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1. Introduction 

Assessing the status of the stocks of neritic tuna species in the Indian Ocean is challenging due to the 

paucity of data. There is lack of reliable information on stock structure, abundance and biological 

parameters. Stock assessments have been conducted for Longtail tuna (Thunnus tonggol) from 2013 

through 2017 utilising a variety of data-limited methods (Zhou & Sharma 2013, 2014; Martin & Sharma, 

2015; Martin & Robinson, 2016, Fu & Martin, 2017).  In 2020 the C-MSY method (Froese et al. 2016) 

was used to assess the status of T.tonggol (Fu 2020) using historical catches. This paper provides an 

update to the C-MSY assessment based on the most recent catch information. This assessment also 

explored several alternative methods including the Optimised Catch-Only method (Zhou et al., 2013), 

the JABBA model (Winker et.al. 2014), and the length-based spawning potential ratio model (Hordyk 

et al. 2014). In addition to examining various population dynamic assumptions, these models allow for 

the evaluation of the usefulness of alternative data in determining the status of T. tonggol.  

2. Basic Biology 

Longtail tuna (Thunnus tonggol) is an epipelagic species inhabiting tropical to temperate provinces of 

the Indo-Pacific, found almost exclusively in the neritic waters close to the shore, avoiding estuaries, 

turbid waters and open ocean (Froese & Pauly 2015). It is one of the smallest species of the genus 

Thunnus, but relatively large compared with other neritic species with a maximum length of 145cm. 

Longtail tuna in the Indian Ocean is primarily caught by gillnet fleets operating in coastal waters with 

the highest reported catches from Iran, followed by Indonesia, India, Pakistan, Oman, Malaysia, 

Thailand and others (IOTC 2023). Most research on Indian Ocean longtail tuna has been focussed in 

these areas where there are important fisheries for the species, with the most common methods used to 

estimate growth being through length-frequency studies (IOTC 2015). These studies have provided 

varied estimates of growth, with most estimates of von Bertalanffy k values ranging 0.18–0.55 with 

some more extreme values. Some of these differences may be due to the different estimation techniques, 

due to regional differences in the maximum size of fish in the areas and due to differences in the size 

selectivity of the different fish sampling methods (IOTC, 2015). A more complete biological study on 

longtail tuna in Australia (Griffiths et al., 2010) have provided the required information to estimate age 

and growth, maturity, and natural mortality parameters. Using those information, Griffiths 2010 

undertake an assessment of the current fishing mortality of longtail tuna in Australian waters using a 

yield per recruitment analysis.  
 

3. Catch, CPUE and Fishery trends 

Nominal catch data were extracted from the IOTC Secretariat database for the period 1950–2021 

(records for 2022 were still incomplete at the time of the assessment). Gillnet fleets are responsible for 

the vast majority of reported catches of longtail with a much smaller proportion caught by purse seine 

and line gear, with the majority of catches taken by coastal country fleets, namely I.R. Iran, Indonesia, 

Pakistan, India, and Oman (Figure 1).   

Figure 2 shows the increase in total catches since 1950, highlighting a particularly rapid increase 

between 2004 and 2012, when catches reached a maximum of 176,551 t. This has since been followed 

by a decline to the estimated total catches of 113,022 t in 2019 (Table 1). The catches in 2020 and 2021 

were 137 194 t and 134 171 t, respectively.  In 2019, IOTC endorsed the revisions of Pakistani gillnet 

catches that introduce some changes in the catches of tropical tuna, billfish, as well as some neritic tuna 

species since 1987 (IOTC 2019). However, the revision appears to have very minor effects on the 

longtail nominal catch series since the last assessment (Figure 3). 
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There is a relatively high uncertainty associated with the catch data for neritic tunas due to the 

difficulties in differentiating amongst the different species resulting in highly aggregated reported data, 

often as ‘seerfishes’ or other groupings. Therefore, the IOTC Secretariat uses various methods of 

estimating the disaggregated catches by species for assessment purposes. Fu & Martin (2017) showed 

there are close correlations between the catches over time of each of the six neritic tunas. The high level 

of correlation amongst these species is likely to be because they are often caught together, due to 

difficulty with species identification and also because of the estimation procedures used to assign 

proportions of catch amongst the various species. Species-specific reporting has improved over time, 

leading to a lower level of correlation in more recent years.  

