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1. Introduction 

Assessing the status of the stocks of neritic tuna species in the Indian Ocean is challenging due to the 

paucity of data. There is lack of reliable information on stock structure, abundance and biological 

parameters. Stock assessments have been conducted for narrow-barred Spanish mackerel 

(Scomberomorus commerson) from 2013 to 2017, and again in 2020 using data-limited methods (Zhou 

& Sharma, 2013, 2014; Martin & Sharma, 2015; Martin & Robinson, 2016, Martin & Fu, 2017).  In 

2017, the C-MSY method was used to assess the status of S. commerson using historically catches (Fu 

2020). This assessment also explored several alternative methods including the Optimised Catch-Only 

method (Zhou et al., 2013), the JABBA model (Winker et.al. 2014), and the length-based spawning 

potential ratio model (Hordyk et al. 2014). In addition to examining various population dynamic 

assumptions, these models allow for the evaluation of the usefulness of alternative data in determining 

the status of S. commerson. 

2. Basic Biology 

The narrow-barred Spanish mackerel (Scomberomorus commerson) (Lacépѐde, 1800) is part of the 

Scombridae family. It is an epipelagic predator which is distributed widely in the Indo-Pacific region 

from shallow coastal waters to the edge of the continental shelf where it is found from depths of 10-70 

m (McPherson 1985). It is relatively large for a neritic species with a maximum fork length of 240 cm. 

Narrow-barred Spanish mackerel is primarily caught by gillnet fleets operating in coastal waters with 

the highest reported catches form Indonesia, India and I.R. Iran (IOTC 2023). Most research has been 

focussed in these areas where there are important fisheries for the species, with the most common 

methods used to estimate growth being through length-frequency studies, although a number of otolith 

ageing studies have also been undertaken.  

Estimates of growth parameters for S. commerson, using either length or age-based information, vary 

between geographic locations. Estimates of the growth parameter K of the von Bertalanffy equation 

range from 0.12 (Edwards et al. 1985) to 0.78 (Pillai et al. 1993), however, most studies suggest 

relatively rapid growth of juveniles (IOTC 2015). Differences may be due to regional variation in 

growth patterns but may also be due to the different selectivity patterns of gears used to obtain the 

samples as a variety of drifting gillnets, hooks and lines, trolling and trawl gear are used to catch narrow-

barred Spanish mackerel.  

3. Catch, CPUE and Fishery trends 

Disaggregated nominal catch data were extracted from the IOTC Secretariat database for the period 

1950–2021, given that records for 2022 were still incomplete at the time of writing. Gillnet fleets are 

responsible for the majority of reported catches of S. commerson followed by line and purse seine gear, 

with the majority of catches taken by coastal country fleets (Figure 1). Indonesia, India and I.R. Iran 

together account for 65% of catches. Figure 2 shows the total catch of narrow-barred Spanish mackerel 

since 1950, which increased to a peak of 175 559 t in 2016 and has then declined to the 143 597 t in 

2018 (Table 1). However, the catch has since again increased to 168 807 t in 2021. In 2019, IOTC 

endorsed the revisions of Pakistani gillnet catches that introduce some changes in the catches of tropical 

tuna, billfish, as well as some neritic tuna species since 1987 (IOTC 2019). However, the revision 

appears to have very minor effects on the Spanish mackerel nominal catch series since the last 

assessment (Figure 3). 
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Fu et al. (2019) developed standardised CPUE indices for several neritic tuna species including Spanish 

mackerel from the Iranian coastal gillnet fishery using the catch effort data collected from the port-

sampling program. That analysis represented an effort to estimate a relative abundance index for neritic 

tuna stocks for potential use in stock assessments. The quarterly indices (2008–2017) for the Spanish 

mackerel tuna showed an increasing trend over time since 2011/12 (Figure 4), with a strong seasonal 

pattern driven mostly by the productivity cycle in the southern Gulf as well as market conditions (Fu et 

al. 2019). The annualised indices (by taking the average of the quarterly indices) are included in the 

assessment method based on the JABBA model (see Section 4.2). As the indices covers up to 2017, an 

assumption was made in the model that the 2018 index is the same as in 2017.  

 

 

Figure 1: Average catches in the Indian Ocean over the period 2012-2021, by country. by country. The 

red line indicates the (cumulative) proportion of catches of Spanish mackerel by country. 

 

Figure 2: Total nominal catch of Spanish mackerel by gear, 1950 – 2021 (IOTC database). 
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Figure 3: Revisions to IOTC nominal catch data for Spanish mackerel (datasets used for the 2017 and 2021 

assessments). 

