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1 Background

For the current suite of IOTC MSE work, the general approach to conditioning the required
set of Operating Models (OMs) has been to use the species-specific stock assessment model
structure as the basis for the OMs. A grid of model runs, formulated using a set of alternative
assumptions and inputs, is constructed around the base case assessment model. In [1] an
alternative and complementary approach was outlined where, instead of the assessment being
the basis for conditioning, a suite of possible prior states of historical dynamics and current
status are defined. The available, but mostly the more recent, data are included within
an estimation scheme built on emerging Approximate Bayesian Computation (ABC) and
Synthetic Likelihood (SL) concepts [2, 3]. The aim is to generate a distribution of current
abundance, mortality and status that is consistent with both the available data and the suite
of possible prior states of nature defined beforehand, some of them informed by the stock
assessment results. This set of recent dynamics can then be used to initialise the OMs used
to project the stock into the future, and test the candidate MPs.

A stock assessment, in this context, can be viewed as our attempt to do both of these
things at once. Ideally, this is arguably a sensible option; however, it is not always success-
ful. The ongoing struggles with the Yellowfin tuna stock assessment, and the conditioning
of OMs based upon it, outline this problem: what if you cannot adequately reconcile the
data, assessment model structures, and the resultant estimates of current status and future
projected dynamics? In [1] we proposed an alternate approach arguing that using a stable,
agreed and robust stock assessment was a natural first option, but that the ABC approach
was a potentially viable - and scientifically pragmatic - alternative approach if the assessment
route was unsuccessful.

In this paper we condition the Indian Ocean Albacore tuna OM that mirrors (biologically
and structurally) the most recent stock assessment, utilises length composition and longline
CPUE data, and is able to explore a wide range of stock status prior hypotheses, many of
them built on information from the results of the stock assessment. The aim of this work was
to cover the same range of factors/hypotheses covered in the previous suite of OMs (REFS):

1. Use of - and generation of data from - alternative CPUE series

2. Influence of size data

3. Impact of assumed catchability increases in LL fleets

4. Uncertainty in steepness and natural mortality

5. Uncertainty in recruitment variability

2 Methods

ABC [2] and SL [3] methods can be used to define an approximate distribution for the param-
eters θ we are interested in; subsequently, we obtain an approximate distribution for all the
variables that depend on those parameters. Where they differ from more classical frequentist
or Bayesian methods is how the data, D, are included. Classical methods posit a likelihood
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for the data, given the parameters: ` (D |θ); for a Bayesian analysis we then define a prior
distribution, π(θ) to then obtain the posterior distribution of the parameters given the data:

π (θ |D) =
` (D |θ)π(θ)

π(D)

The ABC approach relaxes the requirement for a specific likelihood (i.e. data generating
probability model) to the idea of a discrepancy statistic that measures the difference between
the observed data and the model-derived process variables, X, that relate to it. The simplest
example would be some distance metric ρ(D,X) whereby we require that this distance between
the observed data and our prediction is less than some value δ > 0 (i.e. assumes uniform error
on a radius δ). Values whereby ρ(D,X) ≥ δ receive zero probability mass and, in a sampling
scheme, would never be accepted. This simple approach will not necessarily work for certain
types of data, especially the types we often have in fisheries contexts, but there are natural
generalisations of this simple discrepancy idea that can be applied here.

Another very useful thing we can easily embed within a sampling scheme is a set of infor-
mative priors on various elements of the process variables, X, which effectively imply a prior
on the key parameters, π(θ). This means we can also define informative priors for the various
stock status variables (MSY ratios, SSB depletion etc.) and include the most relevant recent
data, without having to fully model the historical dynamics and data and define appropriate
likelihoods for these data. If we are departing from the stock assessment approach, this im-
plies that we have not really succeeded in being able to robustly estimate the distribution of
these key status variables. This approach takes a step back and instead tries to define sce-
narios (specifically distributional ones) for these variables at particular periods in time that
are consistent with previous assessment experiences and the data. In terms of likely data
sources, the two most obvious examples in tuna population models are the CPUE indices
of abundance, and the catch at length composition. For some examples we may also have
mark-recapture data (e.g. tropical tuna) or other data sources. These can be naturally added
to the algorithm, as long as the population and fishery model can generate observations for
them and a distance metric can be computed.

