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Global hotspots of shark
interactions with industrial
longline fisheries
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Sharks are susceptible to industrial longline fishing due to their slow life

histories and association with targeted tuna stocks. Identifying fished areas

with high shark interaction risk is vital to protect threatened species. We

harmonize shark catch records from global tuna Regional Fisheries

Management Organizations (tRFMOs) from 2012–2020 and use machine

learning to identify where sharks are most threatened by longline fishing. We

find shark catch risk hotspots in all ocean basins, with notable high-risk areas off

Southwest Africa and in the Eastern Tropical Pacific. These patterns are mostly

driven by more common species such as blue sharks, though risk areas for less

common, Endangered and Critically Endangered species are also identified.

Clear spatial patterns of shark fishing risk identified here can be leveraged to

develop spatial management strategies for threatened populations. Our results

also highlight the need for coordination in data collection and dissemination by

tRFMOs for effective shark management.

KEYWORDS

shark catch hotspot, industrial longline fishing, machine learning, random
forest, tRFMO
1 Introduction

Fishing is the primary threat to shark populations globally (Worm et al., 2013;

Davidson et al., 2016; Dulvy et al., 2021) and over one third of all chondrichthyans

(sharks, rays, and chimaeras) are now threatened with extinction (Dulvy et al., 2021).

Sharks are particularly vulnerable to overfishing because of their slow life history

characteristics (Dulvy et al., 2008) and their close association with r-selected species,

such as tunas, that are targeted by large-scale, high volume, industrial fisheries (Gilman,

2011). Increases in the footprint and intensity of industrial offshore fishing has reduced

the abundance of oceanic sharks by more than 70% over the last 50 years (Pacoureau

et al., 2021) with the majority of shark mortality from fishing resulting from incidental

capture and discards (Worm et al., 2013).
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The world ’s tuna Regional Fishery Management

Organizations (tRFMOs) are tasked with managing the stocks

of highly migratory tuna and tuna-like species beyond national

jurisdiction through mandates to adopt conservation and

management measures (CMMs) using the best science

available (Lobach et al., 2020). For shark species, data to make

science-based decisions are often lacking due to underreporting

(Worm et al., 2013; Ewell et al., 2020; Brown et al., 2021). The

majority of longline shark catch is discarded, and discarded

catch is often not recorded unless there is an independent

observer on board (Worm et al., 2013). Currently, observer

coverage for most longline fleets is low (~5%; Ewell et al., 2020).

This paucity of data on shark catch means we lack an

understanding of where sharks are being caught in high

numbers and how to predict and identify these risk hotspots at

spatial scales relevant to managers (Lewison et al., 2014). Yet,

pelagic longline fisheries have the highest rate of shark bycatch

of any industrial fishery (Oliver et al., 2015). This mismatch

between sustainable catch levels of high productivity target

stocks (e.g., tunas) and unsustainable catch levels of low

productivity species subject to incidental capture (e.g., sharks)

can be challenging to manage when there is little incentive to

substantially reduce take of the target species to allow the “weak

stock” to persist (Dulvy et al., 2008; Hastings et al., 2017).

One solution lies in spatial fisheries management strategies.

When designed and managed well, these strategies can

effectively mitigate incidental catch of pelagic species of

conservation concern (Gilman et al., 2019). Marine protected

areas that prohibit all commercial fishing, shark sanctuaries that

ban commercial fishing of sharks within entire exclusive

economic zones, and dynamic fishery closures all have

demonstrated promise in theory and practice to effectively

reduce fishing mortality of sharks (Boerder et al., 2019;

Carlisle et al., 2019; Gilman et al., 2019; Curnick et al., 2020;

MacNeil et al., 2020; Pons et al., 2022). Efforts to effectively

design spatial management measures often leverage information

on the movements and distribution of species based on animal

tracking and/or direct observation of threatened species

(reviewed in Hays et al., 2019). Locations of high overlap

between species occurrence and fishing effort may be deemed

“high risk” and identified as areas in need of conservation

attention (e.g., Queiroz et al., 2019). However, a complete

understanding of susceptibility to fishing also requires

knowledge of encounter rate and catchability by fishing gears

(Murua et al., 2021), which can be gleaned from fishery logbooks

to infer fishing mortality (e.g., Queiroz et al., 2021). For

incidentally caught species, a first step toward this goal

requires assessing spatial patterns in capture events (e.g.,

Lewison et al., 2009; Lewison et al., 2014).

Here, we identify current hotspots of oceanic shark

interactions with industrial longline fleets at the global scale.

We identify general hotspots and examine risk to key species and
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family groups, with an eye to threatened shark populations. Our

approach is to collate and summarize publicly available catch

and effort data from global tRFMOs and use Random Forest

machine learning models (Breiman, 2001) – which are known to

efficiently recognize data patterns to provide robust estimates

given small sample sizes and noisy or sparse data without

requiring assumptions about data properties or concerns about

interactions between predictor variables (Elith et al., 2006;

Siroky, 2009; Qi, 2012; Olaya-Marıń et al., 2013) – to identify

the spatial distribution of catch risk to shark species. We focus

on industrial longline fisheries within tRFMOs, because

longliners have a near global distribution, representing the

majority (84-87%) of hours of fishing effort in the high seas

(Crespo et al., 2018), and have a high rate of incidental capture of

sharks (Oliver et al., 2015). Our findings can be used to help

managers strategically target spatial management strategies to

combat shark overfishing and identify areas where more data

are needed.
2 Materials and methods

2.1 Shark catch data

Publicly available shark catch data from longlines between

2012 and 2020 were col lected from four tRFMOs

(Supplementary Material, Table S1): Western and Central

Pacific Fisheries Commission (WCPFC), Inter-American

Tropical Tuna Commission (IATTC), International

Commission for the Conservation of Atlantic Tunas (ICCAT)

and Indian Ocean Tuna Commission (IOTC). This time frame

was chosen to represent a current snapshot of fishing effort and

ensure compatibility among tRFMO datasets and other datasets

used in our modeling efforts (see section 2.2 Model parameters).