 

Figure 4: Standardised CPUE indices (year-quarter) for Spanish mackerel 2008–2017 from the GLM lognormal 

model. See Fu et al. (2019) for details. 
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Table 1. Catch data for S. commerson in the Indian Ocean, 1950-2018 (source IOTC Database) 

Year Catch (t) Year Catch (t) 

1950 9 188 1987 95 052 

1951 9 827 1988 102 526 

1952 9 707 1989 85 425 

1953 9 687 1990 75 863 

1954 11 055 1991 79 219 

1955 10 060 1992 85 320 

1956 14 291 1993 83 518 

1957 13 740 1994 88 921 

1958 12 553 1995 99 804 

1959 13 076 1996 90 831 

1960 13 262 1997 98 642 

1961 15 325 1998 104 521 

1962 17 042 1999 103 056 

1963 17 600 2000 106 957 

1964 19 766 2001 100 514 

1965 19 618 2002 104 990 

1966 23 354 2003 107 419 

1967 25 327 2004 106 980 

1968 26 430 2005 107 793 

1969 25 043 2006 121 163 

1970 23 470 2007 129 252 

1971 25 387 2008 127 259 

1972 30 455 2009 138 969 

1973 27 370 2010 141 779 

1974 36 180 2011 149 720 

1975 36 269 2012 166 867 

1976 41 451 2013 164 736 

1977 49 986 2014 169 995 

1978 49 528 2015 171 166 

1979 55 831 2016 175 559 

1980 53 927 2017 174 520 

1981 56 937 2018 143 597 

1982 65 724 2019 150 963 

1983 57 658 2020 163 872 

1984 64 550 2021 168 807 

1985 79 184   

1986 87 184   
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4. Methods   

4.1. C-MSY method 

The C-MSY method of Froese et al. (2016) was applied to estimate reference points from catch, 

resilience and qualitative stock status information for the Spanish mackerel. The C-MSY method 

represents a further development of the Catch-MSY method of Martell and Froese (2012), with several 

improvements to reduce potential bias. Like the Catch-MSY method, The C-MSY relies on only a catch 

time series dataset, which was available from 1950 – 2018, prior ranges of r and K, and possible ranges 

of stock sizes in the first and final years of the time series.  

The Graham-Shaefer surplus production model (Shaefer 1954) is used (equation 1), but it is combined 

with a simple recruitment model to account for the reduced recruitment at severely depleted stock sizes 

(equation 2), where Bt is the biomass in time step t, r is the population growth rate, B0 is the virgin 

biomass equal to carrying capacity, K, and Ct is the known catch at time t. Annual biomass quantities 

can then be calculated for every year based on a given set of r and K parameters.  
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The prior range for r was estimated using the life history module (LHM) developed by Edwards (2016). 

The model implements Monte Carlo sampling of life history parameter distributions, with iterated 

solving of the Euler-Lotka equation (McAllister et al. 2001). The population parameters of S. 

commerson (including growth, natural morality, maturity, and length-weight relationship) are based on 

values collated and recommended by IOTC (2015), which was estimated to have a credible range of 

approximated 0.4–1.6.  Martell and Froese (2012) proposed a classification of the stock resilience levels 

where stocks with a very low resiliency are allocated an r value from 0.05 – 0.5, medium resiliency 0.2 

– 1 and high resiliency 0.6 – 1.5. Based on the FishBase classification, S. commerson has a high level 

of resilience (0.6–1.5) (Froese and Pauly 2015), which is similar to what was estimated by the LHM 

method.  For this analysis, the prior range of r was set to 0.6 – 1.5.  

The prior range of K was determined as 
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Where lowk and highk  are the lower and upper lower bound of the range of k, max(C) is the maximum 

catch in the time series, and lowr  and highr  are lower and upper bound of the range of r values.  

 

The ranges for starting and final depletion levels were assumed to be based on one of possible three 

biomass ranges: 0.01–0.4 (low), 0.2–0.6 (medium), and high (0.4–0.8), using a set of rules based on the 

trend of the catch series (see Froese et al. (2016) for details).  For the current assessment, it was decided 

to adopt the medium range (0.2 – 0.6) assumption for the final depletion level in the reference model, 
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considering the recent reduction in total catches. The prior ranges used for key parameters are specified 

in Table 2.  