The population models and associated biological relationships will be very similar to the
stock assessment, given that they need to have the same structure as the existing OMs (which
we do not propose need changing at this stage). The main technical challenge is constructing
the discrepancy statistics for the data, and the sampling scheme to generate samples from our
approximate distribution of the parameter and population dynamic variables. We have moved
the technical details of how these are done to Appendix A to avoid an unnecessary amount
of technical exposition in the main body of the paper: what we are trying to demonstrate is
that we can get the variables we need for OM conditioning, using plausible status scenarios,
key data sets and emerging powerful statistical sampling techniques.

3 Albacore case study

The basis for the models and data explored in the Albacore example is contained in the most
recent stock assessment [4]. In terms of model structure, the model is setup as follows:
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� Annually structured but with four seasons and recruitment in a single pre-specified
season.

� No explicit spatial structure but with the same areas-as-fleets approach as the stock
assessment.

� Sexually-structured population dynamics driven by growth and selectivity-at-age (selectivity-
at-length is not sexually structured by fishery).

� Time-frame for conditioning is 2000 – 2020, so as to model all surviving cohorts.

� Model considers 4 long-line fleets, 1 “other” fleet and 1 purse seine fleet. The 16 seasonal
long-line fleets are condensed into 4 fleets, each with 4 seasons of catch, effort and size
data (e.g. LL1 merges fisheries 1 to 4 in the assessment).

� A Beverton & Holt steepness-unfished recruitment stock-recruit relationship is used
with lognormally distributed deviations constrained by a pre-specified σr = 0.3, as per
the assessment [4].

The stock assessment model fits to the disaggregated length-frequency data and the seasonal
CPUE data from the longline fleets. The initial approach taken in the ABC albacore modelling
was not to fit to disaggregated length frequency data, which is very variable and noisy from
season to season and year to year. Instead, we aggregate the size data across years and
seasons and fit to a mean size frequency data set per fishery. The reason behind this choice is
to obtain a representative selectivity relationship for each fishery, and give a clear indication of
the “average” size structure in the fisheries over the time period. Additionally, it purposefully
reduces the influence of the size data on the overall population abundance scale, which is a
known issue already considered in the previous OM grid.

3.1 Stock status priors

These status priors are a key feature of the OM conditioning methodology we propose. To
constrain both absolute and relative abundance, as well as fishing pressure we explore a range
of possible types (and parameterisations) of status prior. The following four general types
are explored (in different forms):

1. Relative SSB: the most general status variable (SSBy/SSB0) - for any range of years
we allow a prior mean and SD

2. SSB MSY ratio: the ratio of SSB to that at MSY (SSBy/SSBmsy) - for any range of
years we allow a prior mean and SD

3. Harvest rate MSY ratio: the ratio of fleet-averaged harvest rates to MSY levels - for
any range of years we allow a prior mean and SD

4. Overfishing probability: if the harvest rate exceeds the level at MSY a half-normal
penalty can be applied to penalise against trajectories with very high harvest rates
(and likely will crash early in the projections)
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The status priors are based on information reported in the most recent stock assessment [4].
Different combinations of status priors are employed for different OM conditionings to explore
a balance between letting the data inform the model (w.r.t. abundance indices), and forcing
the OMs to adhere closer to the assessment outcomes. For relative SSB we define a prior for
the first year (2000) centered on 0.5 with a 95% prior CI of 0.3–0.7. For the relative SSB MSY
ratios we define a prior for the last two years (2019 and 2020) centered on 2.25 and 2 with an
SD of 0.35 for both. For the scenarios where we apply a prior on the harvest rate MSY ratios
for the first and last years (2000 and 2020), we assign a prior mean of 0.6 with an SD of 0.2
(so a prior range of around 0.2–1). These are used for scenarios where it is clear there is no
information in the abundance indices in relation to population scale. Applying these vaguely
informative priors penalises against scenarios where there is effectively no effect of fishing on
abundance, the population is very large and the abundance trends are recruitment driven.
When the overfishing probability penalty is applied - to avoid overly pessimistic individual
runs - it is applied for all years and where the probability of the overfishing ratio exceeding
2 is less than or equal to 0.05.