Fu et al. (2019) developed standardised CPUE indices for several neritic tuna species including longtail 

tuna from the Iranian coastal gillnet fishery using the catch effort data collected from the port-sampling 

program. That analysis represented an effort to estimate a relative abundance index for neritic tuna 

stocks for potential use in stock assessments. The quarterly indices (2008–2017) for the longtail tuna 

showed a large decline since 2012 (Figure 4). The annualised indices (by taking the average of the 

quarterly indices) are included in the assessment method based on the JABBA model (see Section 4.3).  

 

 

 

 

Figure 1: Average catches in the Indian Ocean over the period 2012-2021, by country. The red line 

indicates the (cumulative) proportion of catches of longtail by country. 
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Figure 2: Annual catches of longtail tuna by gear, 1950 – 2021 (IOTC database). 

 

 

Figure 3: Revisions to IOTC nominal catch data for longtail tuna (datasets used for the 2020 and 2023 assessments). 
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Figure 4: Standardised CPUE indices (year-quarter) for longtail tuna 2008–2017 from the GLM lognormal model. 

See Fu et al. (2019) for details. 
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Table 1. Catch data for T. tonggol in the Indian Ocean, 1950-2021 (source IOTC Database) 

Year Catch (t) Year Catch (t) 

1950 2 840 1986 38 147 

1951 2 816 1987 50 624 

1952 3 093 1988 56 190 

1953 3 360 1989 51 478 

1954 3 603 1990 44 802 

1955 3 638 1991 49 825 

1956 3 317 1992 43 854 

1957 4 695 1993 47 556 

1958 3 740 1994 49 874 

1959 4 521 1995 68 655 

1960 4 535 1996 63 850 

1961 4 449 1997 64 015 

1962 5 332 1998 75 618 

1963 6 127 1999 80 477 

1964 7 190 2000 96 344 

1965 7 772 2001 90 253 

1966 9 113 2002 90 357 

1967 9 426 2003 90 104 

1968 9 463 2004 80 269 

1969 8 876 2005 82 631 

1970 8 162 2006 92 483 

1971 6 977 2007 108 844 

1972 8 363 2008 105 307 

1973 7 644 2009 123 694 

1974 12 804 2010 141 772 

1975 14 937 2011 171 583 

1976 15 256 2012 176 592 

1977 15 782 2013 158 700 

1978 17 346 2014 148 940 

1979 19 541 2015 140 194 

1980 19 010 2016 140 980 

1981 20 274 2017 150 523 

1982 29 798 2018 135 944 

1983 26 251 2019 113 022 

1984 31 386 2020 137 194 

1985 35 850 2021 134 171 
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4. Methods   

4.1. C-MSY method 

The C-MSY method of Froese et al. (2016) was applied to estimate reference points from catch, 

resilience and qualitative stock status information for the longtail tuna. The C-MSY method represents 

a further development of the Catch-MSY method of Martell and Froese (2012), with a number of 

improvements to reduce potential bias. Like the Catch-MSY method, The C-MSY relies on only a catch 

time series dataset, which was available from 1950 – 2018, prior ranges of r and K, and possible ranges 

of stock sizes in the first and final years of the time series.  

The Graham-Shaefer surplus production model (Shaefer 1954) is used (equation 1), but it is combined 

with a simple recruitment model to account for the reduced recruitment at severely depleted stock sizes 

(equation 2), where Bt is the biomass in time step t, r is the population growth rate, B0 is the virgin 

biomass equal to carrying capacity, K, and Ct is the known catch at time t. Annual biomass quantities 

can then be calculated for every year based on a given set of r and K parameters.  
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The prior range for r was estimated using the life history module (LHM) developed by Edwards (2016). 

