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Silky shark abundance index based on CPUE standardization of
French Indian Ocean tropical tuna purse seine observer bycatch
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Abstract
Here we present an annual abundance index for silky shark for the period 2012 to 2021 based on

standardized silky shark catch per FOB fishing set for the French tropical tuna purse seine fishery in
the Indian Ocean. The methodology used general additive models with mixed effects (GAMMs) in a
novel approach using three submodels, including one model for tropical tuna catch per set, and two
others that form the components of a ∆ log-normal model (i.e., a presence-absence model and an
abundance when present model) for silky shark catch per set with total tuna catch used as predictors
in those models. Results indicate an overall increasing trend in silky shark abundance over the study
time period, though when interannual variability in catch of target tunas is removed model CPUE
predictions are found to be more or less stable over time. Though there is evidence to support a
potential increasing trend in abundance, there are a number of reasons to believe that these predictions
may be overly optimistic, including low data coverage and a biased spatial distribution of fishing
effort and observer coverage of bycatch in the original two years of the data (2012-2013) and poorly
understood impacts of the implementation of a quota on yellowfin tuna catch in 2017.
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1 Introduction
The status of bycatch species in general, and silky shark (Carcharhinus falciformis) in particular, are
often difficult to assess in large part due to a lack of robust abundance indices that can be used to drive
stock status models (Rice & Harley 2013, IOTC Secretariat 2022a). In the Indian Ocean, silky shark
status was most recently classified as “unknown” due to uncertainty in the relationship between longline
CPUEs and abundance (IOTC Secretariat 2022a). In this context, it is advisable to examine alternative
CPUE indices from other fisheries.

Catch of tropical tunas by purse seine vessels regularly includes bycatch of silky sharks (Kaplan et al.
2014, Forget et al. 2021, Dumont et al. submitted). In the Indian Ocean, purse seine silky shark bycatch
almost exclusively occurs in sets on schools associated with floating objects (hereafter referred to as
“FOB sets”). Though observer data on purse seine bycatch has existed at low coverage levels for many
years, observer coverage drastically increased starting in 2013-2014 and now covers more than a third
of all sets by the French purse seine fleet in the Indian Ocean (IOTC Secretariat 2022b). Though these
data have been used extensively, e.g., to estimate bycatch levels and species composition (Amandè et al.
2012, Torres-Irineo et al. 2014), estimate the impacts of spatial management (Kaplan et al. 2014) and
predict spatial distributions of bycatch species (Mannocci et al. 2020), to date these data have not to our
knowledge been used to estimate abundance indices for silky sharks. This absence has in part been due to
the short time series of observer bycatch data with high coverage levels, but this limitation is gradually
changing as time series become longer and we now have approximately a decade of observer bycatch data.
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Here, we develop a silky shark abundance index based on (by)catch per unit effort (CPUE) standardization
of catch and bycatch data from the French tropical tuna purse seine fishery over the period 2012 - 2021.
There are at least two major complications to standardizing silky shark CPUEs (Dumont et al. submitted):
(1) it is known that catch of target tunas impacts bycatch of silky sharks, so this predictor must be
integrated into standardization efforts; (2) the number of zero catches found among purse seine fishing
sets is high, at level inconsistent with the use of the simplest distribution families for residuals. To address
the first impediment, we first develop a model for total catch of target tunas, which is then used as an
input to models for silky shark bycatch when making predictions for CPUE standardization. The second
impediment is addressed by using a ∆ approach to estimating silky shark catch per FOB set wherein
presence-absence of silky sharks and the number of silky shark caught in sets for which silky sharks are
known to be present are estimated in two separate models, predictions from which are multiplied together
to make a final prediction of silky shark bycatch per set.

2 Material and methods
2.1 Fishing activity data
The primary data used in this study are catch data for target tunas from logbooks (i.e., mandatory
declarations) and for bycatch species from observer data from the Indian Ocean French tropical tuna
purse seine fishery between 2012 and 2021. The Exploited Tropical Pelagic Ecosystems Observatory (Ob7)
of the French National Research Institute for Sustainable Development (IRD) collects and manages fishery
and observer data from the French tropical tuna purse seine fleet in the Atlantic and Indian Oceans.
Though the approach we develop could be applied in the Atlantic and elsewhere, we examine here data
from the Indian Ocean for which 33.6% of FOB sets are covered by observer data over the study time
period. Data on fishing set vessel, time, location and catch in tonnes of the three major target tunas
(skipjack tuna, yellowfin tuna and bigeye tuna) were obtained from captain logbooks data corrected for
bias in species composition and total catch based on port sampling using the T3 procedure (Pianet et
al. 2000). Data on bycatch per species in number of individuals for each fishing set were obtained from
onboard observers as part of two PS observer programs: the European Union-funded “Data Collection
Framework” (DCF; Reg 2017/1004 and 2016/1251) and the “Observateur Commun Unique Permanent”
(OCUP) program initiated and funded by the PS fishing industry (Goujon et al. 2017). Each line of the
data corresponds to a fishing set, i.e., a single fishing activity involving encircling a tuna school with the
seine and bringing the fish caught within the seine on board (Table 1).