C-MSY estimates biomass, exploitation rate, MSY and related fisheries reference points from catch 

data and resilience of the species.  Probable ranges for r and k are filtered with a Monte Carlo approach 

to detect ‘viable’ r-k pairs. The model worked sequentially through the range of initial biomass 

depletion level and random pairs of r and K were drawn based on the uniform distribution for the 

specified ranges.  Equation 1 or 2 is used to calculate the predicted biomass in subsequent years, each 

r-k pair at each given starting biomass level is considered variable if the stock has never collapsed or 

exceeded carrying capacity and that the final biomass estimate which falls within the assumed depletion 

range. All r-k combinations for each starting biomass which were considered feasible were retained for 

further analysis. The search for viable r-k pairs is terminated once more than 1000 pairs are found. 

The most probable r-k pair were determined using the method described by Ferose et.al (2016).  All 

viable r-values are assigned to 25–100 bins of equal width in log space. The 75th percentile of the mid-

values of occupied bins is taken as the most probable estimate of r. Approximate 95% confidence limits 

of the most probable r are obtained as 51.25th and 98.75th percentiles of the mid-values of occupied 

bins, respectively. The most probable value of k is determined from a linear regression fitted to log(k) 

as a function of log(r), for r-k pairs where r is larger than median of mid-values of occupied bins. MSY 

are obtained as geometric mean of the MSY values calculated for each of the r-k pairs where r is larger 

than the median. Viable biomass trajectories were restricted to those associated with an r-k pair that fell 

within the confidence limits of the C-MSY estimates of r and k. 

Table 2: Prior ranges used for the Spanish mackerel tuna in the C-MSY analysis reference model 

Species Initial B/K Final B/K r K (1000 t) 

Reference model  0.5–0.9 0.2–0.6 0.6–1.5 116 - 1158 

4.2. OCOM model 

Similar to the C-MSY approach, the Optimised Catch-Only model (Zhou et al. 2013 & 2016) uses the 

Schafer biomass dynamic model to describe population dynamics and seeks to determine the most 

probable r and K combination that maintains a viable population throughout time. By excluding the 

unlikely parameter values from a large number of simulations, this method generates estimations of 

biological reference points and stock status. Since r and K are negatively correlated, the initial version 

of this approach employed unconstrained priors on both parameters (for example, the maximum K is 

bound by r = 0 and the maximum r is constrained by the minimum viable K) (Zhou et al. 2013). In 

subsequent development, the population growth rate r can be constructed using a Bayesian error-in-

variable model based on life-history parameters (particularly natural mortality and/or maximum age) 

and the prior for the final depletion S using a Boosted Regression trees (BRT) (Zhou et al., 2020). 

Additionally, the model contains a setting that enables the user-specified priors for r and S to be 

provided. We run the OCOM model with the same priors on r (0.6–1.5) and on S (0.2–0.6) as those 

used in the C-MSY model to facilitate comparison. 

4.3. JABBA 

Both C-MSY and OCOM models imposed strong assumptions on the stock abundance trend.  Although 

the estimate of MSY is generally robust, estimates of other management quantities are very sensitive to 

the assumed level of stock depletion. Thus, we explored the use of JABBA (Winker et al. 2014) which 

utilised the available CPUE indices. The JABBA model was implemented as a Bayesian state-space 
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estimation model that was fitted to catch and CPUE. The model allowed for both observation and 

process errors (see Winker et al. 2018 for details). The prior range for r and K was translated into priors 

for the Bayesian estimation (see Table 2). A lognormal likelihood with a CV of 0.1 was assumed for 

the CPUE indices. The prior range for the initial and final depletion can be applied optionally. The 

reference model made no assumption on the depletion level. To explore the effect of the depletion 

constraint on model results, an additional model was conducted which penalise the final depletion 

outside the range of 0.2–0.6. The model also estimates the catchability scalar which relates the 

abundance index and estimated biomass trajectory and is calculated as a set of most likely values 

relative to the values of other parameters.  

4.4. LBSPR 

The LBSPR method (Hordyk et al. 2014) estimates the Spawning Potential Ratio (SPR) of a stock 

directly from the size composition of the catch. The SPR of a stock is defined as the proportion of the 

unfished reproductive potential (often approximated by spawning biomass) left at any given level of 

fishing pressure (Hordyk et al. 2014) and is commonly used to set target and limit reference points for 

fisheries. The F40%, i.e., the fishing mortality rate that results in SPR at 40% of unfished level, is 

considered risk adverse for many species. The LBSPR establish that how length compositions and 

spawning ratios are determined by fishing mortality and life history ratio, which are known to be less 

variant across species. The LBSPR uses maximum likelihood methods to estimate relative fishing 

mortality (F/M) and selectivity-at-length that minimize the difference between the observed and the 

expected length composition of the catch and calculates the SPR (Hordyk et al. 2014). The LBSPR 

model requires the following parameters: an estimate of the ratio M/k (i.e., the individual values of the 

M and k parameters may be unknown), 𝐿∞  (and associated variance), and maturity-at-size. These 

parameters for S. commerson are obtained from IOTC (2015). 