3.2 Covariant prior for steepness and natural mortality

A common, and fair, criticism of many stock assessments is that they often have fixed values of
both steepness and natural mortality. One of the main outcomes of this is that we effectively
fix the value of all MSY variables - especially the stock status ratios for both SSB and fishing
mortality [5]. The factorial grid approach tries to address this issue by exploring a combination
of discrete values for both parameters. A major drawback of this approach is that it is not
a priori able to avoid combinations of these two parameters that result in pathologically
over/under resilient stock-recruit relationship dynamics. More specifically, for the IOTC a
common issue seems to be combinations that are overly pessimistic, resulting in population
trajectories that very quickly end up crashing [6].

Generally speaking, higher/lower values of steepness/natural mortality will tend to result
in similar MSY ratios; high/low values of both are often overly optimistic/pessimistic. We
attempt to utilise this inter-relationship to construct a covariant joint prior for these two
parameters from which we will sample in the ABC-MCMC algorithm outlined later on. The
algorithm proceeds as follows:

1. Define marginal distributions for both h and M

2. Calculate SSB depletion, ∆̃, at MSY for expected values of h and M

3. Simulate h and M from their marginal distributions

4. Define a tolerance interval ε

5. Only accept combinations of h and M within ε of ∆̃

6. Calculate correlation coefficient in retained bivariate samples

This makes it possible to then define a bivariate normal distribution for h and M using
the marginal variances and the estimated correlation coefficient from the algorithm described
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above. This then gives us a distribution of values from both h and M with the required
marginal variances and a covariant structure that ensures we obtain internally consistent
(with respect to MSY ratios) samples that are neither too optimistic or pessimistic relative
to the expected MSY ratios.

For this example we take mean values of h = 0.8 for steepness and annual M = 0.3 as per
the most recent stock assessment [4]. We calculate an SD for steepness that results in a prior
95% CI of 0.7–0.9; for M we define a 5% CV so that the prior 95% CI is 0.27–0.33. Using
the correlation estimation algorithm described above with a tolerance of ε = 5% we obtained
a correlation coefficient of -0.58.

3.3 OM scenarios

As stated previously, one of the main intentions of this work is to at least be able to cover
all the main axes of uncertainty covered in previous Indian Ocean Albacore OM conditioning
[6]:

1. Steepness and natural mortality: covariant joint prior now integrated into the ABC-
MCMC algorithm

2. Recruitment variance: alternative OM conditioning that now actively estimates the
recruitment variance, σ2r , with an informative prior with mean 0.3 and prior 95% CI of
0.2–0.5

3. Weighting of size data: the issue was their influence on the estimates of population scale.
By aggregating the size data across years and seasons, and establishing a conservative
weighting strategy in the ABC discrepancy function, we have effectively removed this
as an issue

4. Longline catchability trends: we explore a 1% per annum increasing trend in the longline
CPUE series in alternative OM conditioning runs

5. CPUE series: we explore using the seasonal CPUE indices from longline fleets 1 and 3 -
not jointly but separately to avoid data conflicts that will not be resolved without more
complex-spatially structured models

4 Results

The key OM stock status variables we summarise are relative SSB, ∆y = SSBy/SSB0,
SSB relative to MSY, ∆̃y = SSBy = SSBy/SSBmsy, and harvest rate relative to MSY,
Hy = Hy/Hmsy. The seven different OM conditioning scenarios thatr have been developed
are as follows:

� R1: Uses CPUE from LL fleet 1 with SSB priors but no harvest rate priors

� R1a: Uses CPUE from LL fleet 3 with SSB and harvest rate MSY priors

� R1b: Uses CPUE from LL fleet 1 with SSB and overfishing probability priors
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� R2: Same as R1 but σ2r is estimated