The following filters were applied to catch-effort data before including them in CPUE standardization
models:

1) Only logbook entries corresponding to single non-null FOB fishing sets were considered. In particular,
a small percentage of logbook entries corresponding to multiple fishing sets were eliminated as
including these data is both statistically complicated and could induce errors (e.g., in individual set
position or catch).

2) Only sets corresponding to French-flagged vessels were included (i.e., data from French vessels
flagged under other nations were not used).

3) A small number (31) of sets with zero catch of tropical tunas (i.e., skipjack, bigeye and yellowfin)
were eliminated as these generally correspond to catch of temperate tunas (e.g., albacore) or other
less common species, all of which are rare and generally occur well outside the core study area of
the western-central Indian Ocean.

4) Whether a vessel was fishing on a FOB equipped with one of its own tracking buoys and the
approximate set time relative to local sunrise were calculated based on comparisons of logbook,
T3-corrected, VMS and dFAD tracking buoy data. When these two predictor variables could not be
calculated (e.g., due to a lack of correspondence between databases or unavailability of VMS data),
sets were not included in analyses.

For running models of silky shark bycatch, data were limited to sets with observer coverage. Due to
differences in unique identifiers used in logbook and observer databases, a matching procedure was needed
to associate catch-effort data with observer data. Sets in the two databases were considered to be the
same if the following matching conditions were met:

1) Fishing vessel and date match
2) The total number of fishing sets carried out by the vessel on the given day match
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3) The sets in the two database occur in the same order (i.e., the first logbook set is matched with the
first observer set, the second with the second, etc.).

4) The declared school types (i.e., FOB set or free-swimming school set) match in the two databases
5) The spatial distance between the declared geographical positions of the sets in the two databases

was less than 20 km.

The final data consisted of 15967 FOB sets, of which 5357 have observer data. When counting the number
of silky sharks caught, all observed individuals were included, including those that were live released.

2.2 Modeling bycatch per set with a ∆ method
The model of silky shark catch per FOB set is developed using three sub-models: (1) a model of tropical
tuna catch per set; (2) a model of presence-absence of silky shark bycatch; and (3) a model of the number
of silky shark individuals caught in a set given that the number is greater than zero (i.e., limiting data to
sets for which silky shark were present). All three models were estimated using general additive models
with mixed effects (GAMMs), the first and last assuming normally distributed residuals in the log of the
catch and the second assuming a binomial distribution. In all cases, a unique vessel identifier was treated
as a categorical random effect in models.

Other predictor variables consist of spatial variables longitude and latitude, temporal variables year and
quarter, fishing vessel capacity, the number of hours since sunrise that the set was estimated to occur at,
and whether or not the set was estimated to occur on a FOB being actively followed by the fishing vessel
via its tracking buoy (Table 2). Fishing vessel capacity has often been included in CPUE standardization
models (Kaplan et al. 2023), but its potential effects on bycatch rates are less clear. Time relative
to sunrise has been shown to both effect the composition of species around floating objects (Forget et
al. 2015) and thereby impact catch (Kaplan et al. 2023). Whether or not vessels are fishing on FOBs
equipped with their own echosounder-equipped tracking buoys has been shown to impact catches of target
species (Wain et al. 2021; note that by 2012 the majority of tracking buoys used by the French fleet were
echosounder equipped and by 2014 100% were echosounder equipped).

The specific model used for estimating tropical tuna catch was:

## logcatch ~ te(ecd_lon, ecd_lat, by = year_fact, k = 7) + s(capacity,
## k = 6) + s(hours_since_sunrise, k = 6) + follow + year_fact *
## quarter_fact

with vessel_id included as a random effect. logcatch is the natural logarithm of the total catch of
target tunas in a set, kcap=8, and year_fact and quarter_fact are the same as the year and quarter
variables, but transformed from integer into factor variables (in the parlance of R). Note that these models
have been constructed so that there is a detailed interaction between space and year, but seasonal effects
are only incorporated view the quarter_fact categorical variable and indirectly via spatial parameters.
This choice was made because initial models including a space-quarter interaction, but no space-year
interaction, had a temporal trend in residuals suggesting that a space-year interaction was needed, and
because models including both a space-quarter and a space-year interaction failed to converge in a timely
fashion. Models including the space-year interaction only converged in a reasonable amount of time if the
k parameters in smooths were adjusted downward (as shown in the equation above), particularly in the
space-year term.

The specific model used for estimating presence-absence of silky sharks was:

## silky_pres ~ s(catch, k = 7) + te(ecd_lon, ecd_lat, by = year_fact,
## k = 7) + s(capacity, k = 6) + s(hours_since_sunrise, k = 6) +
## follow + year_fact + quarter_fact

where silky_pres is a Boolean variable indicating if silky sharks were caught in the fishing set (with
observer coverage). Other than the inclusion of the smooth on catch, this model differs from the model
for target tropical tuna catch in that it includes no interaction between year_fact and quarter_fact.
This was done due to a lack of observer data for some year-quarter combinations in the initial two years
of the study time period.

