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Executive Summary 
Recent IOYT Assessment. The most recent Indian Ocean Yellowfin Tuna (IOYT) stock assessment 
(Fu et al 2021) estimated the 2020 IOYT stock as slightly overfished at 78% of BMSY, with 68% 
probability that overfishing occurring (fishing mortality at 127% of FMSY). These results are found 
by integrating over a grid of 96 equally weighted stock assessment models (Stock Synthesis v3) 
that are intended to span the range of plausible states of nature for the IOYT stock.  

Key issues. We identified four key issues with the IOYT stock assessment, some of which are 
known by the authors and mentioned in the introduction and discussion sections of the most 
recent assessment (Fu et al 2021). The four issues are (i) an overly complex spatial structure, (ii) 
a lack of fit to tagging data, (iii) overweighting some models in the ensemble assessment grid, 
and (iv) poor fits to length composition data. These four issues are largely a result of historical 
modeling choices, and a strong preference for including tagging data from the regional tuna 
tagging programme. 

Proposed alternative. There are two alternative paths forward. The first, which we recommend, 
is overhaul the IOYT stock assessment model via a new custom IOYT stock assessment is 
developed from the ground up to suit the specific information available. The second option is to 
continue with Stock Synthesis and focus on incremental changes to improve the assessment. This 
would require less time, as most changes would be restricted to input data or assumptions about 
the spatial stratification of the stock, given that changes to the Stock Synthesis design and 
computer code are practically impossible for anyone who is not a Stock Synthesis developer. 
Major advantages of an overhaul are (i) it would be a small step from the assessment model to 
an operating model for management strategy evaluation or rebuilding plan development and (ii) 
all model elements can be crafted to suit IOYT specifically with far fewer compromises.  

Budget. We estimated a maximum time budget of around 262 days (approximately 1 year of full 
time work for a single analyst) to complete a model overhaul resulting in a new custom fishery 
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stock assessment model (and almost operating model) for IOYT (Appendix A). This budget covers 
consultation, funding applications, model design, sensitivity analyses, and testing of various 
model components, and ends with estimates of biomass, productivity, stock status relative to 
biological reference points, and a framework for future management strategy evaluation. While 
the budget does not extend to closed-loop simulation work for management strategy evaluation 
per se, Landmark Fisheries Research has extensive experience with this type of work and can 
include estimates for those steps as well upon request. The final price depends on how each 
component is allocated among junior, intermediate, and senior analysts, with a current day-rate 
schedule included at the bottom of the appendix. 
 
Section 1: Background 

Fisheries stock assessment models are the scientific basis of fisheries management decisions. 
The quality of those decisions therefore is highly dependent on the quality of inferences 
extended by those models, which is related to both goodness of fit of the model to the input 
monitoring data and optimizing the parameterization to generate somewhat reasonable 
predictive inference. Biased or highly randomized model inferences  (i.e., too many random 
effects parameters) could translate into biased management targets, such as target fishing 
mortality rates (𝐹𝑀𝑆𝑌) and sub-optimal outcomes for the fishery. 

The 2021 Indian Ocean yellowfin tuna (IOYT) assessment is done via an age- and spatially-
structured (4 region) population model within Stock Synthesis (Methot et al 2020; Methot & 
Wetzel 2013). The model is fit to fishery dependent data, consisting of catch series, CPUE 
indices, catch-at-length compositions, and tag releases and recoveries (most recoveries were 
from the Purse seine fleet). This model estimates a 68% probability of IOYT being currently 
overfished and subject to overfishing (Fu et al. 2021). 

This report reviews the 2021 IOYT stock assessment history, from its origins in 2008 when the 
first statistical catch-at-length model was fit to IOYT data (Langley et al 2008) and culminating 
with the 2021 base model, its underlying major assumptions, and how spatial stratification has 
changed since 2018. We then list a series of mostly known issues with the 2021 model, which we 
found to be primarily based on inertia from previous modeling choices and a strong preference 
for including tagging data that may not be as informative as originally hoped. Finally, we conclude 
with recommendations for major and minor changes to the IOYT assessment along with a 
proposed budget for a new stock assessment model addressing some of the major concerns in 
an appendix. In general, we recommend a shift to a simpler model structure that includes all 
sources of data but reflects the evidence of those data as well the associated limitations of how 
they are collected. 
 