 

The length data (IOTC-2023-WPNT13-DATA09-SFdata) used includes length samples by fleet, gear, 

year, month, and region. The majority of the Spanish mackerel samples come from the Iranian/Pakistani 

gillnet fishery from 2009 to 2021 (earlier samples are also available, although there is more variation 

in sample size and quality). The length distribution of samples from the line fisheries is comparable to 

that of the gillnet fishery.  We used the approach on both sets of data. 

 

5. Results 

5.1. C-MSY method  

Figure 5 shows the results of the model from the CMSY analysis. Panel A shows the time series of 

catches in black and the three-years moving average in blue with indication of highest and lowest catch. 

The use of a moving average is to reduce the influence of extreme catches. 

 

Panel B shows the explored r-k values in log space and the r-k pairs found to be compatible with the 

catches and the prior information. Panel C shows the most probable r-k pair and its approximate 95% 

confidence limits. The probable r values did not span through the full prior range, instead ranging from 

0.96–1.48 (mean of 1.19) while probable K values ranged from 393 000 – 746 000 (mean of 542 000). 

Given that r and K are confounded, a higher K generally gives a lower r value.  CMSY searches for the 

most probable r in the upper region of the triangle, which serves to reduce the bias caused by the 

triangular shape of the cloud of viable r-k pairs (Ferose et al. 2016).  

 

Panel D shows the estimated biomass trajectory with 95% confidence intervals (Vertical lines indicate 

the prior ranges of initial and final biomass). The method is highly robust to the initial level of biomass 
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assumed (mainly due to the very low catches for the early part of series), while the final depletion range 

has a determinative effect on the final stock status. The biomass trajectory closely mirrors the catch 

curve with a rapid decline since the late 2000s.  

 

Panel E shows in the corresponding harvest rate from CMSY. Panel F shows the Schaefer equilibrium 

curve of catch/MSY relative to B/k.  However, we caution that the fishery was unlikely to be in an 

equilibrium state in any given year.  

  

Figure 6 shows the estimated management quantities. The upper left panel shows catches relative to the 

estimate of MSY (with indication of 95% confidence limits). The upper right panel shows the total 

biomass relative to Bmsy, and the lower left graph shows exploitation rate F relative to Fmsy. The 

lower-right panel shows the development of relative stock size (B/Bmsy) over relative exploitation 

(F/Fmsy). 

 

The IOTC target and limit reference points for Spanish mackerel have not yet been defined, so the 

values applicable for other IOTC species are used. Management quantities (estimated means and 95% 

confidence ranges) are provided in Table 3, which shows an average MSY of about 161 000 t. The 

KOBE plot indicates that based on the C-MSY model results, Spanish mackerel is currently overfished 

(B2021/BMSY=0.98) and is subject to overfishing (F2021/FMSY = 1.07). The average catch over the 

last five years is higher than the estimated MSY. The results are slightly more pessimistic than the last 

assessment (which suggested the stock was not subject to overfishing), as a result of the increasing 

catches in the last few years.  

 

 

 

 
Figure 5. Results of CMSY model for Spanish mackerel. 



IOTC–2020–WPNT10–xx 

 Page 10 of 19 

 

 

Figure 6. Graphical output of the CMSY model of Spanish mackerel for management purposes. 
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Table 3. Key management quantities from the Catch MSY assessment for Indian Ocean Spanish mackerel. Geometric means (and plausible ranges across all 

feasible model runs). n.a. = not available. Previous assessment results are provided for comparison. 