The specific model used for estimating the number of silky sharks caught in a set given that at least one
was caught was:
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## logsilky ~ s(catch, k = 7) + te(ecd_lon, ecd_lat, by = year_fact,
## k = 7) + s(capacity, k = 6) + s(hours_since_sunrise, k = 6) +
## follow + year_fact + quarter_fact

where logsilky is the natural logarithm of the number of silky sharks caught.

As it is a bit unusual to use (log)catch as the predicted variable in one model and a predictor in another
model where all models share other predictors (thereby, putting into question the independence of tuna
catch as a predictor for silky shark catch relative to other predictors, such as set time), we also did a set
of model runs for silky shark presence-absence and abundance when present where catch was replaced by
either residuals or log-residuals from the model for catch of tropical tunas. As these models had very
similar diagnostics and deviance explained to those of the original models using catch, likely due to the
overall limited variance explained by the models, we decided not to pursue these further and use the
original models for further predictions.

2.2.1 Standardized CPUE predictions

Our main objective with the CPUE standardization was to standardize fishing effort (i.e., the number
of fishing sets) seasonally and over space. To do this, we first determined the average number of fishing
sets per year in each 1◦ × 1◦-quarter strata occurring in our data. These numbers were then rounded
to the nearest integers (Fig. 1), giving us the number of fishing sets to simulate in each 1◦ × 1◦-quarter
strata when predicting standardized CPUEs. Predictions for the given number of sets in each strata were
averaged over each year to yield an average number of silky sharks caught per FOB set, which was used
as our final silky shark abundance index. This had the effect of eliminated from the prediction grid all
outlying areas with <0.5 FOB fishing sets per strata on average (Fig. 1).

This prediction spatial grid varied by quarter, but was repeated identically over years to standard-
ize the number and spatio-seasonal distribution of fishing effort across years. Additional predictors
hours_since_sunrise and capacity were fixed at their median values found in Table 2, and follow
was arbitrarily set to TRUE. When predicting silky shark bycatch, the tuna catch predictor was determined
as the output predictions from the model for tuna catch, as described below.

In order to estimate an average number of silky sharks per FOB set and its uncertainty, for each fishing
set in the prediction grid (of which there may be multiple per strata, depending on the average number
of FOB fishing sets in a strata), we estimated a prediction interval for the silky shark catch in the set.
Prediction intervals differ from the more common confidence intervals in that while the latter estimates the
certainty in the expectation value (i.e., the mean), the prior estimates the uncertainty in new predictions
(in this case potential silky shark catch in a fishing sets. Prediction intervals can be evaluated directly for
general linear models (GLMs) using functionality already integrated into standard R functions for GLMs.
However, for GAMMs, standard software tools for calculating prediction intervals are lacking. Instead, we
decided to calculate prediction intervals using a bootstrap approach following Andersen (2022).

For each of the three submodels, the basic procedure was the same, but the details differ somewhat. We
first describe the procedure for the GAMM for catch of target tunas and then proceed to models for silky
shark catch. First, we randomly generated 300 sets of potential coefficients of the GAMM for catch of
target tunas. This was done using the Cholesky Trick following the approach of Andersen (2022). Simply
put, this approach uses the optimal coefficients estimated by the model and the standard errors of these
coefficients to estimate a distribution for each coefficient from which the potential coefficients are drawn.

Then, for each of these 300 potential model coefficients, model predictions in link-function space including
uncertainty in parameters were calculated as the linear sum of the coefficients multiplied by the corre-
sponding predictors. These were then back-transformed into response units using the appropriate inverse
link function (in the case of normally distributed data, this would be the identity function, whereas for a
binomial model this would be the inverse logit function). Final predictions were generated by randomly
drawing from the appropriate model distribution family (i.e., normal distribution for the tuna catch and
silky shark abundance models, binomial for the silky shark presence-absence model), including for two
parameter distributions, such as the normal distribution used for modeling tuna catch, the residual (i.e.,
unexplained) variance of each of GAMM (i.e., the scale parameter). This produced 300 simulated model
predictions of log tuna catch for each fishing set in the grid, with exponentiation being used to obtain the
final predictions for tuna catch. If our ultimate goal was estimating tuna catch, then quantiles of the 300
simulations could be used to estimate the prediction uncertainty in the catch of each set.
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Calculating prediction intervals for the silky shark presence-absence and log-abundance when present
GAMMs proceeded in an identical fashion with the exception that the 300 simulated tuna catch values for
each fishing set were used as the catch predictor values when making predictions from these models. This
procedure produced 300 simulations of silky shark presence-absence and log-abundance for each fishing
set in the prediction grid. These 300 simulations incorporate spatio-temporal variability in catch per
set, uncertainty in catch per set and unexplained variance in the number of silky sharks caught per set.
For each of the 300 simulations, presence-absence and the exponential of log-abundance were multiplied
together. To obtain the final average number of silky sharks per set, predictions were summed over years
for each of the 300 simulations and the distribution of the 300 simulations were used to estimate the mean,
median and 95% prediction interval for average number of silky sharks per set for each year.