We define “sharks” based on the species present in the tRFMO

longline datasets, which includes species or species groups

belonging to orders Carcharhiniformes, Lamniformes, and

Orectolobiformes, though catches for the latter in longlines are

rare (Table 1). We use the term shark “species” generally to refer

to all species and species groups reported by tRFMOs (Table 2).

Shark catch data were self-reported by fishers for all tRFMOs

except WCPFC, where data were reported by onboard observers.

The fisher self-reported and observer catch data only contain

non-zero values. We therefore assume that if any shark catch is

reported in a cell, sharks that were not reported have a catch

value of zero (Supplementary Material, Tables S2, S3). This

assumption is founded on the belief that if fishers or observers

are reporting catch, they will report all species or species groups

that are caught given regulations to do so (Supplementary

Material, Table S3), and will not selectively report some

species and not others. The spatiotemporal resolution of data

varied by tRFMO. Data that were reported at a 1x1 degree
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resolution or a 5x5 degree resolution were retained. While

IATTC, ICCAT, and IOTC data were reported at monthly

scales, WCPFC data were reported on an annual scale

(Supplementary Material, Table S1). To maintain consistency
Frontiers in Marine Science 03
across tRFMOs and predict shark catch risk at a global scale,

data reported at an annual scale were used for this analysis; data

that were reported at a monthly scale were summed to an annual

scale. The reporting units for catch also varied by tRFMO, with
TABLE 1 Data overview by shark species.

Species
Common
Name

Species
Scientific
Name

IUCN
Status

tRFMO Catch
Units

Spatial
Resolution

% of Total Shark
Catch (count)

Total Shark
Catch (count)

Sharks nei Sharks nei IATTC, ICCAT,
IOTC, WCPFC

count, mt 5x5, 1x1 8.96% 516,263.52

Thresher sharks nei Alopias IATTC, IOTC,
WCPFC

count, mt 5x5, 1x1 0.44% 25,422

Pelagic thresher
shark

Alopias
pelagicus

EN WCPFC count 5x5 0.03% 1,721

Bigeye thresher
shark

Alopias
superciliosus

VU WCPFC count 5x5 0.34% 19,460

Thresher shark
(vulpinus)

Alopias
vulpinus

VU WCPFC count 5x5 0.01% 424

Requiem sharks nei Carcharhinidae IATTC, IOTC count, mt 5x5, 1x1 0.01% 563

Silky shark Carcharhinus
falciformis

VU IATTC, IOTC,
WCPFC

count, mt 5x5 4.35% 250,565

Blacktip shark Carcharhinus
limbatus

VU IATTC count, mt 5x5 0.03% 1,518

Oceanic whitetip
shark

Carcharhinus
longimanus

CR IOTC, WCPFC count, mt 5x5, 1x1 0.17% 9,847.21

Mako sharks Isurus IATTC, WCPFC count, mt 5x5 0.09% 5,110

Shortfin mako
shark

Isurus
oxyrinchus

EN IATTC, ICCAT,
WCPFC

count, mt 5x5, 1x1 4.99% 287,576

Longfin mako Isurus paucus EN WCPFC count 5x5 0.04% 2,351

Porbeagle shark Lamna nasus VU ICCAT, IOTC,
WCPFC

count, mt 5x5, 1x1 0.38% 21,761

Mackerel sharks,
porbeagles nei

Lamnidae IOTC count, mt 5x5, 1x1 1.83% 105,393.96

Blue shark Prionace glauca NT IATTC, ICCAT,
IOTC, WCPFC

count, mt 5x5, 1x1 78.23% 4,508,359.62

Whale shark Rhincodon
typus

EN WCPFC count 5x5 <0.01% 2

Hammerhead
sharks nei

Sphyrna IATTC, IOTC,
WCPFC

count, mt 5x5, 1x1 0.10% 5,913.01

Scalloped
hammerhead

Sphyrna lewini CR WCPFC count 5x5 <0.01% 106

Great hammerhead
shark

Sphyrna
mokarran

CR WCPFC count 5x5 <0.01% 62

Smooth
hammerhead

Sphyrna
zygaena

VU WCPFC count 5x5 <0.01% 275

The tRFMOs, catch units, and spatial resolution for which longline catch data were available by species. Only spatial resolutions of 1x1 degree or 5x5 degree cells were used to generate
this table. The percent of total shark catch and total shark catch columns are the proportion of catch attributed to a species using catch units of count. A full tRFMO breakdown of total
catch by species can be found in Supplementary Material, Table S9.
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shark catch reported in either counts or metric tonnes and effort

reported in number of hooks (Supplementary Material,

Table S1).
2.2 Model parameters

Fishing effort is known to have at least some influence on

catch. We tested three different fishing effort parameters

(Supplementary Material, Table S4). Publicly available fishing

effort data associated with target catch (tuna and tuna-like

species; “target effort”; Supplementary Material, Figure S1) and

shark catch (“shark effort”; Supplementary Material, Figure S2)

specifically were collected from WCPFC, IATTC, ICCAT, and

IOTC for longline vessels through 2020. All fishing effort data

except WCPFC are self-reported by fishers and included vessel

flag information; WCPFC fishing effort data are reported by

observers and do not include vessel flag information. The

procedure used to parse data on a spatiotemporal scale for

shark catch was also applied to the fishing effort data. Due to

potential spatial or reporting biases in observer and self-reported

datasets, respectively, independent effort data were also collected

from the Global Fishing Watch (GFW) database (Kroodsma
Frontiers in Marine Science 04
et al., 2018; Supplementary Material, Figure S3). GFW compiles

and analyzes automatic identification systems (AIS) data, which

are transmitted through a network of terrestrial and satellite

receivers, and uses observed changes to vessel movement to infer

fishing activity, which they report using various fishing effort

metrics (Kroodsma et al., 2018). We downloaded GFW fishing

effort reported in kilowatt hours (“GFW effort”), a measure of

fishing intensity, at 5x5 and 1x1 degree resolutions from 2012

(the first year data are available) to 2020. All data used to

parameterize the shark catch risk model were subsequently

subset or queried to represent a current snapshot of shark

catch and match the temporal range of the GFW fishing effort

dataset (2012–2020).