Known issues with current IOYT assessment model 
There are several issues with IOYT assessments that are openly acknowledged by the authors. 
For example, recent models produce pessimistic estimates for IOYT population dynamics 
parameters, which, when used in forward projection models, leads to stock crashes within a few 
years even at low fishing pressure (Fu et al 2018b). Such behaviour was later attributed to 
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assumptions about how quarterly recruitment is distributed among regions (IOTC 2020). 
Ultimately, IOYT assessment working groups decided that the model was not adequate to 
forecast rebuilding plans because model uncertainty had not been adequately captured in 
projections (IOTC 2018). Several other operating models based on the 2018 stock assessment 
that could be used to test possible IOYT harvest strategies also produced unrealistically high 
fishing mortality rates and pessimistic results (Kolody and Jumppanen 2021), indicating that there 
may be a fundamental mismatch between the assumed model structure and the input data for 
the stock assessment. More recent models have eliminated this behaviour, but there are still 
significant retrospective patterns in key model outputs as well as a tendency to estimate lower 
productivity as data are removed.  Assessment authors ultimately concluded that the movement 
component of the model is more informed by the assumed spatial structure than the tagging 
data as originally intended (Fu et al 2021) because (a) the majority of tag releases and recoveries 
are in the same spatial region and (b) most tag recoveries outside of that region are close to the 
border and do not suggest large scale movement at all. 
 
 
Section 2: Model History 
 
Indian Ocean Yellowfin Tuna (IOYT) have been assessed using some form of statistical catch-at-
length model since 2008 (Langley et al 2008). Prior to 2008, stock assessment models were either 
virtual population analyses or age-structured production models (see Fu et al 2021 for 
references). The statistical catch-at-length models used since 2008 are all age- and spatially-
structured population dynamics models which are fit to fishery catch observations, fishery CPUE 
indices, catch-at-length observations, and tag release/recovery data as mentioned above.  
 
The first catch-at-length model – MULTIFAN-CL (Langley et al 2008) – introduced the ability to fit 
to data from the large-scale Regional Tuna Tagging Programme conducted in the Indian Ocean 
(RTTP-IO), with tags released over the 2005 – 2009 period. Indeed, fitting to the tagging data was 
the main reason cited for migrating to MULTIFAN-CL (Langley et al 2008). To fit a movement 
model to the tagging data, five spatial strata were defined for IOYT, which are similar to the four 
strata used in the 2021 assessment. MULTIFAN-CL was used to assess the IOYT stock four more 
times after 2008 (Langley et al 2009, 2010, 2011, 2012). 
 
In 2015, IOYT assessments switched to Stock Synthesis v3 (SS3; Langley 2015). SS3 is a pre-made 
fishery stock assessment package that is in common usage in many fisheries across the world 
(Methot and Wetzel 2013). One advantage of SS3 is that it is maintained by an active 
development team at a government institution; therefore, SS3 is well supported and its features 
have been thoroughly tested. On the other hand, SS3 is by design a generic fishery stock 
assessment model and that implies a trade-off between generic and specific use cases, so SS3 
features do not always fully reflect the features of every fishery to which it is applied; however, 
MULTIFAN-CL was also a pre-made fishery stock assessment package with the same 
generic/specific use-case trade-offs. In any case, both assessment packages give qualitatively 
similar results, and SS3 is more actively developed and supported than MULTIFAN-CL, so it was 
wise to switch to a newer package (Langley 2015). With the switch to SS3, the spatial stratification 
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was revised to 4 areas, with the new region 1 combining what was previously two separated 
regions for the Arabian Sea and the Western Equatorial Region (Langley 2015). Since 2015, there 
have been four additional assessments of IOYT with SS3 (Langley 2016; Fu et al 2018; Urtizbera 
et al 2019; Fu et al 2021), as well as a 2019 review of the IOYT assessment by the creator and 
lead developer of SS3 that identifies several issues that we include in our discussion below 
(Methot 2019). 
 
For remainder of this review, we focus on the 2021 IOYT assessment using SS3 (Fu et al 2021). 
The assessment is an ensemble of 96 models, across which several model assumptions are varied 
to capture a range of structural uncertainties that affect the estimates of IOYT biomass and 
productivity. Some of the main features and assumptions used in the ‘basic’ model are listed 
below. 
 

- The IOYT stock is spatially stratified into 4 regions, two equatorial/tropical regions (R1 and 
R4) and two temperate regions (R2 and R3). Bi-directional movement is estimated 
between R1/R2, R1/R4, and R3/R4. There is no movement between R2 and R3 (Fu et al 
2021, Figure 3). 