� R2a: Same as R1a but σ2r is estimated

� R3: Same as R1 but assumes 1% increasing catchability trend

� R3a: Same as R1a but assumes 1% increasing catchability trend

Before outlining the results it will be helpful to focus on the important qualitative differ-
ences between the OM scenarios. Table 4.1 summarises the status of each of the seven OM
conditioning scenarios described above. Scenario R1 is arguably where the data - specifi-
cally the CPUE abundance indices - have the most influence of both population scale and
abundance, biomass and mortality trends. Scenarios R1a, R2a, and R3a are all penalised
to be “close” to the high-level stock status summaries coming from the stock assessment
[4] - in particular the harvest rate MSY ratio priors in the first and final years are applied
in these cases. The main reason for this lies in the lack of information in the CPUE from
fleet 3 in relation to population scale, and an apparent production function emerging from
the models. For these runs we intermittently obtained very high abundance samples (i.e. a
very skewed right-hand tail in the R0 posterior distribution) where the trends in abundance
were just as easily explained by recruitment variability versus fishing pressure. As a result,
the relative SSB estimates are still concordant with the status priors but fishing mortality is
effectively zero for these samples. By applying not just the biomass-based status priors but
additionally the harvest rate MSY ratio priors (scenarios R*a), we avoided these pathological
high-abundance runs because the harvest rates could not reduce to such low levels a priori.
This is not, perhaps, surprising given the apparent lack of correlation between abundance
trends and overall catch biomass - this is quite different for the fleet 1 CPUE and the results
attest to this fundamental difference between the two fleet CPUE indices. For the R1b run
the overfishing probability penalty was applied due to the appearance of high levels of over-
fishing in certain runs in the last 5 years of the model time-frame. As already stated, if we do
not penalise against these runs they are likely to result in rapid declines in abundance in the
first years of the projections at current catch levels. As can clearly be seen from Table 4.1
applying this prior does not really change the biomass status results, but it does avoid the
high levels of overfishing in the final conditioning years. What this overfishing penalty does
is to increase the correlation between the various parameters and avoid those combinations
that result in very high overfishing rates. The 1% p.a. increasing trend in catchability sce-
narios (R3 & R3a) results in slightly lower median biomass ratios by the end of the modelling
time-frame, stronger overall declines in abundance over the time-frame, and most clearly the
lowest/highest quantiles of the status ratios - depending on the ratio and what quantile is
pessimistic relative to the median - are lower/higher for these scenarios.

4.1 Fits to the data inputs

The main difference in the scenarios is with respect to which CPUE data is being used:
quarterly abundance indices from fleet 1 or fleet 3. In both cases we assume a seasonal
structure to the catchability parameters - this results in clear improvements in the fits to the
data in both cases, but especially for the fleet 3 scenario. Clearly from Table 4.1, the choice
of CPUE series has a clear effect on all the status levels and trends. However, the fits to the
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data are not meaningfully affected by either estimating σ2r or the assumption of a 1% annual
increasing catchability trend, so we only graphically display the fits to the CPUE data for
scenarios R1 and R1a in Figure 4.1.

For fleet 1 the abundance trends are arguably best captured in seasons 1 and 4 with very
few observations outside the 95% predictive intervals. For fleet 2 seasons 1, 3 and 4 seem to
be the best explained with the model struggling to fully capture the up and down trend in
season 2. The difference is not great, but in general the OMs seem to fit better to CPUE
from fleet 1 versus that from fleet 3.
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Figure 1: Fits to quarterly CPUE data (magenta circles) in terms of approximate posterior
median and 95% credible interval (blue full and dotted lines) for fleet 1 (left) and 3 (right).
In both cases seasonal catchability parameters are estimated.