Management Quantity 2020  2023  

Most recent catch estimate (year) 154 785 t (2018) 168 807 (2021) 

Mean catch – most recent 5 years2 175 891 t (2014 – 2018) 160 351 (2017 – 2021 

MSY (95% CI)  166 000 (126 100 – 218 000) 161 000 (132 000 – 197 000) 

Data period used in assessment 1950 – 2018 1950 – 2021 

FMSY (95% CI) 0.60 (0.48 – 0.74) 0.60 (0.48 – 0.74) 

BMSY (95% CI) 277 000 (194 000 – 396 000) 271 000 (197 000 – 373 000) 

Fcurrent/FMSY (95% CI) 0.97 (0.78 – 2.14) 1.07 (0.88 – 2.38) 

Bcurrent /BMSY (95% CI) 0.96 (0.44 – 1.19) 0.98 (0.44 – 1.19) 

Bcurrent /B0 (95% CI) 0.48 (0.22 – 0.60) 0.49 (0.22 – 0.60) 

 
2 Data at time of assessment 
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5.2. OCOM model 

Figure 7 shows the strong correlation of  r and K parameter values retained by the biomass dynamics 

model. 80% posterior range of r is 0.70 – 1.42 and is mostly overlap with the prior.  Esimated K ranges 

from 447 000 to 846 000.  The range of values was dependent on the level of stock depletion assumed 

for the final year, with r, K and MSY all positively correlated with the depletion level. 

Base case model results indicate that the biomass was approximately 580 000 t in 1950 and declined to 

approximately 230 000 t by 2015 (Figure 7). The estimated MSY associated with this projection is 155 

000 t and ranges from approximately 149 000 t to 162 000 t based on the assumed maximum depletion 

level (Figure 7). The model estimated that the stock is currently overfished (B2021/BMSY=0.84) and 

is subject to overfishing (F2021/FMSY = 1.30). The estimated stock status of the OCOM model is more 

pessimistic than the C-MSY model, despite the same prior assumptions (the result showed a larger 

probability that the stock is in the Kobe red quadrat). This is most likely because the C-MSY method 

chose higher r values—located in the top 75% quantile of the posterior probability range—as the most 

viable values 

 

Figure 7: Graphical output of management quantities from the OCOM reference model of Spanish 

mackerel 
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5.3. JABBA model 

The abundance estimates were exceedingly uncertain with a very wide posterior range (upper range of 

K surpassed 4 500 000 t, see Figure 8) when the stock depletion in the terminal year was unconstrained 

(model 1). This shows that the very short CPUE and increasing catch trend give very little information 

on absolute abundance and relative depletion. In this condition, there is a wide range of potential 

abundance levels that could support the catch and explain the observed CPUE.   

However, penalizing the final depletion outside the range of 0.2–0.6 (model 2) lowered the uncertainty 

of abundance estimations and resulted in a somewhat more plausible pattern in stock depletion.  

However, this model shows a declining trend in overtime, which is to the contrary of the CPUE trend 

from 2008 to 2017 (Figure 9), indicating some inconsistency between the CPUE and recent catch history. 

Further exploration shows that the model can fit the increasing CPUE by assuming a much lower 

observation error for the index (reducing from 0.25 to 0.1), however, this is achieved by generating a 

somewhat increasing patterns in the process errors. 

Estimates of management quantities from model 2 are shown in Figure 10. The estimated stock status 

is more optimistic to the CMSY model (apparently driven by the CPUE index). The MSY varies 

between 195 000 and 555 000 t, with an average of 140 000 t. According to estimates, the biomass of 

the spawning stock in 2021 is 26% higher compared to the BMSY, and the fishing mortality is roughly 

about 32% lower than the FMSY (B/BMSY = 1.26, F/FMSY = 0.68).  Compared to the CMSY analysis, 

the confidence bounds for most estimations are wider. Despite the addition of CPUE indices to provide 

information on relative abundance changes, the information is limited due to the relatively short time 

series and lack of contrast between the CPUE and catch series.  

  
Figure 8: Biomass estimates (median and 95% CI) from JABBA model 1 (left, no prior on final depletion), 

and model 2 (right, a normal prior on final depletion with mean of 0.4 and CV of 25%, corresponding to 

an approximate range 0.2 – 0.6). Dashed line indicates median BMSY. 
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Figure 9: Fits to CPUE indices 2008–2017 form JABBA model 2.  Shaded areas indicates 50% and 95% CI, 

vertical lines indicates observation errors. 

 

Figure 10: Estimates of management quantities of the JBBBA model 2 (B/BMSY and F/FMSY).  
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5.4. LBSPR method 

The length distribution from the gillnet fishing is well fitted (Figure 11). Selectivity slightly decreased 

from 2009 to 2013 and then slightly increased after that (Figure 11). The fishing mortality was estimated 

to have decreased (Figure 11) but was above the potential FMSY (0.87M was regarded a realistic 

approximation of FMSY for teleost, see Zhou et al., 2012). Estimated spawning potential ratio 

throughout the time series was below 0.4, indicating that the stock is depleted in relation to the risk-

averse target (the SPR of 0.4 is often considered as a risk-averse target; see Hordyk et al. 2014a). But 

the SPR seems to have been increasing since 2009, mirroring the upward trend in the CPUE, which 

indicates that the abundance may have been increasing recently. The estimated SPR were also below 

0.4 when LB-SPR was applied to length samples from line fisheries (Figure 12). 