We assembled key environmental parameters known to

influence shark occurrence (Supplementary Material, Table

S4). Sea surface temperature (SST; °C; Supplementary

Material, Figure S4) and chlorophyll-A (milligram m-3;

Supplementary Material, Figure S5) data were compiled from

the NOAA Coastwatch ERDDAP data server (dataset IDs:

erdHadISST and pmlEsaCCI42OceanColorMonthly ,

respectively) from 2012–2020. Sea surface height (meters;

Supplementary Material, Figure S6) data were available from

2012–2019 (Zlotnicki et al., 2019) and 2020 values were
TABLE 2 Longline catch reporting metrics.

tRFMO

tRFMO Publicly Available Catch Data

Longline
Observer
Coverage
(2020)

Number
of Flag
StatesTuna and Tuna-like Species

Number
of Shark
Species

or
Species
Groups

Spatial
Resolution

Temporal
Resolution

IATTC
bigeye tuna, yellowfin tuna, blue marlin, striped marlin, swordfish,
albacore tuna, black marlin, skipjack tuna, pacific bluefin tuna, indo-
pacific sailfish, shortbill spearfish

9 1x1, 5x5 monthly

5% for
vessels >20
m length
overall
(IATTC,
2021)

18
(IATTC,
2022)

ICCAT

swordfish, bullet tuna, atlantic bonito, plain bonito, little tunny,
yellowfin tuna, bigeye tuna, atlantic white marlin, atlantic sailfish,
albacore tuna, blackfin tuna, wahoo, blue marlin, skipjack tuna,
longbill spearfish, southern bluefin tuna, atlantic bluefin tuna, black
marlin, king mackerel, frigate tuna, mediterranean spearfish,
roundscale spearfish, striped marlin, west african spanish mackerel,
atlantic spanish mackerel

4 1x1, 5x5 monthly
5%
(ICCAT,
2018)

30
(ICCAT,
2022)

IOTC

bigeye tuna, swordfish, yellowfin tuna, striped marlin, skipjack tuna,
albacore tuna, shortbill spearfish, indo-pacific sailfish, southern
bluefin tuna, black marlin, blue marlin, narrow-barred spanish
mackerel, kawakawa, longtail tuna, wahoo, butterfly kingfish, slender
tuna, striped bonito, bullet tuna

9 1x1, 5x5 monthly

5%
(IOTC
Secretariat,
2021)

22
(IOTC,
2022)

WCPFC
albacore tuna, yellowfin tuna, bigeye tuna, striped marlin, black
marlin, blue marlin, swordfish

17 5x5 yearly
27.5%
(WCPFC,
2022a)

12
(WCPFC,
2022b)

Catch reporting for longlines in each tRFMO. The information in the columns for tuna and tuna-like species, number of shark species or species groups (e.g., “hammerhead sharks”),
spatial resolution, and temporal resolution were collected from the data used to develop shark catch machine learning models. The number of flag states is defined as the number of flags
that are authorized to longline in a tRFMO’s waters.
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interpolated using values from the three nearest neighbors. All

environmental data were aggregated to 5x5 and 1x1 degree

resolutions and the mean and coefficient of variation (CV) per

cell were calculated.

Sharks cannot be caught where they are not present. We

included a measure of species occurrence using species

distribution model (SDM) polygons from IUCN for all shark

species reported as longline catch by tRFMOs (IUCN, 2022).

The original probability categories in the IUCN dataset include:

1 (extant), 2 (probably extant), 3 (possibly extant), 4 (possibly

extinct), 5 (extinct), 6 (presence uncertain; excluded from the

dataset, IUCN SSC Red List Technical Working Group, 2021).

We converted these to values between 0 (extinct) and 1 (extant)

to represent probability of occurrence in a cell (Supplementary

Material, Figures S7–S21). For shark catch reported to the family

or group (e.g., “Species nei”) level, the mean of SDMs for all

relevant species was calculated. Data were aggregated to 5x5 and

1x1 degree resolutions.

We assume that shark species with higher monetary value

are more likely to be targeted by longline fisheries. Species-

specific ex-vessel prices were generated using methods from

Melnychuk et al. (2017) for 2012–2020 (Supplementary

Material, Tables S5, S6). For species with catch data, but no

ex-vessel price information, a median ex-vessel price was

calculated by year for all shark species collectively. Values for

the year 2020 were inferred by multiplying the 2019 ex-vessel

price by the estimated inflation rate for the US in 2020 (1.2%).
2.3 Identifying hotspots of shark
interactions with industrial
longline fishing

We built Random Forest (RF) machine learning models to

estimate spatially explicit shark catch risk. The RF modeling

approach consists of a series of “trees” that are trained

independently using a combination of predictor variables and

rows of data that are randomly resampled from a training

dataset (Breiman, 2001). Combining results from all trees

within a “forest” allows for an efficient, accurate, and robust

prediction of the response variable with low risk of overfitting

(Breiman, 2001). A testing dataset is reserved to evaluate the

predictive power of the RF model. RF models are increasingly

applied to ecological and fisheries data for their proven ability to

provide robust predictions and superior performance in the face

of common challenges associated with sparse data collection

efforts, low sample sizes, and noisy data (Luan et al., 2020). The

RF modeling approach does not require assumptions about data

properties, which is a constraining feature of traditional

parametric regression, and model performance is not impeded

by interactions between predictor variables (Qi, 2012). RF

modeling is used for both classification and regression

problems, and has proven to be particularly useful in marine
Frontiers in Marine Science 05
research to build species distribution models (Luan et al., 2020),

estimate small-scale fishing effort (Behivoke et al., 2021), and

estimate bycatch risk via echosounder data (Mannocci et al.,

2021). Our motivation for using this RF approach to predict

shark catch risk is threefold: (1) it does not bind us to parametric

or non-parametric approaches like traditional regression

analyses, (2) it allows us to leverage our sample to predict over

areas in which no catch was originally reported, which is

particularly useful for overcoming spatiotemporal observation

biases, and (3) it provides a robust prediction that can be easily

refined as more data become available (Breiman, 2001;

Siroky, 2009).