As there is some uncertainty as to whether variability across years in tuna catch per set is due to true
changes in abundance as opposed to changes in catchability (e.g., due to technology), a second abundance
index was calculated using the procedure described above, but with all interannual variability in catch per
set (and the variability across the 300 simulations) removed when predicting silky shark presence-absence
and log-abundance. Catch per set was allowed to vary by quarter and over space, but values were the
same for all years and all simulations within a given quarter and spatial stratum.

A final set of simulations was performed using, instead of the prediction grid described above, the original
catch-bycatch data used to fit models as the grid for making predictions. The objective of these simulations
was to produce a standardized silky shark catch per set that should be directly comparable to the nominal
silky shark catch per set (i.e., as a check of the model fit to the data).

2.3 Numerical tools
All analyses were carried out using R version 4.3.1 (2023-06-16) (R Core Team 2023) and the tidyverse
package version 2.0.0 (Wickham et al. 2019). Models were fit using the R package mgcv version 1.9.0
(Wood 2017) and data visualizations used the packages ggplot2 version 3.4.3 (Wickham 2016), mgcViz
version 0.1.9 (Fasiolo et al. 2018) and tmap version 3.3.4 (Tennekes 2018).

3 Results
3.1 Variability across years in fishing effort and observer coverage
Both the number of FOB fishing sets in our data and the observer coverage of those sets varied in a
non-random way across years, with relatively low coverage in 2012-2013 and much higher coverage from
2014 until 2019, after which time the COVID pandemic (temporarily) reduced coverage (Fig. 2). In
particular, the number of FOB fishing sets with observer coverage is on the order of 100 for 2012-2013,
indicating that relatively little data is available for accurate model estimation for those years. As such,
results for these years should be treated with care.

The nominal fraction of fishing sets for which silky sharks were present is relatively more stable over years,
with values typically around 80% for most years (Fig. 2b). Nevertheless, there does appear to be a slight
increasing trend in prevalence over years, with values typically in the 65-75% range in the first five years
of the data and then increasing to 80-90% in the last five years of the data.

3.2 Model summaries, diagnostic plots and marginal effect plots
GAMMs are actually implemented as combination of a linear mixed-effects (LME) model to estimate
the random effects (of vessel identifier in our case) and a GAM to estimate the non-random effects after
removing the random effects. Below I present basic diagnostic summaries and figures for each of the three
submodels in the following order:

1) An ANOVA table of the LME model
2) A standard residuals versus fitted plot for the LME model
3) Summary output from the GAM model
4) A QQ-plot for the GAM model
5) Marginal effects plots for the single smoothed effects for hours_since_sunrise and capacity and

catch where appropriate

I have not included 2D marginal effects plots for the spatial lon,lat smooths because there are multiple of
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these and I have found them typically to be difficult to adequately visualize and interpret.

3.2.1 GAMM for log-catch of target tunas

The ANOVA table for the LME model is:

## numDF denDF F-value p-value
## X 73 15880 1231.752 <.0001

This indicates that the effect of vessel_id is significant in this model and the other two models.
Nevertheless, the variance explained by this effect (not shown) is small.

The residuals versus fitted for the LME model can be found in Fig. 3.

The summary output for the GAM component of the GAMM model is as follows:

##
## Family: gaussian
## Link function: identity
##
## Formula:
## logcatch ~ te(ecd_lon, ecd_lat, by = year_fact, k = 7) + s(capacity,
## k = 6) + s(hours_since_sunrise, k = 6) + follow + year_fact *
## quarter_fact
##
## Parametric coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.8284684 0.1061157 26.655 < 2e-16 ***
## followTRUE 0.0174224 0.0152968 1.139 0.254737
## year_fact2013 0.0008102 0.1368729 0.006 0.995277
## year_fact2014 -0.0626388 0.1220547 -0.513 0.607817
## year_fact2015 -0.0985015 0.1359484 -0.725 0.468739
## year_fact2016 -0.1620337 0.1189769 -1.362 0.173251
## year_fact2017 -0.0033275 0.1181682 -0.028 0.977536
## year_fact2018 0.3924396 0.1150013 3.412 0.000645 ***
## year_fact2019 0.2616534 0.1158788 2.258 0.023960 *
## year_fact2020 -0.1716862 0.1174487 -1.462 0.143817
## year_fact2021 0.3143926 0.1223330 2.570 0.010180 *
## quarter_fact2 -0.2485444 0.1197607 -2.075 0.037971 *
## quarter_fact3 0.1041333 0.1052935 0.989 0.322687
## quarter_fact4 -0.1355606 0.1125279 -1.205 0.228343
## year_fact2013:quarter_fact2 0.0647511 0.1532341 0.423 0.672620
## year_fact2014:quarter_fact2 -0.0537038 0.1476370 -0.364 0.716045
## year_fact2015:quarter_fact2 -0.2151901 0.1587569 -1.355 0.175287
## year_fact2016:quarter_fact2 0.3714564 0.1383632 2.685 0.007268 **
## year_fact2017:quarter_fact2 0.1429372 0.1375656 1.039 0.298798
## year_fact2018:quarter_fact2 -0.1491014 0.1349955 -1.104 0.269397
## year_fact2019:quarter_fact2 -0.2298647 0.1433905 -1.603 0.108940
## year_fact2020:quarter_fact2 0.0405350 0.1392535 0.291 0.770988
## year_fact2021:quarter_fact2 -0.1839844 0.1398894 -1.315 0.188457
## year_fact2013:quarter_fact3 -0.1282132 0.1564259 -0.820 0.412433
## year_fact2014:quarter_fact3 -0.0158381 0.1280426 -0.124 0.901559
## year_fact2015:quarter_fact3 0.0711882 0.1440590 0.494 0.621200
## year_fact2016:quarter_fact3 0.2683465 0.1275038 2.105 0.035340 *
## year_fact2017:quarter_fact3 0.0170349 0.1293554 0.132 0.895231
## year_fact2018:quarter_fact3 -0.0662392 0.1217022 -0.544 0.586262
## year_fact2019:quarter_fact3 -0.0287928 0.1259627 -0.229 0.819197
## year_fact2020:quarter_fact3 0.5065893 0.1309300 3.869 0.000110 ***
## year_fact2021:quarter_fact3 -0.1345599 0.1292726 -1.041 0.297938
## year_fact2013:quarter_fact4 0.1769253 0.1624627 1.089 0.276161
## year_fact2014:quarter_fact4 -0.0749964 0.1365623 -0.549 0.582894
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## year_fact2015:quarter_fact4 0.1034049 0.1440962 0.718 0.473008
## year_fact2016:quarter_fact4 0.3025594 0.1296768 2.333 0.019651 *
## year_fact2017:quarter_fact4 0.4186949 0.1313726 3.187 0.001440 **
## year_fact2018:quarter_fact4 -0.1575506 0.1290238 -1.221 0.222067
## year_fact2019:quarter_fact4 0.0164347 0.1319928 0.125 0.900911
## year_fact2020:quarter_fact4 0.4251032 0.1341127 3.170 0.001529 **
## year_fact2021:quarter_fact4 0.2195613 0.1335403 1.644 0.100164
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Approximate significance of smooth terms:
## edf Ref.df F p-value
## te(ecd_lon,ecd_lat):year_fact2012 8.268 8.268 3.102 0.00132 **
## te(ecd_lon,ecd_lat):year_fact2013 7.443 7.443 3.781 0.00108 **
## te(ecd_lon,ecd_lat):year_fact2014 6.951 6.951 7.385 < 2e-16 ***
## te(ecd_lon,ecd_lat):year_fact2015 12.742 12.742 4.009 < 2e-16 ***
## te(ecd_lon,ecd_lat):year_fact2016 6.398 6.398 4.602 7.81e-05 ***
## te(ecd_lon,ecd_lat):year_fact2017 9.129 9.129 5.057 < 2e-16 ***
## te(ecd_lon,ecd_lat):year_fact2018 12.622 12.622 5.094 < 2e-16 ***
## te(ecd_lon,ecd_lat):year_fact2019 7.402 7.402 1.688 0.10611
## te(ecd_lon,ecd_lat):year_fact2020 9.734 9.734 3.082 0.00125 **
## te(ecd_lon,ecd_lat):year_fact2021 11.622 11.622 3.403 5.94e-05 ***
## s(capacity) 3.079 3.079 14.178 < 2e-16 ***
## s(hours_since_sunrise) 2.677 2.677 179.762 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## R-sq.(adj) = 0.0972
## Scale est. = 0.8424 n = 15967

A QQ-plot for the GAM component of the GAMM model for catch of target tunas can be found in Fig. 4.
Marginal effects plots for smoothed predictors in the GAM model can be found in Fig. 5.

3.2.2 GAMM for presence-absence of silky shark

The ANOVA table for the LME model is:

## numDF denDF F-value p-value
## X 47 5299 5.266348 <.0001

The residuals versus fitted for the LME model can be found in Fig. 6.

The summary output for the GAM component of the GAMM model is as follows:

