, Coro G, et al. 2018. A new approach for estimating stock status from length frequency data. ICES Journal of Marine Science, 75(6): 2004-2015, doi: 10.1093/icesjms/fsy078

Fu Dan. 2019. Preliminary Indian Ocean bigeye tuna stock assessment 1950-2018 (Stock Synthesis).IOTC-2019-WPTT21-61. Virtual: IOTC. https://www.iotc.org/meetings/22nd-working-party-tropical-tuna-wptt22-stock-assessment-meeting [2019-10-10/2020-6-1]

Gedamke T, Hoenig J M. 2006. Estimating mortality from mean length data in nonequilibrium situations, with application to the assessment of goosefish. Transactions of the American Fisheries Society, 135(2): 476-487, doi: 10.1577/T05-153.1

Geromont H F, Butterworth D S. 2015a. Generic management procedures for data-poor fisheries: forecasting with few data. ICES Journal of Marine Science, 72(1): 251-261, doi: 10.1093/icesjms/fst232

Geromont H F, Butterworth D S. 2015b. Complex assessments or simple management procedures for efficient fisheries management: a comparative study. ICES Journal of Marine Science, 72(1): 262-274, doi: 10.1093/icesjms/fsu017

Griffiths S P, Fay G. 2015. Integrating recreational fisheries data into stock assessment: implications for model performance and subsequent harvest strategies. Fisheries Management and Ecology, 22(3): 197-212, doi: 10.1111/fme. 12117

Gulland J A. 1971. Science and fishery management. ICES Journal of Marine Science, 33(3): 471477, doi: 10.1093/icesjms/33.3.471

Harford W J, Carruthers T R. 2017. Interim and long-term performance of static and adaptive management procedures. Fisheries Research, 190: 84-94, doi: 10.1016/j.fishres.2017.02.003

Hilborn R, Walters C J. 1992. Quantitative Fisheries Stock Assessment: Choice, Dynamics and Uncertainty. Boston: Springer, doi: 10.1007/978-1-4615-3598-0

Hordyk A, Ono K, Valencia S, et al. 2015. A novel length-based empirical estimation method of spawning potential ratio (SPR), and tests of its performance, for small-scale, data-poor fisheries. ICES Journal of Marine Science, 72(1): 217-231, doi: 10.1093/icesjms/fsu004

Hordyk A. 2019. LBSPR: an R package for simulation and estimation using life-history ratios and length composition data. Vancouver, Canada: Blue Matter Science. https://cran.r-project.org/web/packages/LBSPR/vignettes/LBSPR.html[2019-6-18/2020-6-1]

ICES. 2012. ICES implementation of advice for data-limited stocks in 2012 in its 2012 advice. ICES CM 2012/ACOM 68. Copenhagen, Denmark: ICES.https://doi.org/10.17895/ices.pub.5322 [2012-9-17/2020-6-1]

IOTC Secretariat. 2020. Draft resource stock status summary bigeye tuna (BET: Thunnus obesus). IOTC-2020-SC23-ES02, Rome: FAO

ISSF. 2018. 2018 ISSF stock assessment workshop: review of current t-RFMO practice in stock status determinations. ISSF Technical Report 2018-15, Washington, DC, USA: International Seafood Sustainability Foundation

Jardim E, Azevedo M, Brites N M. 2015. Harvest control rules for data limited stocks using lengthbased reference points and survey biomass indices. Fisheries Research, 171: 12-19, doi: 10.1016/j.fishres.2014.11.013

Li B. 2011. Report of the sixteenth meeting of the scientific committee. CCSBT-EC/1108/BGD 01. Indonesia: CCSBT. https://www.ccsbt.org/en/system/files/resource/en/4e6855b3742de/BGD01-SC Chair Report of SC16.pdf [2011-7-19/2020-6-1]

MacCall A D. 2009. Depletion-corrected average catch: a simple formula for estimating sustainable yields in data-poor situations. ICES Journal of Marine Science, 66(10): 22672271, doi: 10.1093/icesjms/fsp209

Martell S, Froese R. 2013. A simple method for estimating MSY from catch and resilience. Fish and Fisheries, 14(4): 504-514, doi: 10.1111/j.1467-2979.2012.00485.x

Maunder M. 2014. Management strategy evaluation (MSE) implementation in Stock Synthesis: application to Pacific bluefin tuna. SAC-05-10b Management Strategy Evaluation. La Jolla, USA: IATTC. https://www.iattc.org/Meetings/Meetings2014/SAC-05/5thMeeting Scientific AdvisoryCommitteeENG.htm [2014-5-12/2020-6-1]