- SS3 is fit on a quarterly time-step, where each quarter is treated as a “year”. 
- Quarterly recruitment is distributed between tropical regions R1 and R4 only with 

deviations estimated annually. 
- A total of 21 fisheries based on region, time-period, fishing gear, and for some fisheries 

set and vessel type were also differentiated (Fu et al 2021, Table 1). 
- SS3 is fit to fishery dependent CPUE indices, fishery catch-at-length observations, and tag 

recoveries. 
- Natural mortality is assumed to be a declining function of age (in quarters), going from 

around 1.3 at 1 quarter down to around 0.6 at 6 quarters (1.5 years), with a hump starting 
at 10 quarters (2.5 years), rising to 0.8 at 16 quarters (4 years) and returning to around 
0.6 by 22 quarters (5.5 years) (Fu et al 2021, Figure 14). 

 
Additional features and details for the basic model are given in Table 3 of Fu et al (2021). The 
ensemble grid comprised 96 model options, which were all combinations of the following (Fu et 
al 2021, Table 5): 
 

- Spatial stratification (2 options): where the alternative was an expansion of R1 (Fu et al 
2021, Figure 3), 

- Stock-recruit steepness (3 options): 0.7, 0.8, 0.9, 
- Tag weighting (2 options): tag likelihood weight of 1 or 0.1, 
- Longline catchability in R1b (2 options): A single catchability for the full CPUE series, or 

two time blocks with 2007 – 2011 removed, 
- Growth (2 options): A von Bertalanffy growth models with age-specific K parameters, 

based on observations from Fonteneau (2008) or Dortel et al (2014), 
- Mortality (2 options): Natural mortality-at-age as described above, or at 70% of the basic 

model, 
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Section 3: Issues identified for 2021 model 
 

1. The spatial stratification assumed for the IOYT stock does not appear necessary, nor is 
it supported by the available data. 

 
The stratification of the IOYT stock into 4 spatial regions appears to be overly complex, and the 
assumption of connectivity between all 4 regions may in fact combine two distinct populations 
with very little exchange of individuals. This is supported by the following observations.  
 
First, there does not appear to be any reason to model a separate region 3. Catch in region 3 is 
negligible, with only deep-water longline fleets operating there. Moreover, R3 fresh longline 
catches (LF fleets) are aggregated with R4 removals, and the only modeled fleet is LL3, which 
accounts for a recent average of around 2 kt, out of an average of around 400 kt across all four 
regions (i.e., 0.5% of total removals).  
 
Second, there is not enough data to inform the estimation of movement model parameters. Tags 
that were included in the model were all released in regions 1 and 2 and out of 9916 tags 
recovered 91% were recovered within region 1. The remaining tags were recovered in region 2 
(849 tags) and region 4 (27 tags), and there were zero recoveries in region 3. This data provides 
information for only 3 out of the 6 movement parameters needed for the assumed spatial 
structure: R1 -> R2, R2 -> R1, and R1 -> R4; the remaining movement parameters are then free 
to be influenced by the CPUE and catch-at-length data, making them unreliable at best and are 
most probably overfit to those data. For example, the movement parameters between R3 and 
R4 have no basis in the tagging data, and given the low fishing effort in R3, it is probably used by 
the model to ‘store fish’ for the fishing activity in R4 (Methot 2019). 
 
Lastly, there does not appear to be any significant movement of IOYT from the western spatial 
strata (R1/R2) to the eastern strata (R4/R3). This is supported by very small sample of 27 tags 
recovered in R4, which leads to the estimate of zero longitudinal movement between R1 and R4 
in several recent assessments (Fu et al 2018; Urtizbera et al 2019; Fu et al 2021).  
 