##
## Family: binomial
## Link function: logit
##
## Formula:
## silky_pres ~ s(catch, k = 7) + te(ecd_lon, ecd_lat, by = year_fact,
## k = 7) + s(capacity, k = 6) + s(hours_since_sunrise, k = 6) +
## follow + year_fact + quarter_fact
##
## Parametric coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.110105 0.634681 1.749 0.0803 .
## followTRUE 0.136072 0.076276 1.784 0.0745 .
## year_fact2013 0.008631 0.669391 0.013 0.9897
## year_fact2014 0.177431 0.578654 0.307 0.7591
## year_fact2015 0.201571 0.581902 0.346 0.7291
## year_fact2016 0.150189 0.575474 0.261 0.7941
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## year_fact2017 0.804170 0.579078 1.389 0.1650
## year_fact2018 0.702205 0.577700 1.216 0.2242
## year_fact2019 0.826543 0.579666 1.426 0.1540
## year_fact2020 1.123600 0.588754 1.908 0.0564 .
## year_fact2021 0.448981 0.617702 0.727 0.4673
## quarter_fact2 -0.038080 0.129896 -0.293 0.7694
## quarter_fact3 0.069978 0.132887 0.527 0.5985
## quarter_fact4 -0.288589 0.123832 -2.330 0.0198 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Approximate significance of smooth terms:
## edf Ref.df F p-value
## s(catch) 3.218 3.218 10.517 6.82e-07 ***
## te(ecd_lon,ecd_lat):year_fact2012 3.001 3.001 2.555 0.0536 .
## te(ecd_lon,ecd_lat):year_fact2013 3.000 3.000 1.293 0.2749
## te(ecd_lon,ecd_lat):year_fact2014 3.000 3.000 7.549 4.91e-05 ***
## te(ecd_lon,ecd_lat):year_fact2015 3.000 3.000 1.606 0.1879
## te(ecd_lon,ecd_lat):year_fact2016 3.000 3.000 1.354 0.2560
## te(ecd_lon,ecd_lat):year_fact2017 3.617 3.617 3.312 0.0163 *
## te(ecd_lon,ecd_lat):year_fact2018 7.533 7.533 7.678 < 2e-16 ***
## te(ecd_lon,ecd_lat):year_fact2019 3.000 3.000 2.512 0.0567 .
## te(ecd_lon,ecd_lat):year_fact2020 3.000 3.000 0.837 0.4752
## te(ecd_lon,ecd_lat):year_fact2021 3.000 3.000 7.716 4.04e-05 ***
## s(capacity) 1.000 1.000 2.593 0.1074
## s(hours_since_sunrise) 1.000 1.000 0.122 0.7267
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## R-sq.(adj) = 0.0439
## Scale est. = 1 n = 5357

A QQ-plot for the GAM component of the GAMM model for presence-absence of silky shark can be found
in Fig. 7. Marginal effects plots for smoothed predictors in the GAM model can be found in Fig. 8.

3.2.3 GAMM for log-abundance when present of silky shark

The ANOVA table for the LME model is:

## numDF denDF F-value p-value
## X 47 4329 63.96075 <.0001

The residuals versus fitted for the LME model can be found in Fig. 9.

The summary output for the GAM component of the GAMM model is as follows:

##
## Family: gaussian
## Link function: identity
##
## Formula:
## logsilky ~ s(catch, k = 7) + te(ecd_lon, ecd_lat, by = year_fact,
## k = 7) + s(capacity, k = 6) + s(hours_since_sunrise, k = 6) +
## follow + year_fact + quarter_fact
##
## Parametric coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.73836 0.23706 7.333 2.67e-13 ***
## followTRUE 0.04893 0.02785 1.757 0.079 .
## year_fact2013 -0.02495 0.30390 -0.082 0.935
## year_fact2014 -0.06676 0.23957 -0.279 0.781

8



IOTC-2023-WPEB19-34_Rev1 Kaplan & Tolotti (2023)

## year_fact2015 0.00763 0.25025 0.030 0.976
## year_fact2016 -0.17902 0.23712 -0.755 0.450
## year_fact2017 0.20596 0.23669 0.870 0.384
## year_fact2018 0.00402 0.23589 0.017 0.986
## year_fact2019 0.11438 0.24080 0.475 0.635
## year_fact2020 -0.05200 0.24206 -0.215 0.830
## year_fact2021 -0.21793 0.25620 -0.851 0.395
## quarter_fact2 -0.05164 0.04708 -1.097 0.273
## quarter_fact3 0.03273 0.04768 0.686 0.492
## quarter_fact4 0.06315 0.04603 1.372 0.170
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Approximate significance of smooth terms:
## edf Ref.df F p-value
## s(catch) 3.699 3.699 44.464 < 2e-16 ***
## te(ecd_lon,ecd_lat):year_fact2012 4.381 4.381 4.376 0.00110 **
## te(ecd_lon,ecd_lat):year_fact2013 5.512 5.512 1.801 0.28708
## te(ecd_lon,ecd_lat):year_fact2014 3.000 3.000 3.838 0.00930 **
## te(ecd_lon,ecd_lat):year_fact2015 10.653 10.653 2.550 0.00379 **
## te(ecd_lon,ecd_lat):year_fact2016 3.003 3.003 2.583 0.05159 .
## te(ecd_lon,ecd_lat):year_fact2017 9.200 9.200 4.822 2.45e-06 ***
## te(ecd_lon,ecd_lat):year_fact2018 8.191 8.191 6.133 < 2e-16 ***
## te(ecd_lon,ecd_lat):year_fact2019 10.699 10.699 5.371 < 2e-16 ***
## te(ecd_lon,ecd_lat):year_fact2020 7.766 7.766 10.926 < 2e-16 ***
## te(ecd_lon,ecd_lat):year_fact2021 3.443 3.443 10.066 4.87e-06 ***
## s(capacity) 1.000 1.000 0.750 0.38653
## s(hours_since_sunrise) 1.001 1.001 0.093 0.76077
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## R-sq.(adj) = 0.127
## Scale est. = 0.785 n = 4387

A QQ-plot for the GAM component of the GAMM model for abundance when present of silky shark can
be found in Fig. 10. Marginal effects plots for smoothed predictors in the GAM model can be found in
Fig. 11.