Maunder M N, Crone P R, Punt A E, et al. 2017. Data conflict and weighting, likelihood functions and process error. Fisheries Research, 192: 1-4, doi: 10.1016/j.fishres.2017.03.006

Maunder M N, Piner K R. 2017. Dealing with data conflicts in statistical inference of population assessment models that integrate information from multiple diverse data sets. Fisheries Research, 192: 16-27, doi: 10.1016/j.fishres.2016.04.022

Maunder M N, Punt A E. 2013. A review of integrated analysis in fisheries stock assessment. Fisheries Research, 142: 61-74, doi: 10.1016/j.fishres.2012.07.025

Methot R D Jr. 2009. Stock assessment: operational models in support of fisheries management. In: Beamish R J, Rothschild B J, eds. The Future of Fisheries Science in North America. Dordrecht: Springer, 137-165

Methot R D Jr, Wetzel C R. 2013. Stock synthesis: a biological and statistical framework for fish stock assessment and fishery management. Fisheries Research, 142: 86-99, doi: 10.1016/j.fishres.2012.10.012

Methot R D Jr, Wetzel C R, Taylor I G, et al. 2020. Stock synthesis user manual version 3.30.15. NOAA Processed Report NMFS-NWFSC-PR-2020-05.U.S. Department of Commerce. https://doi.org/10.25923/5wpn-qt71[2020-5/2020-6-1]

Newman D, Berkson J, Suatoni L. 2015. Current methods for setting catch limits for data-limited fish stocks in the United States. Fisheries Research, 164: 86-93, doi: 10.1016/j.fishres.2014.10.018

Newman D, Carruthers T, MacCall A, et al. 2014. Improving the science and management of datalimited fisheries: an evaluation of current methods and recommended approaches. NRDC Report R: 14-09-B.New York: NRDC. https://www.nrdc.org/sites/default/files/improving-data-limited-fisheries-report.pdf [2014-10/2020-6-1]

Punt A E, Butterworth D S, de Moor C L, et al. 2016. Management strategy evaluation: best practices. Fish and Fisheries, 17(2): 303-334, doi: 10.1111/faf. 12104

Punt A E, Dunn A, Elvarsson B P, et al. 2020. Essential features of the next-generation integrated fisheries stock assessment package: a perspective. Fisheries Research, 229: 105617, doi: 10.1016/j.fishres.2020.105617

Rudd M B. 2018. LIME: length-based integrated mixed effects (LIME) assessment method. R Package Version 2.1.0. Seattle: University of Washington. https://github.com/merrillrudd/ LIME[2017-6-25/2020-10-28]

Rudd M B, Thorson J T. 2018. Accounting for variable recruitment and fishing mortality in lengthbased stock assessments for data-limited fisheries. Canadian Journal of Fisheries and Aquatic Sciences, 75(7): 1019-1035, doi: 10.1139/cjfas-2017-0143

Sagarese S R, Harford W J, Walter J F, et al. 2019. Lessons learned from data-limited evaluations of data-rich reef fish species in the Gulf of Mexico: implications for providing fisheries management advice for data-poor stocks. Canadian Journal of Fisheries and Aquatic Sciences, 76(9): 1624-1639, doi: 10.1139/cjfas-2017-0482

Fu Dan. 2020. Assessment of Indian Ocean longtail tuna (Thunnus tonggol) using data-limited methods. IOTC-2020-WPNT10-13. Virtual: IOTC Secretariat. https://www.iotc.org/documents/WPNT/10/13[2020-6-26/2020-10-28]

Van Beveren E, Duplisea D, Castonguay M, et al. 2017. How catch underreporting can bias stock assessment of and advice for northwest Atlantic mackerel and a possible resolution using censored catch. Fisheries Research, 194: 146-154, doi: 10.1016/j.fishres.2017.05.015

Walters C, Martell S J D. 2002. Stock assessment needs for sustainable fisheries management. Bulletin of Marine Science, 70(2): 629-638

Zhou Shijie, Fu Dan, DeBruyn P, et al. 2019. Improving data limited methods for assessing Indian Ocean neritic tuna species. IOTC-2019-WPNT09-15. Victoria, Seychelles: CSIRO. https://iotc.org/meetings/9th-working-party-neritic-tunas-wpnt09[2019-7-1/2020-9-16]

Zhu Jiangfeng, Kitakado T. 2019. Uncertainties in the 2019 stock assessment for Indian Ocean albacore tuna and suggestions of further researches in 2020 for improving the assessment and providing management advice. IOTC-2019-SC22-13. Karachi Pakistan: IOTC Scientific Committee. https://iotc.org/documents/SC/22/13[2019-11-21/2020-9-16]

[^0]: Abundance