Alternative spatial structures appear to have been explored by different groups (Urtizbera et al 
2019; Kolody and Jumppanen 2021). It appears that 2-area models were rejected either because 
estimates of biomass and productivity were not sufficiently different to a 4-area model, or 
because they did not allow for longitudinal movement. Single area models were similarly rejected 
because it was harder to satisfy mixing assumptions for the inclusion of the tagging data at the 
larger spatial scale, which is required under the assumed SS3 tag model structure. However, in 
some exploratory models the 4-area configuration led to poor model fits, indicated by fishing 
mortality estimates at the upper bound of F = 2.9, or roughly a 95% harvest rate (Kolody and 
Jumppanen 2021). 
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Unnecessarily complex spatial structure will lead to biases in estimates of fishing mortality and 
stock biomass, and there are additional implications for estimates of biological reference points 
such as BMSY and FMSY. Indeed, it is not entirely clear how the spatial structure is included in 
estimates of fishery reference points. It is unclear whether the ability of the model to ‘store’ 
biomass within R3 as a spatial refuge is accounted for, or whether a spatial allocation of fishing 
mortality is assumed in the estimation of reference points. 
 

2. The SS3 model doesn’t appear to fit to the tagging data well at all 
 
Tag recoveries appear to be on average under-estimated by SS3. The fits to tags recovered by the 
Purse-Seine fisheries are shown in Figures 21 – 24 of Fu et al (2021). It is sufficient to look at the 
summary panel (titled Total) to see the under-estimation, where the model predictions (red 
points) are often well below the data (blue points). 
 
Such chronic under-estimation has implications for the model estimates of mortality. It could be 
that natural mortality is biased high, meaning that the ‘simulated’ tags used to predict the data 
are lost to natural causes before they are captured in fishing effort; there is some support for this 
in the likelihood profile in Figure B12 (Fu et al 2021), where the tagging data prefers a lower 
average natural mortality, while the length compositions and CPUE prefer a higher natural 
mortality rate. On the other hand, it could be that fishing mortality is biased low, which means 
that fish aren’t being removed at a fast enough rate to capture the tags at the quantities observed 
in the data. 
 
If natural mortality is over-estimated, then this affects the estimates of IOYT productivity via a 
lower average survival of age-1 fish to recruit first to the fishery, and ultimately to the spawning 
stock. Lower survival means that a higher average recruitment is necessary to maintain the same 
size stock, which would make the stock appear more productive than it truly is. On the other 
hand, if fishing mortality is being under-estimated then the abundance of the stock may be over-
estimated, as a larger stock would be necessary to produce the same level of catch at a lower 
fishing mortality rate, making the stock appear larger than it truly is. In either case, there are 
significant implications for estimates of current stock status because bias in mortality rates 
affects biological reference points and the subsequent Kobe overfished/overfishing status. 
 

3. There appears to be over-weighting of some model configurations in the ensemble, 
which likely leads to biased estimates of stock status when integrated over all 96 
models 

 
One of the assessment model axes of uncertainty tests natural mortality rates that are 70% of 
the level used in the basic model, and both natural mortality multipliers are weighted equally. 
However, when looking at the effect on the total model likelihood (i.e., goodness of fit) it 
appears that equal weighting may not be appropriate (Fu et al 2021, Figure B12). Indeed, M 
multiplier of 0.7, which corresponds to the Mlow model option, is approximately 190 likelihood 
units higher (i.e., less likely) than an M multiplier of 0.9, and about 50 likelihood units higher 



  LANDMARK FISHERIES RESEARCH | PAGE  7 
 

than the M multiplier of 1.0, which corresponds to the Mbase option. It is unclear, given the 
lower total likelihood, why the Mbase option does not correspond to the M multiplier of 0.9. 
 

4. Fits to length composition data 
 
There appear to be several issues with how the model fits to length composition data for several 
fisheries. Time-averaged fits appear to be quite acceptable, but the fits to individual yearly 
samples do not reflect the quality of the time-averaged fits (compare Figures 1 and 2). 
Presumably, the plots of time-averaged fits to composition data are weighted by effective sample 
size calculated based on goodness of fit (i.e., residual variance), which effectively down-weights 
years with poor fits and obscures model bias at the aggregate level. Poor fits to length 
composition data imply mis-specified fleet selectivity functions, which can lead to mis-
assignment of fishing mortality among age classes, and therefore can have significant 
implications for estimation of stock productivity and biomass from the assessment, as well as the 
perception harvest strategy risk in model projections. 
 