Individual RF models were created to predict shark catch

risk (catch in counts) for each tRFMO using the tidymodels R

package (Kuhn and Wickham, 2020). All reported shark catch

was retained in the model, though we note that not all caught

sharks were landed (e.g., 12.37% landed, 50.88% discarded, and

36.76% unknown fate in WCPFC from 2012–2020). Shark catch

risk is therefore an estimate of the likelihood that a shark will be

caught, but not necessarily be killed, by a longline vessel in a

spatial cell.

For each tRFMO, we tested various spatial resolutions and

shark catch units to determine the most appropriate dataset for

future model runs, identified by the highest R2 for each tRFMO.

Once a resolution and unit were selected for a tRFMO, the same

resolution was used in future model runs (Supplementary

Material, Table S7). The resolutions of data that were

tested include:
1. Catch (count) and effort (target effort, shark effort, and

GFW effort) at a 5x5 degree resolution (all tRFMOs);

2. Catch (mt) converted to count using weight to count

measurements described in Worm et al. (2013) for small

coastal, pelagic, large coastal, and deep-water species

and effort (target effort, shark effort, and GFW effort) at

a 5x5 degree resolution. Catch data that were converted

to count were added to catch data already reported as

count (IATTC, ICCAT, IOTC);

3. Catch (count) and effort (target effort, shark effort, and

GFW effort) at a 5x5 degree resolution evenly

distributed into 25 cells at a 1x1 degree resolution

(catch/25, effort/25). Catch data that were converted to

a 1x1 degree resolution were added to data already

reported at a 1x1 degree resolution (all tRFMOs);

4. Catch and effort (target effort, shark effort, and GFW

effort) at a 5x5 degree resolution evenly distributed into

25 cells at a 1x1 degree resolution (catch/25, effort/25).

Catch data that were converted to a 1x1 degree

resolution were added to data already reported at a

1x1 degree resolution. Catch data reported in mt were

converted to count using weight to count measurements

described in Worm et al. (2013) for small coastal,

pelagic, large coastal, and deep-water species and effort
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at a 5x5 degree resolution. Catch data that were

converted to a 1x1 degree resolution or that were

converted to count were added to catch data already

reported at a 1x1 degree resolution as count (IATTC,

ICCAT, IOTC).
We employed a two-phase approach to conduct a feature

selection procedure via the “wrapper”method described by Kuhn

and Johnson (2019). The wrapper method uses different

combinations of predictor variables to evaluate model

performance (Supplementary Material, Table S7). In Phase 1,

we tested our three different fishing effort metrics: target effort

(number of hooks, by flag when available), shark effort (number of

hooks, by flag when available), and GFW effort (kilowatt hours).

Other predictors were held constant, including mean SST, mean

chlorophyll-A, and species suitability. We used R2 to determine

which dataset and effort metric best predicted shark catch risk. In

Phase 2, we used the best performing dataset and metric found in

Phase 1 to conduct a second wrapper-based feature selection

procedure to test the combinations of the following variables: SST

(mean or mean and coefficient of variation), chlorophyll-A (mean

or mean and coefficient of variation), sea surface height (mean or

mean and coefficient of variation), species-specific ex-vessel prices,

and group-wide ex-vessel prices.

For each model, we grouped shark catch data into five spatial

clusters using spatial dissimilarity matrices and then randomly

split catch across combinations of years and spatial clusters into

training (75% of all data; n = 19,393 [WCPFC], 254,475

[IATTC], 10,125 [IOTC], 6,444 [ICCAT] rows) and testing

datasets (25% of all data; n = 6,464 [WCPFC], 84,825

[IATTC], 3,375 [IOTC], 2,148 [ICCAT] cells) to ensure that

model performance was not based purely on spatiotemporal

autocorrelation. Shark catch records and reported fishing effort

are incomplete due to low observer coverage or partial self-

reporting. To accommodate this and not limit our spatial risk

estimation to cells with reported shark catch only, we allowed

our model to predict shark catch over the entire spatial footprint

of longline fishing effort, even if no sharks were reported in a

fished cell. For each year, we gathered all cells in which shark

catch or fishing effort by longlines was reported. For cells in

which effort was reported, but shark catch was not, we recorded

catch as 0 for each shark species and species group in our dataset.

Similarly, for cells in which shark catch for at least one species

was reported, we recorded catch as 0 for all other shark species

and species group in our dataset (Supplementary Material,

Tables S2, S3).

Due to the large number of 0 catch values within the dataset,

we used a hurdle model approach (Mullahy, 1986). First, shark

catch within the training dataset was classified as either

“present” (catch > 0) or “absent” (catch = 0). To ensure a

balanced training dataset, the minority classification (shark

catch present) was randomly upsampled until there was an

equal number of both classification groups (using the themis R
tiers in Marine Science 06
package; Hvitfeldt, 2022). Numerical predictor variables were

then centered and scaled and missing numerical data were

imputed using data from three nearest neighbors. Missing

categorical values were assigned as “unknown” factors and

dummy variables were created for each categorical variable.

Finally, all predictors that contained only a single value were

removed (e.g., if a particular flag only reported effort once

throughout the time series, the column for that flag was

removed from the model).