The model implements Monte Carlo sampling of life history parameter distributions, with iterated 

solving of the Euler-Lotka equation (McAllister et al. 2001). The population parameters of T. tonggol 

(including growth, natural morality, maturity, and length-weight relationship) are based on values 

collated by Griffiths (2011).  The estimated distribution of r suggested a credible range of 0.2 – 0.9 for 

T. tonggol. Martell and Froese (2012) proposed a classification of the stock resilience levels where 

stocks with a very low resiliency are allocated an r value from 0.05 – 0.5, medium resiliency 0.2 – 1 

and high resiliency 0.6 – 1.5. Based on the FishBase classification, Thunnus tonggol has a high level of 

resilience (0.6 – 1.5) (Froese and Pauly 2015).  For this analysis, the LHM estimate of 0.2 – 0.9 was 

used a reference case as they are based on existing parameters and the FishBase resilience estimate of 

0.6–1.5 was used as a sensitivity. 

The prior range of K was determined as 
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Where lowk and highk  are the lower and upper lower bound of the range of k, max(C) is the maximum 

catch in the time series, and lowr  and highr  are lower and upper bound of the range of r values.  

 

The ranges for starting and final depletion levels were assumed to be based on one of possible three 

biomass ranges: 0.01–0.4 (low), 0.2–0.6 (medium), and high (0.4–0.8), using a set of rules based on the 
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trend of the catch series (see Froese et al. (2016) for details).  For the current assessment, it was decided 

to adopt the medium range (0.2 – 0.6) assumption for the final depletion level in the reference model, 

considering the long exploitation history of the fishery and the recent reduction in total catches. The 

prior ranges used for key parameters for the reference model are specified in Table 2.  

C-MSY estimates biomass, exploitation rate, MSY and related fisheries reference points from catch 

data and resilience of the species.  Probable ranges for r and k are filtered with a Monte Carlo approach 

to detect ‘viable’ r-k pairs. The model worked sequentially through the range of initial biomass 

depletion level and random pairs of r and K were drawn based on the uniform distribution for the 

specified ranges.  Equation 1 or 2 is used to calculate the predicted biomass in subsequent years, each 

r-k pair at each given starting biomass level is considered variable if the stock has never collapsed or 

exceeded carrying capacity and that the final biomass estimate which falls within the assumed depletion 

range. All r-k combinations for each starting biomass which were considered feasible were retained for 

further analysis. The search for viable r-k pairs is terminated once more than 1000 pairs are found. 

The most probable r-k pair were determined using the method described by Ferose et.al (2016).  All 

viable r-values are assigned to 25–100 bins of equal width in log space. The 75th percentile of the mid-

values of occupied bins is taken as the most probable estimate of r. Approximate 95% confidence limits 

of the most probable r are obtained as 51.25th and 98.75th percentiles of the mid-values of occupied 

bins, respectively. The most probable value of k is determined from a linear regression fitted to log(k) 

as a function of log(r), for r-k pairs where r is larger than median of mid-values of occupied bins. MSY 

are obtained as geometric mean of the MSY values calculated for each of the r-k pairs where r is larger 

than the median. Viable biomass trajectories were restricted to those associated with an r-k pair that fell 

within the confidence limits of the C-MSY estimates of r and k. 

Table 2: Prior ranges used for the longtail tuna in the C-MSY analysis reference model 

Species Initial B/K Final B/K r K (1000 t) 

Reference model  0.5–0.9 0.2–0.6 0.2–0.9 188 – 3377 

 

4.2. OCOM model 

Similar to the C-MSY approach, the Optimised Catch-Only model (Zhou et al. 2013 & 2016) uses the 

Schafer biomass dynamic model to describe population dynamics and seeks to determine the most 

probable r and K combination that maintains a viable population throughout time. By excluding the 

unlikely parameter values from a large number of simulations, this method generates estimations of 

biological reference points and stock status. Since r and K are negatively correlated, the initial version 

of this approach employed unconstrained priors on both parameters (for example, the maximum K is 

bound by r = 0 and the maximum r is constrained by the minimum viable K) (Zhou et al. 2013). In 

subsequent development, the population growth rate r can be constructed using a Bayesian error-in-

variable model based on life-history parameters (particularly natural mortality and/or maximum age) 

and the prior for the final depletion S using a Boosted Regression trees (BRT) (Zhou et al., 2020). 