Much of the issue may be related to the multinomial likelihood function used for compositional 
data by SS3. Multinomial likelihood functions values are proportional to the total number of 
samples in the data, and if composition data are unscaled then the multinomial likelihood 
function value for length compositions can be very large, effectively dominating the total 
objective function used to optimise the model (Francis 2011). To mitigate this domination effect, 
IOYT assessment authors re-weight the total length composition likelihood function by scaling 
fleet length compositions for each quarter to a sample size of 5, with each length bin having the 
same proportions as the raw data (Fu et al 2021). However, this is not entirely successful as the 
total model objective function is still dominated completely by length composition data (Figure 
B12, Fu et al 2021). Furthermore, the scaling effectively weights each quarter of length data the 
same for every fleet, regardless of total sampling effort or catch; in some cases this scaling leads 
to ‘smaller’ fleets being weighted more heavily than larger fleets. For example, for IOYT the 
adjusted samples for longline fleets in all areas are weighed more heavily than the purse seine 
fleets, which have an order of magnitude more catch and several orders of magnitude more 
length samples (Table 1). 
 
 
Section 4: Proposed changes to improve IOYT stock assessment model 
 
This section proposes some changes to the IOYT model that we anticipate would improve the 
statistical properties of the assessment and possibly also projections of population dynamics for 
harvest strategy and management procedure development. 
 
In general, there are two options. The first, which we recommend, is a major model overhaul as 
proposed in section 4a below. Such an overhaul would escape restrictive SS3 structure in favour 
of a custom modeling approach to IOYT. This has the benefit of being a made-for IOYT model, 
with population dynamics processes and data likelihoods defined to incorporate unique features 
of the IOYT fishery and address the issues outlined above. Moreover, it would be simple to extend 
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a custom model into an operating model for closed loop simulation and management strategy 
evaluation (MSE), which is already being explored for IOYT (Kolody and Jumppanen 2021; IOTC 
2018). In fact, it is very common for fisheries that are going through MSE processes to use custom 
built operating models for harvest strategy testing, even among trans-boundary fisheries that 
use SS3 for stock assessment such as Pacific Halibut (Stewart and Hicks 2022; IPHC 2022) or 
Pacific Hake (Johnson et al 2021; Jacobsen et al 2021). However, it is also common for operating 
model and assessment model structure to match, which has an additional benefit of making it 
easier to detect model mis-specification error between MSE cycles, such as in Southern Bluefin 
Tuna (CCSBT 2021), British Columbia Sablefish (Cox et al 2022), or Atlantic Halibut in Canada 
(Johnson et al 2022). 
 
The second option, described in 4b below, would be to continue focusing on incremental changes 
to the SS3 model to improve how it fits to IOYT data. Given the nature of SS3, changing the code 
(i.e., as required to implement new likelihood functions) is likely outside of the scope for anyone 
who is not part of the SS3 development team, and therefore this option is largely limited to 
changing spatial stock structure, or adjusting the way that data is prepared for SS3. Data 
preparation could be adjusted by removing some sources of data that are difficult to fit under 
the current structure (e.g., tagging data), or changing the way that data are scaled/standardised 
before being input to SS3. 
 
 
4a. Major model overhaul 
 
Given the mismatch between the information content of IOYT data and the model structure 
assumed for the SS3 assessment of IOYT, it might be most straightforward to custom design a 
new IOYT stock assessment model from the ground up. The benefit of using a custom model for 
IOYT is that all elements of the model are specifically defined for IOYT data, so that there are no 
trade-offs between IOYT specific problems and defining a model for general use cases, as has 
been necessary with SS3 and previously with MULTIFAN-CL. 
 
If the IOYT model were to be overhauled, we would advise the following steps. A proposed 
budget for these steps is included as Appendix A. 
 

1. Undergo an initial model planning stage including interviews with IOTC scientists. There 
is a significant history of stock assessment work for the IOYT stock conducted by scientists 
who are very familiar with both the scientific limits of the IOYT data and other issues 
related to the trans-boundary nature of IOYT. We propose a series of interviews regarding 
historical IOYT stock assessments, the data collection process, and fishery management 
needs such as future management procedure evaluation and/or rebuilding planning 
requirements, with the aim to elicit features that would be included in the ideal IOYT stock 
assessment model, and to understand more fully the challenges associated with modeling 
IOYT. 
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2. Seek funding from external sources for model development. There may be significant 
resource requirements for developing a new stock assessment model for IOYT, depending 
on the scope. As such, we recommend developing funding applications for model 
development in partnership with stakeholders, including industry groups, NGOs, and 
government institutions. For example, the tagging effort for the RTTP-IO and several of 
the analyses of that data were enabled via the 9th European Development Fund (EDF; e.g. 
Hillary and Eveson 2015). The EDF is specifically designed for funding projects in countries 
outside of the European Union, and the current fund (12th) spans 2021 – 2027 as part of 
the European Union Multiannual Funding Framework. Other sources of funding may also 
be available from other significant national interests (e.g., Australia, Japan, etc). 