The resulting dataset was used to train an RF classification

model (Luan et al., 2020) to predict either shark catch presence

or absence. We then trained an RF regression model on the

“presence” data to predict shark catch in each cell. Due to

potential reporting biases in observer or self-reported data,

model results are not intended to be viewed as actual catch

estimates, but rather hotspots of potential catch risk. The final

prediction of shark catch risk was the product of the outcome

from the classification model and the regression model. Models

were run with 500 trees.

The general formula for each of the models was:

Component 1: Random Forest Classification Model

presence   or   absence  

e   species   distribution  model + species   common   name

                            +mean   sea   surface   temperature +mean   chlorophyllA

                            + effort   by   flag   if   availableð Þ + any   combination   of   Phase   2   predictorsð Þ

Component 2: Random Forest Regression Model

catch   e   species   distribution  model + species   common   name

                            +mean   sea   surface   temperature +mean   chlorophyllA

                            + effort   by   flag   if   availableð Þ + any   combination   of   Phase   2   predictorsð Þ

Final Prediction:

Component   1  Result*Component   2  Result

To avoid overfitting, we generated a new dataset in which

fishing effort and environmental variables in each cell were

assigned a random value from a normal distribution using the

mean and standard deviation of the predictor in the cell across

all years (2012–2020). We then used the same hurdle model

procedure to identify spatial hotspots of shark interactions with

longline fisheries globally.

All code and data required to reproduce this analysis are

available on Zenodo (Burns et al., 2022a) and Dryad (Burns

et al., 2022b), respectively.
3 Results

3.1 tRFMO shark catch and effort

Collation and harmonization of publicly available tRFMO

data provide a geospatial estimate of areas with high reported

shark catch (count), effort associated with shark catch (hooks),
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and shark CPUE (count/hook, Figure 1). Due to differences in

reporting requirements across tRFMOs and the general scale of

data reported, values were scaled on a tRFMO basis for

visualization. Areas in each tRFMO with the highest reported

catch, effort, or CPUE for sharks often do not overlap with each

other (Supplementary Material, Table S8). WCPFC has the
Frontiers in Marine Science 07
highest degree of overlap among high value cells, with the

overlap of high shark catch and shark CPUE (21.1% of cells),

and the overlap of high shark catch and effort associated with

shark catch (20.7% of cells). The remaining 58.2% of high value

cells do not overlap with another metric. Comparatively, IATTC

has the lowest degree of overlap, with 87.3% of high value cells
B

C

A

FIGURE 1

Spatial distribution of tRFMO catch and effort data. tRFMO mean annual shark catch (count, A), effort associated with shark catch (hooks, B) and
shark CPUE (count/hook, C) from publicly available longline data between 2012–2020. Data from each tRFMO were scaled independently using
quantiles between 0 and 1 at 0.1 increments. Blue colors indicate areas of low shark catch, effort, and CPUE, while red colors indicate areas of
high shark catch, effort, and CPUE. Black lines indicate tRFMO boundaries.
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having no overlap with other metrics. The low degree of overlap

among shark catch, effort associated with shark catch, and shark

CPUE indicates the need for a modeling framework that does

not assume a simple, linear relationship between these metrics.

Areas with the highest shark CPUE (count/hook) are

typically associated with catches of blue shark (Prionace

glauca, 78.23% of total reported tRFMO shark catch globally;

Supplementary Material, Table S9) or shortfin mako shark

(Isurus oxyrinchus, 4.99% of total reported tRFMO shark catch

globally; Supplementary Material, Table S9), but species-level

CPUE varied spatially. In WCPFC, areas with high CPUE are

offshore of western New Zealand, dominated by blue sharks,

porbeagle sharks (Lamna nasus), and shortfin mako sharks.

Comparatively, areas of high CPUE in IATTC correspond to

silky sharks (Carcharhinus falciformis) along the coast of Mexico

and blue and shortfin mako sharks off Chile. Areas of high

CPUE in ICCAT extend from coastal Brazil to Argentina for

blue, shortfin mako, and porbeagle sharks. Areas of high CPUE

in IOTC are offshore of South Africa and southwestern Australia

for blue sharks. The highest diversity of shark species is reported

by theWCPFC (n = 12 true species [i.e., not “sharks nei” or other

grouped categories]; compared to n = 4, 4, 3, species in IATTC,

IOTC, and ICCAT, respectively), which is more likely a

reflection of differences in reporting requirements as opposed

to differences in true catch rates of different species.
Frontiers in Marine Science 08
Areas of high tuna catch in each tRFMO were identified for

the three most frequently reported tuna species: bigeye tuna

(Thunnus obesus), albacore tuna (T. alalunga), and yellowfin

tuna (T. albacares, Figure 2). Bigeye and yellowfin tuna catch is

highest in the central oceans whereas albacore tuna catch is

distributed across the southern oceans, consistent with each

species' habitat preferences (Arrizabalaga et al., 2015). Within

areas of high tuna catch, mean CPUE for shark species is

consistently low across tRFMOs and years. The summed mean

CPUE for all shark species does not exceed 10 individuals per

10,000 hooks and summed mean CPUE for threatened shark

species' (IUCN categories of Vulnerable, Endangered, or

Critically Endangered) does not exceed 0.05 individuals per

10,000 hooks.
3.2 Global hotspots of shark catch risk

The best performing RF models vary slightly among

tRFMOs and result in a more comprehensive picture of shark

catch risk than tRFMO catch reports alone (Supplementary

Material, Table S10, Figures S22-S25). Sea surface temperature,

chlorophyll-A, species suitability, and species identity serve as

important predictors across al l tRFMOs (Table 3;

Supplementary Material, Figures S26-S29). Sea surface height
B C

D E F

G H I

A

FIGURE 2

Overlap between areas of high tuna catch and shark catch. Areas in each tRFMO greater than or equal to the 90% quantile for mean annual
longline catch of target species: (A) bigeye tuna, Thunnus obesus, (D) albacore tuna, Thunnus alalunga, and (G) yellowfin tuna, Thunnus
albacares. The mean (dots) and standard deviation (error bars) of catch per unit effort (mt/10,000 hooks) for target species in those regions for
(B) bigeye tuna, (E) albacore tuna, (H) yellowfin tuna. The mean (dots) and standard deviation (error bars) of catch per unit effort (count/10,000
hooks) of all reported shark species and threatened shark species (Critically Endangered, Endangered, and Vulnerable by the IUCN) in those
regions (C, F, I). Black lines in panels (A, D, G) represent tRFMO boundaries. Note that WCPFC shark catch data were not reported in 2012.
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improved model performance for IATTC only, and ex-vessel

prices improved model performance for IOTC and WCPFC.