As with the CPUE series scenarios, the fits to the size data are not obviously different when
estimating σ2r or including catchability trends, so in Figure 4.2 we compare the fits to the size
data for scenarios R1 and R1a only. For all the five fisheries with size data (aggregated across
seasons and years) we see an acceptable fit to the length observations. Generally speaking, the
fits in scenario R1 (fleet 1 CPUE) are moderately better than those for R1a (fleet 3 CPUE). In
both scenarios the length data are the same, but Figure 4.3 shows the comparative selectivity-
at-length relationships for both scenarios. There are some subtle differences for 2, 3 and 4 but
no major ones - this suggests that the differences in the fit to the length data is attributable
at some level to the other key population dynamic and fishery variables in the model.

4.2 Estimates of σ2
r

Runs R2 and R2a both explored the estimation of the recruitment variance parameter via
the conjugate prior approach outlined in the Appendix. The informative prior (assumed
inverse-Gamma) parameters where chosen to give a prior mean of 0.3 (value assumed in the
assessment) and 95% credible interval between 0.2 and 0.5. The aim was not to definitely
estimate this parameter but to explore, when given the freedom to deviate from the assumed
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value, if there was strong information on it in the data. The prior and posterior distributions
for σ2r for both these OM scenarios can be seen in Figure 4.4. For the R2 scenario the posterior
median (and 95% credible interval) was 0.41 (0.26–0.63); for the R2a case it was 0.31 (0.23–
0.47). For the R2 scenario the posterior estimates of σ2r were higher than assumed in the
assessment or the prior distribution employed herein. However, there is considerable overlap
in the prior and posterior distributions and the impact on the key high-level status summaries
of this increase in recruitment variability was minimal (see Table 4.1). For the R2a scenario
there was little to no change in the overall posterior median relative to the prior - the only
obvious change was an increase in the precision of σ2r in the posterior. This is a clear signal
that the data in this scenario are clearly very compatible with the underlying assumed value
of 0.3 in the assessment.

5 Discussion

This paper outlines a full conditioning of a suite of OMs for Indian Ocean Albacore based
on ideas originally raised in [1] and further explored in [9], with respect to methods for
conditioning OMs that are not directly built upon the stock assessment model structures
and output. The approach uses much, if not all, of the same demographic and life-history
parameters the assessment does, and often key subsets of the same data if they are required to
be simulated in the OMs. It also includes key prior information on current/recent/historical
status variables (MSY ratios, depletion etc.) to help estimate the main abundance, biomass
and mortality variables required in the OMs. There is already an IOTC precedent for these
type of approach - the original Skipjack tuna OM was conditioned in a similar fashion [10]
using the methodology outlined in [11].

A number of alternative formulations for the OM have been explored, so that the original
uncertainty grid employed for this stock is effectively included by the algorithm. Incorporating
the correlation among two important variables in the grid, h and M , allows this OM to avoid
generating population trajectories that could not be employed for MSE projections. Adopting
a simpler model structure has allowed to better understand the interaction between data
sources, again to ensure the OM obtained is fit for purpose.

The methodology outlined here appears to provide a solid foundation for an OM for this
stock. Tests of the candidate MPs are being currently carried out.

6 Acknowledgements
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OM scenario ∆2000 ∆2020 ∆̃2020 H2020

Prior 0.5 (0.3–0.7) n/a 2 (1.3–2.7) 0.6 (0.2–1)
R1 0.76 (0.61–0.97) 0.41 (0.22-0.56) 1.9 (1.02–2.58) 1.13 (0.5-3.78)
R1a 0.56 (0.4–0.72) 0.48 (0.3–0.69) 2.01 (1.42–2.61) 0.68 (0.33–1.38)
R1b 0.74 (0.61–0.9) 0.42 (0.24–0.54) 1.98 (1.16–2.49) 0.98 (0.46–2.4)
R2 0.71 (0.57–0.84) 0.41 (0.21–0.55) 1.91 (0.99–2.53) 1.22 (0.45–3.57)
R2a 0.56 (0.41–0.72) 0.47 (0.28–0.71) 2.03 (1.3–2.54) 0.65 (0.34–1.4)
R3 0.78 (0.6–0.91) 0.38 (0.15–0.52) 1.77 (0.7–2.44) 1.4 (0.58–5.06)
R3a 0.63 (0.48–0.77) 0.42 (0.25–0.59) 1.94 (1.23–2.5) 0.71 (0.35–1.45)