Additionally, the model contains a setting that enables the user-specified priors for r and S to be 

provided. We run the OCOM model with the same priors on r (0.2-0.9 and 0.6-1.5) and on S (0.2-0.6) 

as those used in the C-MSY model to facilitate comparison.  
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4.3. JABBA model 

Both C-MSY and OCOM models imposed strong assumptions on the stock abundance trend.  Although 

the estimate of MSY is generally robust, estimates of other management quantities are very sensitive to 

the assumed level of stock depletion. Thus, we explored the use of JABBA (Winker et al. 2014) which 

utilised the available CPUE indices. The JABBA model was implemented as a Bayesian state-space 

estimation model that was fitted to catch and CPUE. The model allowed for both observation and 

process errors (see Winker et al. 2018 for details). The prior range for r and K was translated into priors 

for the Bayesian estimation (see Table 2). A lognormal likelihood with a CV of 0.1 was assumed for 

the CPUE indices. The prior range for the initial and final depletion can be applied optionally. The 

reference model made no assumption on the depletion level. To explore the effect of the depletion 

constraint on model results, an additional model was conducted which penalise the final depletion 

outside the range of 0.2–0.6. The model also estimates the catchability scalar which relates the 

abundance index and estimated biomass trajectory and is calculated as a set of most likely values 

relative to the values of other parameters. 

4.4. LBSPR method 

The LBSPR method (Hordyk et al. 2014) estimates the Spawning Potential Ratio (SPR) of a stock 

directly from the size composition of the catch. The SPR of a stock is defined as the proportion of the 

unfished reproductive potential (often approximated by spawning biomass) left at any given level of 

fishing pressure (Hordyk et al. 2014) and is commonly used to set target and limit reference points for 

fisheries. The F40%, i.e., the fishing mortality rate that results in SPR at 40% of unfished level, is 

considered risk adverse for many species. The LBSPR establish that how length compositions and 

spawning ratios are determined by fishing mortality and life history ratio, which are known to be less 

variant across species. The LBSPR uses maximum likelihood methods to estimate relative fishing 

mortality (F/M) and selectivity-at-length that minimize the difference between the observed and the 

expected length composition of the catch and calculates the SPR (Hordyk et al. 2014). The LBSPR 

model requires the following parameters: an estimate of the ratio M/k (i.e., the individual values of the 

M and k parameters may be unknown), 𝐿∞  (and associated variance), and maturity-at-size. These 

parameters for Thunnus tonggol are obtained from Griffiths (2010). 

 

The length data used (IOTC-2023-WPNT13-DATA09-SFdata) contains length samples by gear, fleet, 

year, month, and spatial area. For longtail tuna, most samples are from the Iranian/Pakistan gillnet 

fishery from 1992 to 2021. There are some samples from the line and purse seine fisheries, but they 

mostly contain younger fish less than 50 cm (the LB-SPR model should be applied to data from the 

fleet that target the adult portion of the stock). Therefore, we applied the method to only the length data 

from the gillnet fishery. 

5. Results 

5.1. C-MSY method  

Figure 5 shows the results of the reference model from the CMSY analysis. Panel A shows the time 

series of catches in black and the three-years moving average in blue with indication of highest and 

lowest catch. The use of a moving average is to reduce the influence of extreme catches. 

 

Panel B shows the explored r-k values in log space and the r-k pairs found to be compatible with the 

catches and the prior information. Panel C shows the most probable r-k pair and its approximate 95% 

confidence limits. The probable r values did not span through the full prior range, instead ranging from 

0.43–0.88 (mean of 0.61) while probable K values ranged from 544 000 – 1380 000 (mean of 867 000). 

Given that r and K are confounded, a higher K generally gives a lower r value.  CMSY searches for the 
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most probable r in the upper region of the triangle, which serves to reduce the bias caused by the 

triangular shape of the cloud of viable r-k pairs (Ferose et al. 2016).  

 

Panel D shows the estimated biomass trajectory with 95% confidence intervals (Vertical lines indicate 

the prior ranges of initial and final biomass). The method is highly robust to the initial level of biomass 

assumed (mainly due to the very low catches for the early part of series), while the final depletion range 

has a determinative effect on the final stock status. The biomass trajectory closely mirrors the catch 

curve with a rapid decline since the late 2000s.  