Remotely sensed GFW fishing effort, which was tested in lieu of

effort reported with target catch or shark catch, did not improve

model performance and, therefore, was not used in any of the

final model runs. For all shark species, areas of high catch risk

are primarily located within the ICCAT jurisdiction, off the coast

of Southwestern Africa and in the Central Atlantic Ocean

(Figure 3A; Supplementary Material, Figures S30, S31). Areas

of high catch risk for threatened species are concentrated

offshore of Central America in the Eastern Tropical Pacific,

partially abutting the Costa Rica Thermal Dome (Figure 3B).

Overall, areas of high catch risk for sharks appear to correspond

to areas of high risk for the three most prominently reported

shark species: blue (Near Threatened; Supplementary Material,

Figure S32), shortfin mako (Endangered; Supplementary

Material, Figure S33), and silky sharks (Vulnerable;

Supplementary Material, Figure S34). Shark catch risk areas

were consistent across various “risk” thresholds examined, with

higher upper bounds and smaller lower bounds serving to

spatially constrain identified hotspots but not affect their

location (Supplementary Material, Figure S31). Catch risk for

all sharks reported at the species level are shown in the

Supplementary Material Figures S32–S46.

In addition to blue, shortfin mako, and silky sharks being the

most prominently reported shark species, they are also most

evenly represented across three or more tRFMOs (Figure 4). We

calculated the number of high catch risk cells within each tRFMO

independently. The relative percentage of high-risk cells within a

particular tRFMO for blue sharks is similar across tRFMOs, while

a higher percentage of cells are high-risk for both shortfin mako

and silky sharks within WCPFC boundaries. The majority of

other species are represented across fewer tRFMOs (e.g., longfin

mako shark [Isurus paucus], oceanic whitetip shark [C.

longimanus]) or are predicted in small quantities, rarely
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exceeding the threshold required to be considered high risk

(e .g . , porbeag le sharks , common thresher sharks

[Alopias vulpinus]).

We also investigated the overlap of areas of high catch risk

for shark species across different IUCN Red List categories

(Figure 5). Several species categorized as Critically Endangered

(1 of 5 species reported), Endangered (2 of 3 species reported)

and Vulnerable (2 of 5 species reported) were found to have

high-risk cells offshore of the Hawaiian Islands (Figure 6).

Although great hammerhead (Sphyrna mokarran; Critically

Endangered), whale (Rhincodon typus; Endangered), and

blacktip sharks (C. limbatus; Vulnerable) appear in catch

reports, interactions with these species in longline tRFMOs

were reported so rarely that they resulted in a global predicted

catch risk of 0. In addition, areas of high-risk for both blue and

shortfin mako sharks show moderate overlap. Blue, shortfin

mako, and silky sharks are the only species that exhibit high

catch risk areas covering large expanses of oceans across at least

two tRFMOs, which could be a reflection of relatively high global

abundances, a high degree of association with target stocks, and/

or greater consistency in reporting standards across tRFMOs for

these species.
4 Discussion

Commercial longline fishing greatly contributes to

unsustainably high levels of shark catch (Worm et al., 2013;

Oliver et al., 2015). However, our data synthesis and modeling

approach reveals that shark interactions with longline vessels are

not concentrated in areas of high fishing effort or areas with high

tuna catch per unit effort. Instead, catch risk hotspots are

clustered in specific regions which are well predicted by

environmental, ecological, and economic factors. Taken

together, these findings suggest that targeted spatial
TABLE 3 Random Forest model performance.

tRFMO Catch Units Spatial
Resolution

Effort Source Predictors R2

IATTC Number of individuals and metric
tonnes converted to number of
individuals

1x1 degree
grid

Effort reported
with target catch
by flag

sea surface temperature (mean), chlorophyll-A (mean), sea
surface height (mean), species suitability, species name

0.722

ICCAT Number of individuals and metric
tonnes converted to number of
individuals

5x5 degree
grid

Effort reported
with target catch
by flag

sea surface temperature (mean), chlorophyll-A (mean),
species suitability, species name

0.817

IOTC Number of individuals 5x5 degree
grid

Effort reported
with shark catch
by flag

sea surface temperature (mean, CV), chlorophyll-A (mean,
CV), species-specific ex-vessel price, species suitability,
species name

0.705

WCPFC Number of individuals 5x5 degree
grid

Effort reported
with shark catch

sea surface temperature (mean), chlorophyll-A (mean),
species-specific ex-vessel price, species suitability, species
name

0.546

The best performing models (highest R2) for each tRFMO.
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management of sharks is possible without closing the most

productive tuna fishing grounds.

Trends in shark catch data reported by tRFMOs are

consistent with known fishing practices that either target

sharks or catch them as bycatch. For example, blue, porbeagle,

and mako sharks are managed via Quota Management Systems

off western New Zealand, which is also an area that exhibits high

areas of high shark CPUE. Therefore, this hotspot in the

WCPFC region likely reflects a combination of sharks that

were landed as both target catch (Finucci et al., 2019) and

bycatch (Griggs et al., 2018). Alternatively, areas of high shark

CPUE in the IATTC jurisdiction correspond to high catches of

silky sharks off the coast of Mexico, which are likely targeted

(Schaefer et al., 2021), and high catches of blue and mako sharks

off the coast of Chile, which are likely caught incidentally

(Sebastian et al., 2008; Klarian et al., 2018). Areas of high

CPUE of blue, shortfin mako, and porbeagle sharks in the

ICCAT region (coastal Brazil to Argentina) are also consistent
Frontiers in Marine Science 10
with historical catch reporting in the area (Barreto et al., 2016).

