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ABSTRACT

Abundance indices for Katsuwonus pelamis (SKJ) in the Indian Ocean
were derived from the European purse seine CPUE series (2010-2021) for
fishing operations made on floating objects (FOBs). GAMM and GLMM
approach were used to standardize the SKJ catch per floating object set.
The GLMM approach has been applied to compare the outputs when using
an alternative modelling approach and both approaches have been compared
to nominal annual CPUE time series. To account for potential effort creep,
additional explanatory variables have been included in the models. FOB sets
have been classified to non-followed FOBs (i.e., randomly encounter FOBs
for which the purse seiner has no previous information) and followed FOBs
with three distinct classes of tracking buoys: without an echosounder, with a
one-frequency echosounder and with a two-frequency echosounder. Densities
of instrumented buoys at the 1∘×1∘-month scale and vessel capacity have also
been included as explanatory variables. The time of the set relative to local
sunrise has been estimated by comparing logbook catch-effort data with VMS
vessel trajectory data and this variable has been integrated in the analysis to
account for changes in fish aggregations around the FOBs over the course of
the day. Results of both GLMMs and GAMMs indicate an initial decrease
in standardized skipjack catch per set over the period 2010-2012 followed
by an increase in standardized skipjack catch per over the period 2012-2021.
This paper represents an update of that presented at the data preparatory
meeting with the following major changes: division of followed buoys into
categories based on echosounder technology, inclusion of Spanish data from
2010-2012 and inclusion in GAMM models of an interaction between year
and follow/echosounder tracking buoy categories.

1 Introduction

This paper details the methodology and results for the standardization of Indian Ocean
skipjack (SKJ) catch per purse seine floating object (FOB) fishing set (hereafter referred
to as “CPUE standardization” for simplicity) using data from the EU (Spanish & French)
fishing fleet over the period 2010-2021. Major innovations with respect to previous
standardization efforts include:

• Inclusion of new predictor variables related to the local time of day of fishing
sets, fishing on not-followed vs. followed (a.k.a. owned) dFADs and the number of
frequencies of echosounder buoys for followed dFADs

• Corrections to the methodology used to calculate (EU) dFAD buoy densities on
1∘ ×1∘-month strata to both produce a more representative estimate of density and
account for the water area of 1∘ × 1∘ grid cells
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• The use of both GLMMs and GAMMs to standardize CPUEs
• Presentation of two theoretical approaches to developing models for SKJ CPUE

standardization, one involving a single model for SKJ catch per set and the other
combining two models, one for total catch and the other for species composition.
Results are presented for the first of these, whereas the second is presented as a
perspective for future work this year or the following

• Evaluation of two approaches to predicting the standardized CPUEs, one based
on the approach that has been used previously of averaging predictions over space
and the other based on weighting spatial and temporal averaging by the average
amount of fishing activity in each spatio-temporal strata

Details regarding all of these innovations, and in particular the last two involving different
methodological approaches, are provided in the methods below. For this standardization,
we have not used the VAST methodology developed by Akia et al. (2022) primarily due
to time limitations and Sosthène Akia having completed his doctorate and moved onto a
new position. This methodology also provides fewer advantages when estimating a more
simple catch per set model.

This paper represents an update of that presented at the WPTT data preparatory meet-
ing in April 2023 with the following major changes:

• Division of followed buoys into categories based on echosounder technology
• Inclusion of Spanish data from 2010-2012 (previously excluded due to inability to

estimate set time)
• Inclusion in GAMM models of an interaction between year and follow/echosounder

tracking buoy categories

2 Methods

2.1 Catch-effort dataset

The catch-effort dataset in this study consisted of French and Spanish FOB sets over the
period 2010-2021. Due to issues with port sampling data for the Spanish fleet from 2020,
only catch-effort data for the French fleet were used for this year. The initial dataset
consisted of 59,092 FOB sets corresponding to 59,062 logbook entries. The dataset was
filtered to remove the following incomplete data entries:

• Null sets (3,577 sets)
• Fishing activities corresponding to multiple fishing sets for which estimating catch

per set, set time of day and whether or not sets were on followed dFADs is prob-
lematic (60 sets)

2



• Sets for which set time could not be determined based on comparison with VMS
data, either due to incomplete VMS data or closest VMS data being more than 20
km from the set position (2,209 sets)

After applying all of these filters, the final dataset used for building CPUE standardiza-
tion models consisted of 53,285 sets.