 
3. Reduce the spatial complexity in the IOYT model. There are a few different ways this 

could be achieved. The simplest would be to collapse the IOYT to either a single area 
model that aggregates R1 – R4, or to two independent populations split between R1/R2 
and R3/R4. In both cases, fleets could continue to represent different spatial area and 
gear combinations via an areas-as-fleets approach like Pacific Halibut and Atlantic Halibut 
stock assessments (Stewart and Hicks 2022; Johnson et al. 2022), as well as others. The 
reduction in spatial complexity would remove the need to estimate movement model 
parameters and tagging data could be used for estimating mortality rates only. 

 
4. Adjust the tagging model to incorporate non-mixed tags for better estimation of 

mortality. Standard tagging models typically assume that tagged fish are equally 
vulnerable to fishing given their size or age. If a spatial region is very large, as some IOYT 
regions are, then this assumption takes a long time to satisfy and could result in heavily 
biased fishing mortality rates (Kolody and Hoyle 2015). One option is to freely estimate 
‘unmixed’ exploitation rates so that all tag recoveries can be included (Hillary and Eveson 
2015). Another option, which may pair well with the spatio-temporal treatment of input 
data outlined below, would be to model individual fish movement as an advection-
diffusion process, which could be fit to the tag release/recovery sites and the time-at-
liberty (Sibert et al 1999; Senina et al 2020). Finally, the current ADMB implementation 
treats all parameters as fixed effects, but a treatment of individual fish as random effects 
would be better suited to allow individual fish to deviate from ‘expected’ population 
movement behaviour, especially before full mixing has occurred (Fu 2022). 
 

5. Adjust tagging model so that it is length based, to avoid biases associated with assigning 
an age to tag release groups. The current tagging model in SS3 requires an age to be 
assigned to fish in each tag group, so that they can be tracked through time. Since there 
is very little age information for IOYT, the tag group age is assigned based on length, via 
the mean length-at-age relationship (Fu et al 2021). A common problem with this 
approach is that there is significant overlap in length distributions among age classes 
given variability in length-at-age, which leads to errors in fishery selectivity and fishing 
mortality on tagged fish. A length-based method that takes uncertainty in the length-at-
age relationship into account via an age-length key (Fu 2022), or a fully length-based 
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model replacing age-based dynamics with size-class transition matrices could improve 
performance (Hillary and Eveson 2015). 

 
6. Use spatio-temporal standardisation for length data, CPUE indices, and possibly tagging 

data. It is becoming less common for fisheries over large spatial scales to be assessed in 
discrete boxes (i.e., regions), and more common for data collected over the wide area to 
be standardised with respect to continuous space and time using Gaussian Markov 
Random Fields (GMRFs; Thorson, Maunder, and Punt 2020). Examples in high-profile 
fisheries include Pacific Halibut and Southern Bluefin Tuna (Stewart and Hicks 2021; 
CCSBT 2021). Spatio-temporal standardisation via GMRFs is especially useful for fishery 
dependent data, which is not design-based and generally collected during non-random 
fishing effort (Thorson, Maunder, and Punt 2020). Such continuous spatio-temporal 
methods may also prove useful for a continuous treatment of tagging data, such as in the 
advection-diffusion model suggested above. 
 

7. Replace multinomial likelihood for length compositions with logistic-normal likelihood. 
As outlined above, and observed for IOYT, there are several issues associated with using 
multinomial likelihood functions for compositional data (Francis 2014).  A better approach 
is to use a logistic-normal likelihood function (Schnute and Haigh 2007; Francis 2014), for 
which the likelihood function is a sum of squared logit-residuals. As a result, the function 
is self-weighting by the variance nuisance parameter, so there is no need to down-weight 
sample sizes as done for IOYT, and the likelihood function value is often on a similar scale 
to likelihoods for other sources of data. Finally, relative sizes of individual quarterly 
samples can be included as annual weights on the residual sum of squares to represent 
changes in sampling effort. 