 

Panel E shows in the corresponding harvest rate from CMSY. Panel F shows the Schaefer equilibrium 

curve of catch/MSY relative to B/k.  However, we caution that the fishery was unlikely to be in an 

equilibrium state in any given year.  

  

Figure 6 shows the estimated management quantities. The upper left panel shows catches relative to the 

estimate of MSY (with indication of 95% confidence limits). The upper right panel shows the total 

biomass relative to Bmsy, and the lower left graph shows exploitation rate F relative to Fmsy. The 

lower-right panel shows the development of relative stock size (B/Bmsy) over relative exploitation 

(F/Fmsy). 

 

The IOTC target and limit reference points for longtail tuna have not yet been defined, so the values 

applicable for other IOTC species are used. Management quantities (estimated means and 95% 

confidence ranges) are provided in Table 3, which shows an average MSY of about 133 000 t. The 

KOBE plot indicates that based on the C-MSY model results, longtail is currently overfished 

(B2021/BMSY=0.96) and is subject to overfishing (F2018/FMSY = 1.05). The average catch over the 

last five years is slightly higher than the estimated MSY (Table 3).  

 

The estimated stock state is similar to the previous assessment but slightly pessimistic (in relation to 

MSY-based reference points). However, due to the use of a r prior (0.2 - 0.9) that suggested a less 

intrinsically productive stock, abundance estimates are significantly higher in absolute terms (e.g., 

BMSY is about twice that of the previous estimates). The sensitivity model using a prior range of 0.6 - 

1.5 gives very similar estimates of absolute abundance to the previous assessment. The high correlation 

between r and K means there change of r prior has relatively little impact on the MSY estimation. The 

assumed stock depletion range in the final year (i.e., 0.2–0.6) has a significant impact on estimation of 

stock status. 
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Figure 5. Results of CMSY reference model for longtail tuna. 

 

Figure 6. Graphical output of management quantities from the CMSY reference model of longtail tuna. 
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Table 3. Key management quantities from the Catch MSY assessment for Indian Ocean longtail tuna. Geometric means (and plausible ranges across all feasible 

model runs). n.a. = not available. Previous assessment results are provided for comparison. 

Management Quantity 2020  2023 

Most recent catch estimate (year) 135282 t (2018) 134171(2021) 

Mean catch – most recent 5 years2 141 996 t (2014 – 2018) 134170 (2017 – 2021) 

MSY (95% CI)  146 000 (118 100 – 181 000) 133 000 (108 –165) 

Data period used in assessment 1950 – 2018 1950 – 2021 

FMSY (95% CI) 0.60 (0.48 - 0.74) 0.31 (0.22 – 0.44) 

BMSY (95% CI) 245 000 (177 000 – 341 000) 433 000(272000 – 690000) 

Fcurrent/FMSY (95% CI) 0.97 (0.78 – 2.12) 1.05 (0.84 – 2.31) 

Bcurrent /BMSY (95% CI) 0.96 (0.44 – 1.19) 0.96 (0.44 – 1.19) 

Bcurrent /B0 (95% CI) 0.48 (0.22 – 0.60) 0.48 (0.22 – 0.60) 

 
2 Data at time of assessment 
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5.2. OCOM model 

 

Figure 7 shows the strong correlation of r and K parameter values retained by the biomass dynamics 

model. 80% posterior range of r is 0.27 – 0.84, and is mostly overlap with the prior.  Estimated K ranges 

from 647 000 to 1 605 000 t.  The range of values was dependent on the level of stock depletion assumed 

for the final year, with r, K and MSY all positively correlated with the depletion level. 