Finally, shark catch risk hotspots identified offshore of South

Africa and southwestern Australia in the IOTC purview are

supported by a fleet and species specific study of mako sharks

caught by the Taiwanese tuna longline fleet in the Indian Ocean

(Wu et al., 2021). The alignment between our global results and

prior species, fleet, and location specific studies serves to support

the robustness of our machine learning approach.

Although the shark catch risk hotspots we identify generally

support prior species-specific and regionally focused studies,

there is one notable exception. Our catch risk hotspots do not

directly overlap with areas in which shark populations have

substantially declined (e.g., in the north Atlantic ocean; Baum

et al., 2003; Pacoureau et al., 2021). Instead, our results show a

current snapshot of areas with high shark catch risk, which is

more likely to correspond to high shark abundance areas given

the extensive global footprint of longline fishing (Kroodsma

et al., 2018). A shortcoming of our approach is that we are
B

A

FIGURE 3

Shark catch risk. Estimated spatial risk for shark catch at a global scale for all tRFMO reported shark species combined (A) and threatened shark
species (Critically Endangered, Endangered, and Vulnerable by the IUCN) (B). Areas in blue represent low shark catch risk, while areas in red
represent high shark catch risk. Black lines represent tRFMO boundaries.
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unable to identify hotspots of shark catch risk in areas where the

abundance of a species is low, e.g., because sharks have

historically been overfished. In other words, an overfished

population with fewer sharks is less likely to be caught by

longline fishing compared to a healthy population with many

sharks. Therefore, areas with low local abundances of particular

species, and thus low probability of being caught, are unlikely to

be identified by our machine learning approach and require

additional, targeted studies.

The patterns of risk we identify are largely driven by the catch

of blue sharks, which represent ~78% of all shark catch reported

by tRFMOs globally between 2012–2020 (Supplementary

Material, Table S9). These catch risk hotspots can be compared
Frontiers in Marine Science 11
to biologically important areas for blue sharks and other shark

species (e.g., Hyde et al., 2022). For example, catch risk hotspots

identified off the coast of Southwest Africa occur in a known

potential blue shark nursery habitat off the coast of Namibia

where a high catch density of immature sharks have been recorded

by onboard observers (Coelho et al., 2018). Fishery- independent

studies of juvenile blue sharks have also identified foraging

habitats in the same area (Druon et al., 2022). Shortfin mako

sharks (Endangered) share this risk hotspot with blue sharks in

Southwest Africa (ICCAT jurisdiction), confirmed by onboard

observer reports from Spanish longliners in the region (Dinkel

and Sánchez-Lizaso, 2020). Our results indicate that both species

also have a high risk of interacting with tuna longline gear in a
FIGURE 5

High-risk areas for threatened shark species. Cells that are considered high-risk for shark species that are categorized as Critically Endangered,
Endangered, Vulnerable, or Near Threatened by the IUCN. High-risk cells are areas in which the mean annual predicted catch of a species is
greater than or equal to the 90% quantile. Quantiles were calculated using non-zero mean annual predicted catch values. Areas with striped
patterns indicate the overlap of high-risk shark catch areas for two species.
BA

FIGURE 4

Distribution of high-risk cells across tRFMOs. The percentage of cells within a particular tRFMO (A) that are considered high-risk for shark
species (B). High-risk cells are areas in which the mean annual predicted catch of a species in a tRFMO is greater than or equal to the 90%
quantile. Quantiles were calculated using non-zero mean annual predicted catch values.
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concentrated area within Eastern Tropical Pacific (IATTC

jurisdiction), potentially the result of shared foraging grounds

given the relatively similar diet (73% diet overlap) of mackerel and

other teleosts as well as dolphin carcasses (Klarian et al., 2018).

This area partially abuts the Costa Rica Thermal Dome, a known

biodiversity hotspot for marine megafauna. However, there are

other areas of relatively high shark abundance identified in these

listed studies that do not overlap with our catch risk hotspots.

Discrepancies in hotspot areas may be due to ontogenetic shifts

(Coelho et al., 2018) or seasonal migrations (Dinkel and Sánchez-

Lizaso, 2020) that result in varying levels of overlap with longline

fishing, a spatial mismatch between biologically important areas

for sharks and preferred fishing grounds, or simply the result of

the global nature of our analysis which forces the loss of regional

nuance in favor of a global reference point. Nevertheless, even

when poor data reporting stymies efforts to target species-specific

management interventions, identified high risk areas for sharks

generally can be used to cross-reference critical habitats shared by
Frontiers in Marine Science 12
multiple species, particularly those that are threatened with

extinction and therefore most susceptible to overexploitation.