 
 
4b. Minor changes within SS3 structure (in lieu of a major model overhaul) 
 
While we recommend a custom-designed assessment model for any stock of this importance, we 
also note the following options that may improve the statistical properties SS3 fits to IOYT data: 
 

1. Remove movement model and tagging data. IOYT could be fit as a single stock in SS3 
with an implicit assumption of uniform distribution across the Indian Ocean, or as 2 
independent populations with no movement between areas. This is like the reduction in 
spatial complexity suggested for the model overhaul but fits within the SS3 structure 
already being used. This change was originally suggested by Methot (2019). The 2-area 
structure has the benefit of indirectly reflecting the tagging data (i.e., no longitudinal 
movement), while acknowledging the limits of that data’s direct utility within the SS3 
model. 

 
2. Remove movement model, but keep tagging data to estimate mortality within a 

combined R1/R2. Similar to modification 1 but incorporates the tagging data more 
explicitly. This approach would estimate a new mixing period for a combined R1/R2 
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region, like what is used currently for mixing. This way, tags that are at liberty for longer 
than the mixing period can still be used in SS3 to help estimate natural and fishing 
mortality rates in R1/R2 without a major change to the SS3 tag data likelihood function. 
Then, the R1/R2 natural mortality rates may be used as informative priors for natural 
mortality rates in R3/R4. 
 

3. Adjust sample size scaling for length composition data. The current approach to scaling 
all quarterly length samples to an adjusted sample size of 5 likely leads to model bias in 
selectivity, recruitments, and fishing mortality. We recommend avoiding this equal 
weighting scheme, and replacing adjusted sample sizes or some other weighting, such as 
by catch to reflect the relative influence of each fleet, or some iterative reweighting 
scheme that accounts for effective sample sizes based on residual variance and/or the 
raw sample sizes but manages to reduce domination of the objective function by 
compositional data. This way, the contributions of individual fisheries remain scaled to 
their relative influence (as measured by catch and/or sampling effort). 
 

4. Apply a spatio-temporal standardisation for input data. There are legitimate reasons to 
separate tuna by temperate and tropical regions, but there is limited support in the data 
for doing so. Applying a spatio-temporal standardisation method such as VAST to length 
composition data could help reduce the bias in length compositions while simultaneously 
allowing for a simpler model structure. This would be similar to the approach described 
in the major model overhaul. 
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Tables 
 
Table 1: A summary of the catch and catch-at-length data for each of the 21 fleets in the IOYT stock assessment, generated from 
the data.ss file used for the assessment up to 2020 (Fu et al 2021). 

Fleet 
Number 

Name 
No. of 

Quarters 
Mean 

Catch (t) 

Total 
length 

samples 

Adjusted 
length 

samples 

Mean 
Observed 

Length 

1 GI1a 284 5901.03 115953 520 84.08 

2 HD1a 284 5249.75 34600 250 113.86 

3 LL1a 248 1698.03 7716 75 119.73 

4 OT1a 284 21.56 24794 120 49.4 

5 BB1b 284 2346.3 308116 675 48.66 

6 PSFS1b 157 13698.23 32335175 760 104.64 

7 LL1b 268 4533.1 183856.4 1005 123.34 

8 PSLS1b 156 13394.97 170425447 765 55.21 

9 TR1b 284 577.74 0 0 0 

10 LL2 268 1541.72 131042 945 125.06 

11 LL3 273 424.43 224413 920 124.75 

12 GI4 284 1405.28 452003 195 67.76 

13 LL4 273 2028.61 189532 945 121.29 

14 OT4 284 878.65 8300 100 42.12 

15 TR4 284 1052.45 34064 115 47.59 

16 PSFS2 99 1211.03 3283561 425 82.22 

17 PSLS2 120 1586.11 14398028 520 60.3 

18 TR2 284 391.32 0 0 0 

19 PSFS4 118 435.94 642546 145 100.07 

20 PSLS4 153 304.65 1486702 250 57.8 

21 LF4 284 6686.15 111133 180 126.18 
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Figures 

 
Figure 1: Time-averaged fits to length compositions for each fleet. Grey polygons are time-averaged data, while green lines are 
the model fits weighted by effective sample size. 
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Figure 2: Fits to length composition data for Fishery 1 (GI1a) for individual quarters 265 – 288 (top right corner of each pane). 
Grey polygons show the proportion-at-age data, while the green line shows individual fits to those data. The numbers in the top 
right corner show the adjusted input sample size of 5, and the model estimates of effective sample size based on residual 
variance. 
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Appendix A: Budget to develop an alternative Bayesian IOYT stock assessment model 
ensemble. Estimated work days (in “[]”) are approximated toward the upper end. 
 