2.2 Major changes in the predictor variables used

In addition to the standard temporal, spatial, fleet and vessel identifier predictor vari-
ables included in previous standardization efforts (e.g., Akia et al. 2022), new predictors
have been included in this standardization effort:

• dFAD densities: The method for calculating 1∘ × 1∘-month dFAD densities has
now been standardized across fleets to be the average of (28-31) daily density
estimates over each month. Densities have been divided by the water area of each
spatial grid cell (in units of the area of a 1∘ × 1∘ grid cell at the equator) so final
densities have units of average number of EU dFADs per 1∘ × 1∘ grid cell at the
equator.

• Hours since local sunrise: The set time has been estimated for each set based
on identifying the closest VMS position for the corresponding vessel between 1
hour before sunrise and 1 hour after sunrise. No time was reported if the VMS
and logbook positions differed by more than 20 km. Estimated set times were
compared to local time of sunrise and converted to decimal hours to calculate the
number of hours since sunrise for the set.

• Set on followed dFAD: A boolean indicator of whether or not a FOB set was
on a dFAD being tracked by the fishing vessel. Previous work has shown that sets
on tracked dFADs (with echosounders) catch on average 10% more tuna than sets
on untracked dFADs (Wain et al. 2021).

• Number of echosounder frequencies used by the tracking buoy for sets
on followed dFADs: For followed sets, the number of echosounder frequencies
was determined based on tracking buoy model and converted into 3 classes:
(i) buoys without echosounders (i.e., zero frequencies), (ii) single frequency
echosounder buoys, and (iii) two or more echosounder frequencies. We decided
to use a plus class for two or more frequencies as buoys with more than two
frequencies are extremely rare.

• Follow+echo: The followed boolean variable and the number of echosounder
frequencies categorical variable were combined into a single categorical variable
with four levels, the three levels of the echosounder frequency variable plus a level
corresponding to dFADs that are not followed. This was the final categorical
variable used in models, the breakdown of which by level is shown in Table 1.

In addition to these variables, we also calculated the number of followed and non-followed
dFADs within 20 nm (37.04 km) and 250 km of the set position on the day of the set,
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Table 1: The number of sets in each of the follow+echo categories. Note that class
echo_2freq is a plus class used for all tracking buoys with two or more frequen-
cies.

Set category No. sets % sets
no follow 27435 51.5
no echo 902 1.7
echo_1freq 20197 37.9
echo_2freq 4751 8.9

however, last minute technical issues prevented us from using these variables in model
development. The distance of 20 nm corresponds roughly to the maximum distance at
which a dFAD can be seen from the vessel crow’s nest with binoculars and/or bird radar,
and, therefore, one would expect that the total number of (followed and non-followed)
dFADs within this area would impact dFAD catches. The distance of 250 km corresponds
roughly to the maximum distance a vessel can travel in one 12 hour time period, and,
therefore, one would expect the number of followed dFADs within this area to impact
dFAD catch rates. We expect to include these distance-based dFAD density variables in
future CPUE standardization exercises.

2.3 Modeling approaches

Three different CPUE standardization modeling approaches were considered, two of
which were carried out (the one-part GAMM and GLMM) and the third of which (the
two-part model) is presented as a perspective for future work: (i) a GAMM model, (ii) a
two-part model that combines a GAMM for estimating total catch per set and a second
model (GAMM or random forest) for estimating the proportion of catch that is SKJ,
and (iii) a GLMM model. We also present two different methodologies for generating
standardized predictions from GAMM models.
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2.3.1 One-part GAMM model
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Figure 1: Histograms of SKJ catch data in model training dataset before (a) and afer
(b) log transformation.

A single-component general additive mixed-effects model (GAMM) was also run with
log(𝑆𝐾𝐽 + 𝐶) as the variable to be predicted, where 𝑆𝐾𝐽 is the T3-corrected (Pianet
et al. 2000) catch of skipjack per purse seine FOB set. As for a small number of sets
(852 sets) zero SKJ catch was reported, a small constant, 𝐶, was added to SKJ catch
before taking the log. This constant 𝐶 was chosen to be 1 tonne as this amount is
generally used as the limit between null and non-null sets and was observed to produce
a response variable that was reasonably close to normally distributed before running
the model (Figure 1) and the resulting GAMM had acceptable model diagnostics (see
Results below).