Reference model (r prior range 0.2 – 0.9) indicate that the biomass was approximately 910 000 t in 

1950 and declined to approximately 364 000 t by 2021 ( 

Figure 7). The estimated MSY associated with this projection is 128 000 t and ranges from 

approximately 107 000 t to 138 000 t. The model estimated that the stock is currently overfished 

(B2021/BMSY=0.80) and is subject to overfishing (F2021/FMSY = 1.35). The estimated stock status 

of the OCOM model is more pessimistic than the C-MSY model, de3pite the same prior assumptions 

(the result showed a larger probability that the stock is in the Kobe red quadrat). This is most likely 

because the C-MSY method chose higher r values—located in the top 75% quantile of the posterior 

probability range—as the most viable values. Similar to the C-MSY model, the estimates of stock status 

changed very little under the the alternative prior range for r (0.6–1.5). 
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Figure 7: Graphical output of management quantities from the OCOM reference model of longtail tuna
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5.3. JABBA model  

The abundance estimates were exceedingly uncertain with a very wide posterior range (upper range of 

K surpassed 6 000 000 t, see Figure 8) when the stock depletion in the terminal year was unconstrained 

(model 1). This shows that the very short CPUE and increasing catch trend give very little information 

on absolute abundance and relative depletion. In this condition, there is a wide range of potential 

abundance levels that could support the catch and explain the observed CPUE.   

However, penalizing the final depletion outside the range of 0.2–0.6 (model 2) lowered the uncertainty 

of abundance estimations and resulted in a somewhat more plausible pattern in stock depletion.  The 

projected biomass trend in this model is broadly consistent with the observed reduction in CPUE since 

2011, but it did not capture well the increase in CPUE before 2011 (Figure 9). Prior to 2011, the CPUE 

increased, but this increase cannot be attributed to catches; rather, it was explained by to process errors 

that were allowed in the stock dynamics. 

Estimates of management quantities from model 2 are shown in Figure 10. The estimated stock status 

is comparable (but slightly more optimistic) to the CMSY model. The MSY varies between 94 000 and 

338 000 t, with an average of 137 000 t. According to estimates, the biomass of the spawning stock in 

2021 is 2% higher compared to the BMSY, and the fishing mortality is roughly about 4% lower than 

the FMSY (B/BMSY = 1.02, F/FMSY = 0.96).  Compared to the CMSY analysis, the confidence 

bounds for most estimations are wider. Despite the addition of CPUE indices to provide information on 

relative abundance changes, the information is limited due to the relatively short time series and lack of 

contrast between the CPUE and catch time. 

 

  
Figure 8: Biomass estimates (median and 95% CI) from JABBA model 1 (left, no prior on final depletion), 

and model 2 (right, a normal prior on final depletion with mean of 0.4 and CV of 25%, corresponding to 

an approximate range 0.2 – 0.6). Dashed line indicates median BMSY.  
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Figure 9– Posterior fits to CPUE indices 2008–2017 from JABBA model 2.  Shaded areas indicates 50% 

and 95% CI, vertical lines indicate observation errors. 

 

Figure 10: Estimated time series of B/BMSY and F/FMSY from JBBBA model 2.  

5.4. LBSPR method 

The length distribution from 1992 to 2021 can be reasonably fit by the LB-SPR (Figure 11). According 

to the model, there has been a significant shift in the gillnet fishery toward the selection of younger fish 

(Figure 11), but fishing mortality has decreased over time (Figure 11), even though it is still significantly 

higher than the potential FMSY (0.87M was thought to be a reasonable approximation of FMSY for 

teleost; see Zhou et al., 2012). Throughout most of the time series, the SPR was estimated to be around 

0.2; even though it seems to have increased in recent years, it is still significantly below 0.4 (the SPR 

of 0.4 is frequently thought of as a risk-averse target, see Hordyk et al. 2014), suggesting the stock is 

still depleted in relation to the risk-averse target. 
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Figure 11: Results of LB-SPR method applied to the length samples from the gillnet fishery for longtail 

tuna: fits to the length frequency 1992–2020 (black dots); right – estimates ( with 95% CI)  of logistic 

selectivity  parameters (a50 and a95), F/M, and SPR.  

 

6. Discussion 

The C-MSY, OCOM, JABBA, and LB-SPR methodologies have all been investigated in this report to 

evaluate the state of Indian Ocean longtail tuna. Only the catch series is needed as input for the C-MSY 

and OCOM methods, which both rely on an aggregated biomass dynamic model and use simulations to 

find historical biomass that is plausible and supports the known catch history. Time series of relative 

abundance indices have been included into the JABBA model, together with model parameters and 

management quantities estimated in a Bayesian framework. The estimates of key quantities produced 

by the three methods are largely comparable in this case, but overall, the results of OCOM model are 

more pessimistic and the JABBA model is more optimistic. Estimates from the C-MSY and OCOM 

model suggested that currently the stock of longtail tuna in the Indian Ocean is overfished (B20121< 

BMSY) and is subject to overfishing (F2021> FMSY). The estimates produced by the JABBA method 

suggested that the stock is not (B2021 < BMSY) and is not subject to overfishing (F2021 > FMSY).   