 

 

 

 

 

 

 

Figure 11: Results of LB-SPR method applied to the length samples from the gillnet fishery for Spanish 

mackerel: Fits to the length frequency in 2009–2021 (black dots)  right – estimates ( with 95% CI)  of annual 

logistic selectivity  parameters (a50 and a95), F/M, and spawning potential ratio (SPR) over time.  
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Figure 12: Results of LB-SPR method applied to the length samples from the Line fishery for Spanish 

mackerel tuna: Fits to the length frequency in 1987–2020 (black dots) a; right – estimates ( with 95% CI)  

of annual logistic selectivity  parameters (a50 and a95), F/M, and Spawning Potential Ratio over time.  

6. Discussion 

The C-MSY, OCOM, JABBA, and LB-SPR methods have all been investigated in this report to evaluate 

the status of Indian Ocean Spanish mackerel. Only the catch series is needed as input for the C-MSY 

and OCOM methods, which both rely on an aggregated biomass dynamic model and use simulations to 

find historical biomass that is plausible and supports the known catch history. Time series of relative 

abundance indices have been included into the JABBA model, together with model parameters and 

management quantities estimated in a Bayesian framework. Estimates from the C-MSY and OCOM 

model suggested that currently the stock of Spanish mackerel in the Indian Ocean is overfished (B2021< 

BMSY) and is subject to overfishing (F2021>FMSY). The results of OCOM model are more 

pessimistic. The estimates produced by the JABBA method, however, suggested that the stock is not 

(B2021 > BMSY) and is not subject to overfishing (F2021< FMSY).   

The C-MSY estimated an average MSY of about 161,000 tons and had a relatively wide range (the 

other two methods estimated comparable MSY). The 2021 catch was very close to the historical peak 

and was above the estimated MSY. The high catches appear to coincide with the increasing CPUE in 

recent years. Despite the significant uncertainties outlined in this paper, this suggests that stocks are 

approaching being fished at MSY levels and that higher catches may not be sustainable. A precautionary 

approach to management is recommended. 

The JABBA model utilised the standardised CPUE indices to provide information on abundance trend, 

and as such, the model is less reliant on some of the subjective assumptions. However, for Spanish 

mackerel, there appears to be inconsistency between the CPUE indices, and the catch history, and 

productivity assumptions of the species. The increasing CPUE can be attributed to other (unknow) 

random variations in the population (e.g., process error) but there is a risk of overparameterizing the 

model (such that it has little predictive power).  Furthermore, it remains to be seen whether CPUE 

indicators obtained from Iranian coastal gillnet fishing fleets can index abundance of Spanish tuna stock 

in the Indian Ocean, in addition to the various caveats even as a local indicator (see Fu et al 2019). 
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Nevertheless, the availability of a standardized CPUE as a potential abundance index and its inclusion 

in the assessment would be a useful step forward in the context of assessing data deficient neritic tuna 

stocks. The CPUE should be regularly updated to a monitoring tool, potentially providing longer and 

more informative time series. Standardised indices should also be developed for other fisheries/regions 

to ensure better spatial coverage of stock populations.  

Estimates of stock status from the LB-SPR method cannot be directly comparable to the catch-only 

models as they have made very different assumptions about target reference points.  Nonetheless, the 

SPR estimated by the LB-SPR method was much below the SPR40%, and fishing mortality is much 

higher than FMSY, corroborating the result of the C-MSY which suggested that the stock is currently 

overfished and is subject to overfishing. On the other hand, the SPR seems to have been increasing 

since 2009, mirroring the upward trend in the CPUE, which indicates that the abundance may have been 

increasing recently. The LB-SPR model assumes asymptotic selectivity, and it has been demonstrated 

that the results are sensitive to this assumption (the model interprets the absence of the large individuals 

from the size structure as evidence for a high level of exploitation; see Hordyk et al. (2014a) for more 

information). Although the gillnet is known to be size-selective, Spanish mackerel length samples from 

gillnet fisheries have similar size ranges or distributions to those from line fisheries, making it difficult 

to quantify the degree of possible doming in gillnet selectivity. 
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