3.3 Predicted CPUEs
We present here three sets of model predictions: (1) the predicted CPUE annual time series based on
using the original data used to fit models as the prediction grid, presented purely as a check for the
model’s ability to reproduce the nominal CPUE given original inputs; (2) the standardized CPUE time
series with target tuna catch per set allowed to vary across years; and (3) the standardized CPUE time
series after removing interannual variability from tuna catch per set predictions, presented as a control
for the potential impact of changing catchability over time that may not be fully accounted for by other
predictors (e.g., follow and hours_since_sunrise) included in the models.

3.3.1 CPUE based on original data

The CPUE based on the original input data shown in Fig. 12 approximately agrees with the nominal
CPUE, but there are nominal CPUEs outside the 95% prediction interval for the year 2012 and 2016.
The excursion for 2016 is relatively small, whereas that for 2012 is more pronounced, suggesting that the
model is not adequately reproducing catch patterns for this year with very low fishing effort and observer
coverage of fishing effort (Fig. 2).
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3.3.2 CPUE based on prediction grid including interannual variability in tuna catch per
set

The standardized CPUE values shown in Fig. 13 show a strong temporal trend with nearly a two-fold
increase in silky shark catch per set between the beginning and the end of the time series. Increases are
concentrated in two specific periods 2012-2013 and 2016-2017.

3.3.3 CPUE based on prediction grid removing interannual variability in tuna catch per
set

Removing interannual variability in target tuna catch produces a highly variable, but more of less horizontal
temporal trend in catch per set (compare Fig. 13 with Fig. 14). The overall curve is generally similar to
that of the nominal CPUE.

4 Discussion
The main standardized CPUE time series for silky shark (Fig. 13) indicates nearly a factor of two increase
in silky shark abundance over the time period of this study. There are a number of arguments both for
and against placing faith in this result. One argument for believing this trend is that the transition to
low- or non-entangling dFADs that has occurred over the last decade could have significantly reduced
previous-reported high rates of ghost mortality of silky sharks in dFADs (Filmalter et al. 2013). If so, it
is plausible that this led to a rebound of silky shark populations. There is also anecdotal evidence from
scientific tagging programs that it has become considerably easier to encounter silky sharks in PS catch,
though this is not reflected in nominal CPUE values. Nevertheless, the period 2012-2014 during which
time a lot of the overall increase occurred is likely too early for low-entangling dFADs to have had much
impact on silky shark populations.

Arguments against believing this trend include the fact that much of the increase occurs during time
periods that are special for one reason or another. The observer coverage is low for the 2012-2013 time
period and this time period was also heavily perturbed by the threat of Somali piracy, both potentially
biasing results. This possibility is supported by the fact that nominal CPUEs for 2012 do not agree with
model predicted CPUEs predicted using the same data that was used to construct models (Fig. 12).
2012-2013 was also characterized by the transition to using echosounder buoys, which could impact both
target and non-target catches (Wain et al. 2021), though it seems unlikely that this explains the majority
of the increase in standardized CPUEs as Wain et al. (2021) found that echosounder buoys explained only
about a 10% change in target tuna catch and we included the follow predictor variable in all models
(though it was not significant in the target tuna model, suggesting that the effect of this parameter is
being absorbed by other parameters in the model). Removing interannual variability from target tuna
catch predictions did remove the upward trend in silky shark catch per set (Fig. 14), but it is difficult to
imagine that all interannual change in catch per set is driven by changes in catchability (that we would
want to remove), particularly as standardized skipjack catch per set values show an increasing trend in
abundance over the ~2012-2020 time period (Kaplan et al. 2023).

The period 2016-2017 also saw a large increase in standardized CPUE values. 2017 was the onset of the
quota for yellowfin tuna catch, which has significantly altered purse seine fishing strategies in the Indian
Ocean. These changes could alter silky shark catch rates. Nevertheless, the principal impacts of the quota
have been to reduce the frequency of fishing sets on free-swimming schools and increase the frequency
of sets on FOBs, including a greater proportion of fishing sets on FOBs belonging to the fishing vessel
(Floch et al. 2021, Wain et al. 2021; Kaplan et al., unpublished results). Within FOB fishing activities
themselves, there has been relatively little change in fishing practice other than increased reliance on
FOBs released by the fishing vessel. One would expect most of these changes to lead to a decrease in silky
shark catch per set, though the timescales for such a decrease may be longer than a single year.

There are a number of aspects of the model that could potentially be improved. One is that the model
does not include space-quarter interaction terms, potentially missing seasonal variability and explaining
the difference between the nominal CPUE and the model predicted CPUE seen in Fig. 12. This limitation
is conceptually easy to fix, but including all possible interactions makes models unstable and extremely
long to run. Additional reflection on the appropriate way to address these issues is required.