Predictor variables for the GAMM model were longitude and latitude as a tensor product
smooth by quarter, year and month as a tensor product smooth cyclic in the month
dimension, including an interaction between year and follow+echo, density (in units of
mean daily number of buoys per 1∘ × 1∘ water grid cell at the equator), vessel capacity
(in units of m3) and hours since sunrise as individuals smooths, and vessel country and
follow+echo as non-smoothed, categorical predictors. Vessel identifier was included as
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a categorical random effect. The precise command used to generate the GAMM model
was:

gm = gamm(logskj~te(lon,lat,by=quarter,k=13) +
s(year,by=follow_echo,k=10,bs="cr") +
s(month,k=10,bs="cc") +
ti(year,month,k=10,bs=c("cr","cc")) +
s(density,k=12) + s(capacity,k=10) + s(hours_since_sunrise) +
country + follow_echo,

data=data,random=list(vessel_id=~1))

2.3.2 Two-part model

There are several issues with the above mentioned approaches linked to the use of T3-
corrected species composition data (Pianet et al. 2000). One is that this methodology
has long been identified as not entirely satisfactory in terms of its treatment of spatial
and temporal variability of catch composition (Duparc et al. 2018). The second is that
there is no simple way to incorporate a measure of the uncertainty in species composition
into the CPUE standardization process. As such, we propose an alternative approach
to developing standardization models for FOB catch that has two components:

1) A first component that estimates total tropical tuna catch per FOB set. This
component could be a GLMM or GAMM model of the type developed above.

2) A second component that estimates the proportion of catch per FOB set that is
a given species (in the case of this report SKJ). This component could be a beta
regression GAMM model or a random forest model similar to that developed in
Duparc et al. (2019).

There are several important potential advantages of this approach. One is that the re-
sponse variables for both components are very close to the raw data found in captain
logbooks and obtained by port sampling. The total tropical tuna catch per set is gen-
erally only slightly modified by post logbook corrections, with raising factors typically
being close to 1. It is considered to be known with high certainty. The second component
can be based directly on port sampling data and, therefore, the combined model will
naturally incorporate uncertainty in species composition due to limited port sampling.
Another advantage of this approach is that it naturally separates out the uncertainty due
to species composition into one component, allowing us to develop optimal models for
predicting species composition. As models for species composition improve, e.g., using
the random forest approach of Duparc et al. (2019) or future Bayesian spatio-temporal
auto-regressive models, these can be directly incorporated into the standardization pro-
cess.
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Though we had hoped to develop this two-component model for this year’s CPUE stan-
dardization, ultimately this was not possible. We therefore propose it as a perspective
for future standardization efforts.

2.3.3 GAMM Prediction/standardization approaches

CPUE standardization is based on predicting models on a standard spatio-temporal
grid, fixing fishing-efficiency- and catchability-related variables at standardized values,
and then averaging over space (and potentially other predictors) to obtain a standard-
ized estimation of abundance. We implemented two different approaches to this spatial
averaging process. The first is the approach that has traditionally been used based on
predicting catch in each 1∘ ×1∘-month strata occupied by the fishery and then averaging
(or summing) over 1∘ × 1∘ grid cells. This spatial averaging is based on the assumption
that set size is a true predictor of abundance in each strata. Though spatial thinning is
generally used to remove cells with very low fishing effort from the prediction step, this
method still has the disadvantage that it combines results from grid cells with potentially
highly varying sampling effort (i.e., numbers of fishing sets). Furthermore, catch per set
is only partially satisfactory as an estimator of abundance as it implicitly assumes that
the number of FOB fish schools is constant over space (so that abundance is entirely
reflected in set size), an assumption that is unlikely to be globally valid.

Due to these limitations, we also implement a second approach to developing a spatially-
averaged standardized CPUE. In this approach, the predictions in each 1∘ × 1∘-month
strata are weighted by the total number of fishing sets carried out in that grid cell and
the corresponding quarter (i.e., the weightings are stratified by grid cell-quarter) over
the entire time series of the data. As the number of sets times the average catch per set is
the total catch, this approach is akin to using total catch as an indicator of abundance,
except that the spatial distribution of fishing effort is standardized over time. This
method will place more weight on core fishing areas where most fishing effort occurs
relative to the previously described methodology.