The C-MSY estimated an average MSY of about 133,000 tons and had a relatively wide range. Reported 

long-tail tuna catches in the Indian Ocean have declined significantly since peaking in 2012, with recent 

catches ranging from 131,000 to 148,000. The 2021 catch was very close to the estimated MSY. 

Decreases in abundance appear to have been offset by declining catches, resulting in a relatively flat 

trend in exploitation rates over the past decade. Despite the significant uncertainties outlined in this 

paper, this suggests that stocks are approaching being fished at MSY levels and that higher catches may 

not be sustainable. A precautionary approach to management is recommended. 

Catch-only assessments are primarily based on catch data and the underlying Schaefer model. 

Production models often provide robust or stable estimates independent of uncertainties in underlying 

biological properties. In general, simple models cannot represent important dynamics and are more 
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likely to produce biased results. Consistent estimates in catch-only model simulations are largely due 

to assumptions made about population dynamics and stock productivity, including the intrinsic growth 

rate, and carrying capacity parameters. Assumptions about the extent of final depletion are often 

subjective, but have a large impact on estimates of stock status. 

The JABBA model used the standardized CPUE index to provide information on abundance trends. 

Ideally, this makes the model less dependent on several subjective assumptions, especially those related 

to depletion levels that are essential for stock reduction analysis. The Bayesian paradigm also provides 

a more robust statistical estimation framework that allows more accurate estimation of key parameters 

and control variables. However, the available CPUE for longtail tuna is relatively short and overall does 

not respond consistently to the pattern observed in catch removes. It is therefore not indicative of stock 

productivity and depletion in this case. Furthermore, it remains to be seen whether CPUE indicators 

obtained from Iranian coastal gillnet fishing fleets can index abundance of long-tail tuna stock in the 

Indian Ocean, in addition to the various caveats even as a local indicator (see Fu et al 2019). 

Nevertheless, the availability of a standardized CPUE as a potential abundance index and its inclusion 

in the assessment would be a useful step forward in the context of assessing data deficient neritic tuna 

stocks. The CPUE should be regularly updated to a monitoring tool, potentially providing longer and 

more informative time series. Standardised indices should also be developed for other fisheries/regions 

to ensure better spatial coverage of stock populations. 

Stock status estimates using the LB-SPR method are not directly comparable to catch-only models as 

they use very different target reference points. Nevertheless, the SPR estimated by the LB-SPR method 

is well below the target of 40%, fishing mortality is estimated to be much higher than FMSY. It thus 

supports the C-MSY conclusion that fish is subject to overfishing. However, one major concern is that 

the LB-SPR model assumes asymptotic selectivity, and results have been shown to be sensitive to this 

assumption (the model is highly sensitive to the absence of large individuals in the size structure, see 

Hordyk et al. 2014). In the analysis, the LB-SPR was applied to the length samples from the gillnet 

fishery.  Gillnets typically exhibit domed selectivity, which can be problematic for long-tailed tuna. 

First, longtails are usually larger in body size (𝐿∞ ≈ 145𝑐𝑚). Griffiths (2010) showed that Taiwanese 

gillnet fisheries across northern Australia between 1979 and 1986 were significantly domed compared 

to sport fisheries that caught larger longtail. Secondly, Hordyk et al. (2014) found that species with high 

M/K ratios are less susceptible to doming because fewer individuals live longer to reach asymptotic 

size, thus affecting a smaller fraction of the dome population. However, Griffiths 2010 suggested that 

the life history of long-tail tuna is relatively slow-growing and long-lived, similar to what has been 

observed for large Thunnus species, such as bigeye tuna. Ideally, LB-SPR should be applied to fisheries 

targeting larger adult long-tail tuna. 
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