Although our results primarily represent a few commonly

reported species, pelagic longlines have the potential to interact

with numerous shark species (n = 15 unique species and 5 higher

order classifications are included here) with highly variable life

histories and movement capacities, which can present challenges

for designing effective spatial management to rebuild

overexploited populations. Further work is needed to identify

where shark catch risk hotspots align with ecologically

important areas, such as aggregation sites and migration

corridors, to ensure area-based protection and management

are effective for intended species (Boerder et al., 2019; Gilman

et al., 2019; Hyde et al., 2022). Behavioral considerations,

including philopatry and movement capacity, will further

determine which shark populations are most likely to respond

to spatial management measures (Boerder et al., 2019), and

future efforts will need to examine the seasonality and
B C

D E
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FIGURE 6

Catch risk hotspots for five shark species near the Hawaiian Islands. A closer look at predicted shark interaction risk hotspots near the Hawaiian
Islands for species that are considered Critically Endangered (oceanic whitetip; Carcharhinus longimanus [A]), Endangered (pelagic thresher;
Alopias pelagicus [B], longfin mako; Isurus paucus [C]), or Vulnerable (bigeye thresher; Alopias superciliosus [D], smooth hammerhead; Sphyrna
zygaena [E]) by the IUCN. The right plot border represents the Eastern WCPFC boundary.
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persistence of catch risk hotspots to determine whether static or

dynamic management is preferred. Anthropogenic climate

change is already impacting the spatial distribution of tuna

stocks and other pelagic species (Erauskin-Extramiana et al.,

2019; Bell et al., 2021), which may alter the landscape of

incidental interactions between tuna fisheries and sharks and

require adaptive and dynamic management approaches.

Irrespective of the spatial strategy deemed most suitable for

addressing unsustainable exploitation of sharks, any spatial

measure will likely need to be paired with other fisheries

management interventions – such as catch, effort, and/or gear

regulations – to rebuild overexploited stocks; this is especially

true for highly migratory species (Boerder et al., 2019; Gilman

et al., 2019; Pons et al., 2022). For example, fishing gear

modifications arising from banning branchline wire leaders

were shown to reduce fishing mortality by ~28–36% for silky

and oceanic whitetip sharks in the Western and Central Pacific

Ocean (Bigelow, 2022).

Using the best available publicly accessible data across

several tRFMOs introduces several opportunities for data

discrepancies. For all tRFMOs apart from WCPFC, shark

catch data were self-reported by fishers; WCPFC shark catch

data were reported by onboard observers. Self-reporting is

required by each tRFMO, and observer programs are designed

to be representative; however, in using these data to build a

machine learning model, we implicitly assume that these

samples are spatially representative. While self-reported data

have the potential to include a larger representation of fishing

effort and catch, there is a potential trade off with the accuracy

and detail with which data are reported (e.g., in an effort to

anonymize self-reported data, ICCAT catch records represent an

unspecified level of true catch that lies between the bounds of 5–

100%, with no further information provided). Fishers may also

hesitate to report catching species that are considered Critically

Endangered, Endangered, or Vulnerable by the IUCN, as well as

those that are listed by the Convention on International Trade in

Endangered Species of Wild Fauna and Flora, leading to an

inaccurate representation of the interactions between the most

threatened shark species and longline fleets (Mucientes et al.,

2022). Alternatively, observer data may only provide

information on a small subset of the entire fleet, but may

result in detailed and accurate catch information for more

species, regardless of how threatened they are with extinction.

For example, the WCPFC observer data reported catch for 13

true shark species and 4 shark species groups (Table 1), but

contributed to a relatively small proportion of total shark catch

compared to other tRFMOs (Supplementary Material, Figure

S22). Furthermore, WCPFC observer coverage is only 27.5% of

the total longline fleet (Table 2). Comparatively, self-reported

catch data from ICCAT included 3 true shark species and

“sharks nei” (Table 1) while contributing to the largest

proportion of total catch (Supplementary Material, Figure

S22). These inherent differences between datasets make it
Frontiers in Marine Science 13
difficult to determine true shark catch from tRFMO reports

without making a number of necessary assumptions. Here, we

report on shark interaction risk which relies on the simpler, but

critical assumption that there is no substantial spatial bias in

observer coverage or self-reporting by fishers. Collaborative

efforts among tRFMOs to provide public datasets with the

same level of detail and fleet coverage are required for

improved global estimates of shark interaction risk for

individual species. Our model was designed to be replicated

for use with datasets of any spatiotemporal and species

resolution, offering an opportunity to improve shark catch risk

estimates with improved datasets in the future.

A key challenge that merits further attention is reconciling

the rarity of highly threatened species with their propensity to

interact with fishing gears. For example, oceanic whitetip sharks

were once one of the most abundant pelagic sharks, but, due to

overfishing, they are now Critically Endangered and rarely

encountered (Tremblay-Boyer et al., 2019; Young and Carlson,

2020). Reported reductions in the interaction between fisheries

and shark species may therefore be due to overall population

declines (e.g., >70% reduction in the abundance of oceanic

sharks; Pacoureau et al., 2021) and not an indication of

maintaining sustainable catch levels. In other words, for a

species with low abundance, relatively low catch can equate to

relatively high fishing mortality (Dulvy et al., 2021; Murua et al.,

2021). It is therefore particularly notable that we are able to

identify a catch risk hotspot for threatened sharks near the

Hawaiian Islands (Figure 6). Importantly, the data underlying

this predicted hotspot are derived from the shallow set longline

fleet targeting swordfish, which boasts detailed catch reporting

due to 100% observer coverage (Gilman et al., 2006). This

finding suggests that high resolution data can successfully be

leveraged to predict shark catch hotspots for the species most in

need of conservation attention.

An important next step from this work is to estimate absolute

shark catch by tuna longliners operating within tRFMO

jurisdictions to understand overall impacts to overexploited shark

populations, but this was not the goal here. Instead, we sought to

identify high risk interaction areas, which do not equate to shark

mortality. Different handling and release practices ultimately

determine the fate of captured sharks, and though many captured

sharks are indeed landed or discarded dead (resulting in mortality),

many are discarded alive. At-vessel and post-release survival from

pelagic longline gear is highly variable across species, but can be as

high as 100% (e.g., tiger sharks [Galeocerdo cuvier]; Gallagher et al.,

2014). Recent shark non-retention and mitigation management

measures adopted by tRFMOs have served to increase discard rates

for live captures (Poisson et al., 2016), though overall rate of

interactions with shark species may remain constant. These

nuances cannot be ascertained by our approach, though

identifying risk hotspots for all fishing interactions is particularly

important for threatened species for which even low levels offishing

can drive populations towards extinction.
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