1. Consultation 
a. [10 days] Interview IOTC scientists and stakeholders: elicit desirable model 

features and must-haves in terms of included data sets, as well as a ‘data 
guillotine’ date 

b. [5 days] Funding application: prepare grant proposals for submission to external 
bodies for model development if desired 

2. Model Design:  
a. [10 days] Acquire up-to-date IOYT stock assessment data (before the limit 

defined above) and conduct exploratory analyses 
b. [10 days] Develop mathematical definition of a new Bayesian IOYT stock 

assessment model including the following features 
i. A simpler spatial structure with two stocks split into current regions 

R1/R2 and R3/R4, with no movement between (DFO 20XX, attached to 
this review, do not cite or circulate). 

ii. Quarterly time-steps to acknowledge intra-annual seasonal effects as 
well as inter-annual variation, with quarterly recruitment to approximate 
continuous spawning of tropical tunas 

iii. Areas-as-fleets structure to acknowledge differences in availability of fish 
between equatorial and temperate regions, with possible seasonal and 
annual variation in fleet selectivity (Johnson and Cox 2022, attached to 
this review, do no cite or circulate) 

iv. A length-based Brownie-Peterson tagging model to estimate mortality 
only (no movement), with structure that accounts for non-mixed tags to 
increase sample sizes (e.g., Fu 2022 and/or Hillary and Eveson 2015) 

v. A self-weighting logistic-normal likelihood for length-composition data, 
potentially with lag-1 correlation in residuals for neighbouring length bins 
(Johnson and Cox 2022; Francis 2014) 

3. Model coding and implementation: 
a. [45 days] Develop a new, or apply an existing (e.g., VAST), spatiotemporal CPUE 

standardisation that accounts for large scale and unique spatiotemporal 
dynamics of the fishery 

b. [45 days] Implement the final model design in Template Model Builder 
4. Model testing: 

a. [15 days] Exploratory sensitivity analyses: Explore the sensitivity of new IOYT 
model maximum posterior density estimates of biomass and productivity to 
alternative assumptions  

b. [15 days] Code validation: code unit tests that externally validate model 
calculations of population dynamics processes as well as objective function 
components. 

c. [20 days] Simulation-estimation self-test: Evaluate new IOYT model bias and 
precision by fitting the new IOYT model to simulated pseudo-data sets and 
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recording relative estimation errors, thereby identifying sources of model bias 
and corrections if possible. 

5. IOYT stock status estimation: 
a. [10 days] Ensemble grid definition and aggregation method: identify, in 

collaboration with IOTC stakeholders, key model sensitivities from 4a to be 
included as part of an ensemble grid for determination of IOYT biomass and 
productivity, and a method for combining those estimates across the grid (e.g., 
weighting or sampling scheme).  

b. [20 days] Model fitting and posterior generation: Fit the ensemble grid to IOYT 
data and tune model setting to produce convergent optimisations of maximum 
posterior density estimates, and fully mixed chains of samples from model 
parameter posterior distributions. 

c. [2 days] Determining stock status: Estimate reference points for each model in 
the ensemble grid, then use the aggregation method defined above to combine 
individual model posterior distributions of stock status. 

6. Documentation and dissemination 
a. [30 days] Model documentation: In depth model description and instructions for 

other analysts to apply IOYT assessment model and estimate model parameters, 
generate posteriors, and combine ensemble model estimates 

b. [15 days] Working paper preparation: Writing a stock assessment report as a 
working paper for the IOTC secretariat 

c. [10 days] Response to reviews: Incorporating feedback from reviewer 
suggestions into the new IOYT model and its documentation. 

 
Total of 262 days.  
 
Please note: meetings and travel are not included in this budget given the variable nature of 
travel costs, but generally are a combination of expenses for transportation from Vancouver, 
Canada, accommodation, meals, and day-rates for travel and meeting participation. 
 
Landmark consulting daily rates as of September 2022. 

Role Daily rate (CDN) Responsibilities 

Principal $1,450 Strategy and model design for 
assessments and MSE.  
Consultation, communication, 
and facilitation  

Senior scientist $1,250 Model design, coding, testing, 
communications 

Junior scientist $1,000 Data modelling, survey design, 
statistical modelling 

Analyst $800 Data preparation, exploratory 
analyses, statistical modelling 
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