Table 1: Overall OM conditioning status summary in terms of the approximate posterior
median and 95% credible interval in brackets. Note the harvest rate MSY ratio is only applied
in the Rxa scenarios; the overfishing probability is only applied for the Rxb scenarios.
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Figure 2: Fits to aggregated length data (magenta circles) in terms of approximate posterior
median and 95% credible interval (blue full and dotted lines) for fleet 1 (left) and 3 (right).
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Figure 3: Selectivity (assumed double normal) relationships-at-length for each fishery with
length data: blue line is the median and the dotted blue lines are the 95% credible intervals.
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Appendix A

Approximate McMC ABC algorithm

There are a wide variety of possible algorithms that can be used to generate a sample from the
approximate posterior distribution [2, 3, 7]. Given the relative complexity of our likely suite of
models, we consider that Algorithm D from [7] is the most applicable. It is basically an ABC-
configured Metropolis-Hastings accept-reject algorithm as used in classic Bayesian McMC
contexts. At time t, we have our joint parameter and process variable state Ξt = {θt, Xt}.
We generate a proposal for a new parameter vector θ′ (and X ′ = f(θ′)) from the pre-specified
transition kernel q(θt,θ

′). We define the following acceptance probability for Ξ′ = {θ′, X ′}:

α(Ξt,Ξ
′) = min

(
1,
π(D,X ′)q(θ′,θt)π(θ′)

π(D,Xt)q(θt,θ
′)π(θt)

)
and generate a random variable u ∼ U [0, 1]. If α(Ξt,Ξ

′) > u we accept the proposal and
Ξt+1 = Ξ′; if α(Ξt,Ξ

′) ≤ u we reject the proposal and set Ξt+1 = Ξt. By choosing a symmetric
normally distributed transition kernel q(θt,θ

′) = q(θ′,θt) this term disappears from the
acceptance rate calculations. The prior distribution, π(θ), is for the estimated parameters.
The π(D,X ′) term is our likelihood analogue or discrepancy function - it includes both the
observed data (catch length composition, abundance indices) and our additional information
on the key status variables contained in the suite of process variables, X (e.g. MSY and
depletion ratios). The Markov chain transition kernels q() are defined to use the random walk
approach for sampling the posterior surface. To make the McMC algorithm more efficient we
implement a Metropolis-within-Gibbs sampling approach [8], where parameters are grouped
together depending on expected correlation. Each block is updated using the Metropolis-
Hastings algorithm, conditional on the parameters not included in that block being fixed at
their most recent value. After doing this for each block of parameters (the Gibbs sampling
part of the algorithm) we have fully updated all the parameters of the model and repeat the
same process many times. Random walk variances are adjusted to achieve acceptance rates
around 40% - generally considered as optimally efficient [8]. A suitable burn in period is used
to get the sampler moving on the surface before we decide to keep the samples, and these
are then thinned to remove autocorrelation in the Markov chain. When this is done we have
1,000 samples from the approximate posterior distribution of interest and we use the Geweke
statistic [8] to test for non-convergence of the Markov chains.

To augment the MCMC algorithm to accommodate the sampling of both h and M we first
define ξ = {h,M} and an extended parameter vector θ̃ = {θ, ξ}. We factorise the extended
approximate posterior as follows:

π(X̃,D) = π(X,D | ξ)π(ξ)

For the sampling algorithm we first sample ξ from the joint prior π(ξ) and, conditional on
this sample, we then apply the ABC algorithm described above to sample from π(X,D | ξ).
This two-stage algorithm then obtains a sample from the augmented approximate posterior
distribution of θ̃. This approach thus imposes the joint prior distribution but also preserves
the correlation between the steepness, natural mortality and all the other model parameters
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in the overall MCMC sample vector.