Another concern of the approach is that target tuna catch is included as predictor in models of silky
shark catch along with other predictor variables that we know impact target tuna catch, leading to a lack
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of independence between predictors. The solution to this issue is to use residuals instead of raw catch
values after removing the impact of those other predictor variables. This solution was attempted and
it seems unlikely that this would have a large impact on results as models based on residuals showed
little difference to those based on raw catch, but future work should give additional consideration of this
question.

A further improvement would be to use random forest models instead of GAMMs for the binomial silky
shark presence-absence model as was done in Dumont et al. (submitted). Random forest models have the
advantage of being inherently non-linear and highly flexible and have been shown repeatedly to be good
models for binomial processes (e.g., Dumont et al. submitted).

Finally, there are some potentially interesting predictor variables that have not been included in models.
Primary among these are dFAD densities. The main reason these were not included was due to the time
that would be required to coordinate with the non-French components of the purse seine fleet to obtain
dFAD densities. Nevertheless, this issue could be relatively easily addressed in future work.
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Table 1: Basic statistics regarding our catch and bycatch dataset from the French Indian Ocean purse
seine fleet.

Statistic Value
Time period 2012 - 2021
Total FOB sets 15,967.0
FOB sets with observers 5,357.0
Coverage of observer data (%) 33.6
Obs. sets with silky sharks 4,387.0
Prevalence of silky sharks (%) 81.9
No. silky shark individuals 40,022.0
Mean no. silky per set 7.0
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Table 2: Description of predictors used in models of bycatch per FOB fishing set. The “Abbreviation”
column gives the short name for each variable used in the models themselves. The “95% interval” and
“Mean” columns refer to the central 95% of the data and the mean of the data over FOB fishing sets in
our dataset.

Full name Abbreviation Units Type Median 95% interval
Lat. / Lon. recorded in logbook ecd_lat / ecd_lon Decimal degrees Continuous - -
Quarter quarter [1:4] Categorical - -
Year year [2012:2021] Continuous - -
Trop. tuna catch catch Tonnes Continuous 19.70 [ 2.02; 105.22]
Vessel capacity capacity m3 Continuous 1519.05 [1206.00; 2119.00]
Set time relative to local sunrise hours_since_sunrise Decimal hours Continuous 3.14 [ -0.31; 10.28]
Fishing own FOB follow [TRUE,FALSE] Boolean - -
Vessel identifier vessel - Categorical - -
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Figure 1: The rounded average (over years) number of FIB fishing sets per quarter in each 1◦ × 1◦ grid
cell. Zeros not included in our final prediction grid for CPUE standardization are shown in blue, all other
values are indicated by the graduated yellow-orange-red color scale.
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Figure 2: The temporal evolution across years of fishing effort and observer coverage. In (a), the black
curve indicate the total number of fishing sets in a year, the red curve indicates the fishing sets with
observer coverage and the green curve indicates the number of fishing sets for which silky sharks were
found to be present in the catch. In (b), observer coverage is shown in black as a percentage of all fishing
sets in the data used for fitting models, while prevalence of silky sharks in sets is shown in red as a
percentage of all fishing sets with observer data.
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Figure 3: Standard plot of residuals versus fitted values for the LME component of the GAMM model for
log-catch of target tunas.
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Figure 4: Standard QQ plot of predicted versus fitted values for the GAM component of the GAMM
model for log-catch of target tunas.
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Figure 5: Marginal effects plots for the smooths on predictors capacity and hours_since_sunrise for
the GAM component of the GAMM model for log-catch of target tunas. Red horizontal bars at the
bottom of each figure indicate the central 95% of the data for the corresponding predictor.
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Figure 6: Standard plot of residuals versus fitted values for the LME component of the GAMM model for
presence-absence of silky shark.
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Figure 7: Standard QQ plot of predicted versus fitted values for the GAM component of the GAMM
model for presence-absence of silky shark.
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Figure 8: Marginal effects plots for the smooths on predictors catch, capacity and hours_since_sunrise
for the GAM component of the GAMM model for presence-absence of silky shark. Red horizontal bars at
the bottom of each figure indicate the central 95% of the data for the corresponding predictor.
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Figure 9: Standard plot of residuals versus fitted values for the LME component of the GAMM model for
log-abundance when present of silky shark.
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Figure 10: Standard QQ plot of predicted versus fitted values for the GAM component of the GAMM
model for log-abundance when present of silky shark.
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Figure 11: Marginal effects plots for the smooths on predictors catch, capacity and
hours_since_sunrise for the GAM component of the GAMM model for abundance when present
of silky shark. Red horizontal bars at the bottom of each figure indicate the central 95% of the data for
the corresponding predictor.
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Figure 12: Silky shark estimated CPUE based on predictions of tuna catch per set. Predictions were
carried out based on the original data used to train models so that nominal CPUE and predicted CPUE
should be close.
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Figure 13: Silky shark standardized annual abundance indice based on prediction grid and predictions of
tuna catch per set with interannual variability.
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Figure 14: Silky shark standardized annual abundance indice based on predictions of tuna catch per set
for which interannual variability has been removed (but quaterly and spatial variability remains).
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