

Is FAD fishing an economic trap?

Effects of a seasonal closure on the IO purse-seine tuna fishery

Guillotreau P.¹, Antoine S.², Capello M.¹, Dagorn L.¹, Dupaix A.¹, Dissou Y.³, Salladarré F.⁴, Tidd A.¹

- 1. MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, France
- 2. Seychelles Fishing Authority (SFA), Seychelles
- 3. University of Ottawa, Canada

marbee

4. LEMNA, Nantes University, France

IOTC FAD WG online meeting, 4-6 October 2023

1) Issue, context and literature

French PS vessel account

Context: IOTC Res. 23/02 setting a 72-day moratorium on FADs from 2024

- ➢ Is it profitable for the PS fleet fishing in the IO?
- What are the economic consequences for some tunadependent CPCs?
 - → 'Economic trap hypothesis' for both PS fleets and tuna-dependent CPCs

Economic effects of dFAD limitations

- Escalle et al. 2017: 6-month FAD moratorium EU_PS fleet/AO+IO = -600/-1,800 t per boat per year (-12%/-37% of yearly catches)
- *Holmes et al. 2019*: 3-month closure in WCPO EEZ = -\$ 250,000 per trip + lower revenues (-15%) for SIDS (e.g. 85% of public revenue in Tokelau, *Bell et al. 2021*)
- Ovando et al. 2021: only limited FAD removal (-15%) could produce benefits greater than costs (MSY Bigeye → 2/3 of dFADs removed → +\$ 1.9 bn for LL profit, -\$3.3 bn from PS SKJ)

2) Data and empirical approach

French PS fleet fishing in IO 2012-20 → Catch & effort data by fishing trip + economic data (# 1,217 obs.)

3) Proportion of FAD sets (%)

2) Distribution 2012-20 of catch by species (t)

2) Data and empirical approach

Gradient Boosting Model (GBM) + dynamic Computable General Equilibrium Model (CGEM)

3) Results and discussion

FE models estimated by S.U.R.

	(1)	(2)	(3)	(4)	(5)
	FAD sets	FSC sets	SKJ catch	YFT catch	MIX catch
Number of buoys	5.07***	-5.58***			
	(1.287)	(1.536)			
Squared nb of buoys	-0.25***	0.32***			
	(0.075)	(0.091)			
SSB	1.29	0.95			
	(0.991)	(1.230)			
DMI	0.26*	0.04	-0.22*	-0.43**	0.01
	(0.139)	(0.171)	(0.121)	(0.179)	(0.113)
Number of FAD sets			1.02***	-0.31**	1.14***
			(0.179)	(0.152)	(0.162)
Squared Nb FAD sets			-0.08**	0.11***	-0.09**
			(0.039)	(0.036)	(0.037)
Number of FSC sets			-0.01	0.40***	-0.04
			(0.027)	(0.106)	(0.027)
Squared Nb FSC sets				0.07**	
				(0.033)	
Nb of days at sea			-0.01	1.86**	-0.12
			(0.098)	(0.780)	(0.088)
Squared days at sea				-0.30**	
				(0.128)	
Constant	-39.25***	12.20	2.65***	1.57	2.17***
	(14.810)	(18.537)	(0.282)	(1.162)	(0.313)
Fixed-effects					
Year	Х	X	X	Х	X
Month	X	X	X	X	X
Vessel	Х	Х	X	Х	X
Cov		.0***			
		025)			
Pseudo-R ²	0.23	0.26	0.47	0.34	0.50
Pseudo-likelihood			-1697.18	-5490.33	-1661.17
Observations			1,217	1,217	1,217
			,	,	,

Robust standard errors in parentheses, *** p < 0.01, ** p < 0.05, * p < 0.1

3) Results and discussion

rate on test data set = 0.87

Impact of 3 FAD management scenarios on the PS French fleet profit (GVA per day) (values predicted by the FE and RF models)

REF: BAU case

S1: Nb buoys /2

S2: 72-day FAD ban <u>with</u> reallocation of effort on FSC

S3: 72-day ban <u>without</u> reallocation of effort on FSC

3) Results and discussion

Scenario 3: -12% tuna supply & exports for the Seychelles cannery (IOT Ltd, Thai Union Group, ~2,000 jobs)

Dynamic CGEM

Many impacts along the supply chain: *Fishing, stevedoring , bunkering, shipchandling, air travels (crew), communication, port dues, fishing rights fees, canning plant, etc.*

All the demand drivers (C,G,I,X) are impacted:

Keynesian multiplier, Leontief multiplier, Twin deficit...

4) Conclusion and next steps

- Any seasonal closure of dFAD fishing would decrease the catch of skipjack and mixed tunas and may increase the catch of large yellowfin on free schools
- Economic trap of PS fleet between greater efficiency of dFADs, economies of scale and the overfished yellowfin tuna in the Indian Ocean (trade-off constrained by a quota limit of yellowfin)
- Entangled interests between DWFN fleets and some tuna-dependent SIDS (cannery supply, port activities, fishing rights, fish exports, etc.), but Seychelles case ≠ Maldives, Indonesia or Iran

NEXT STEPS

- Operating model showing the interactions between fleets (PS, LL, P&L, other artisanal gears): who wins, who loses?... Competition between PS and P&L tuna on EU tuna markets (MSC label). Is there any optimal number of FADs?...
- Other benefits of restricting FAD use on marine ecosystems: environmental valuation of avoided costs (bycatch of silky sharks, costs of beaching, ghost fishing, etc.)
- > Multi-Criteria Analysis of conservation measures for more sustainable fisheries

THANK YOU FOR YOUR ATTENTION