Resampling recruitment variance

We additionally explore the estimation of the recruitment variance, σ2r , using conjugate priors.
We assign a Gamma prior to the precision (the inverse of the variance) with prior parameters
αr and βr. Given the recruitment deviations γy ∼ N(0, σ2r ) , the (conditional) posterior of
1/σ2r is also a Gamma distribution with parameters:

α̃ = αr + ny/2,

β̃ = βr +

ny∑
i=1

γ2i /2

where ny is the number of years for which recruitment variations are estimated. So to
generate a sample of σ2r , conditional on the γy, we sample a precision variate from this
Gamma distribution defined by α̃ and β̃ and simply invert it to obtain the next sample of σ2r .

Construction of discrepancy statistics

For the CPUE based abundance index, in the IOTC MSE context CPUE is the key candidate
MP data input so we are going to have to simulate the CPUE data in the OMs (which
requires catchability and variance parameters). For this reason we actually used a modified
log-normal distribution for these data. The data were log transformed and standardised to
have mean zero (this removes the need for estimating catchability at estimation run time).
The catchability can be efficiently estimated post-estimation so this treatment doesn’t cause
issues later on in the OMs. The overall variance in the distribution was estimated by fitting
a LOESS smoother to the log-transformed index and using the residual SD in the likelihood
- in this regard this part of the discrepancy function is closer to SL than ABC.

For the length composition data we took a nonparametric approach using the concept of
the Kullback-Leibler divergence (KLD, [12]): this is a measure of the divergence between in
this case a discrete probability distribution Pi, relative to a reference distribution Qi. It is
defined as follows:

DKL(P ‖ Q) =
∑
i

Pi ln

(
Pi

Qi

)
≥ 0

with the convention that
lim

x→0+
x ln(x) = 0.

The KLD serves as a potentially very useful option in the ABC sense for the following
reasons:

1. It is nonparametric so the underlying generating distribution of the length data does
not need to be assumed
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2. It reduces to zero when Pi ≡ Qi and increases the further Qi diverges from Pi - by
defining Pi as our observed data and Qi our model prediction it makes an obvious
candidate as a discrepancy measure of lack of fit

3. The units are interpretable. For natural logarithms the units are called nats - 1 nat
is basically a difference in probability of 1/e. This means we can set tolerance levels
for how much divergence we are willing to accept in our predicted data that have a
grounding in information theory

In practice we use the negative KLD - it reaches a maximum at perfect prediction of the
data and decreases as this gets progressively worse, much like a likelihood does. If we define
pf,l as our fishery-specific observed (annually and seasonally aggregated) length data and p̂f,l
as our predicted length composition this part of the discrepancy function can be defined as

DLF = −
∑
f

∑
l

pf,l ln

(
pf,l
p̂f,l

)

We also set an effective maximum KL value of 0.8, so that no proposals of new parameter
vectors are accepted if the KL value is above this maximum. The rational for a value of 0.8
is that this would roughly align with the upper confidence level of the KL value if the length
data were truly distributed around the observed distribution with a multinomial effective
sample size of 20.

For the CPUE data we assume an effectively lognormal distribution for the discrepancy
function. For seasonal catchability models we calculate the catchability coefficient as follows:

ln qs = Ey
[
ln
(
Iy,s/X̂y,s

)]
and X̂y,s is the seasonal exploitable biomass. For the scenario with a constant catchability
across all seasons it is calculated as follows:

ln q = Ey,s
[
ln
(
Iy,s/X̂y,s

)]
The standard deviation for the CPUE discrepancy is taken by fitting a LOESS smoother

to the seasonal log-transformed observed CPUE data and calculating the standard deviation
in the residuals. The rationale being we want an overall (i.e. both observation and process
error) measure of likely variation in the observed CPUE, not an observation only estimate.

For the status variables (MSY and depletion ratios) we simply defined quadratic kernels for
the log-transformed variables averaged over the relevant time frame:

K(x, y | ε) =
‖ x− y ‖2

ε2

In this case the tolerance for each kernel ε can basically be interpreted as twice the standard
deviation of a normal distribution. The summation of the CPUE and length composition
discrepancies and the status prior kernels makes up the overall discrepancy function π(D,X).
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