Before implementing both standardization approaches, the spatial area to be used for
predictions was thinned to remove 1∘ × 1∘ grid cells with little fishing effort. Predictions
were only made for grid cells that collectively represent the smallest number of grid cells
accounting for at least 95% of the FOB fishing sets in each quarter included in the model
training data. The resulting modeling domains for each of the four quarters are shown
in Figure 2.

Variables related to fishing efficiency and catchability were fixed at their median values
from the training data set. Specifically, when calculating standardized CPUEs, dFAD
density was fixed at 16.3, vessel capacity was fixed at 2119 and estimated hours since
sunrise of the fishing set was fixed at 5.12. Predictions were made for all levels of cate-
gorical predictor variables vessel country and follow+echo for each space-time strata and
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then averaged across levels, weighting the resulting predictions by the overall prevalence
of each level in the model training data (e.g., fraction of Spanish versus French sets).

Predictions from the log-normal GAMM model were converted back to absolute catch
using the standard formula for estimating the expected value of a log-normal distribution
(Fletcher 2008):

𝜇𝑌 = exp(𝜇𝑋 + 𝜎2
𝑋
2 ) (1)

where 𝜇𝑋 is the expected value predicted by the GAMM model, 𝜎2
𝑋 is the residual

variance of the GAMM model (i.e., the scale parameter of the GAM summary outputs
plus the variance explained of the vessel identifier random effect LME model, which was
very small compared to the unexplained variance of the GAM model) and 𝜇𝑌 is the final
predicted catch.

When averaging GAMM model predictions to obtain annual standardized CPUEs, stan-
dard errors were combined via simple addition, equivalent to assuming that all uncertain-
ties in model predictions are correlated. Though undoubtedly inexact, this assumption
will lead to conservative estimates of uncertainty (i.e., larger than reality). This issue
can be corrected to obtain more exact uncertainty estimates using a bootstrap approach
based on the Cholesky trick (Andersen 2022), but it was decided that it was best to use
a more conservative approach.

Q1 Q2

Q3 Q4

Figure 2: The 1∘ × 1∘ grid cells used for model prediction for each quarter. The quarter
number is indicated at the top of each panel.

8



2.3.4 GLMM model

GLMM model development follows that already presented in Akia et al. (2022) with
the exception that the new predictor variables described above have been included in
the model. The selection of explanatory variables was conditional to: a) the F signif-
icance test, and b) the relative percentage of deviance explained by adding the factor
in evaluation (factors explaining more than 1% were selected). Once the variables were
selected, the final model included the variable “vessel” and the interaction year:quarter
as random effects to obtain the estimated index per year using a GLMM.

3 Results

3.1 GAMM

3.1.1 Model diagnostics and significance of predictor variables

GAMM models are actually implemented as the combination of a linear mixed-effects
(LME) model for estimating the random effect and a GAM model for estimating the
final model with smooths after removing the variance explained by the random effect.
Both of these components provide standard diagnostic plots, including a residuals versus
fitted plot for the LME model (Figure 3) and a QQ-plot for the GAM (Figure 4). Both
of these plots indicate an adequate fit of the data to the model assumptions.

All predictors included in the model, including smoothed, direct and random effects,
had a significant impact on SKJ catch per FOB set (see model summaries below and
Table 2).
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Fitted vs residuals of LME part of GAMM
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Figure 3: Fitted values versus residuals for LME part (i.e., random part) of GAMM.
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Figure 4: QQ-plot of GAM part (i.e., non-random part) of GAMM.
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ANOVA table for LME component of GAMM model (i.e., model for estimating random
effect):

numDF denDF F-value p-value
X 24 53227 1450.684 <.0001

Summary output from GAM part of GAMM model (i.e., non-random part of model):

Family: gaussian
Link function: identity

Formula:
logskj ~ te(lon, lat, by = quarter, k = 13) + s(year, by = follow_echo,

k = 10, bs = "cr") + s(month, k = 10, bs = "cc") + ti(year,
month, k = 10, bs = c("cr", "cc")) + s(density, k = 12) +
s(capacity, k = 10) + s(hours_since_sunrise) + country +
follow_echo

Parametric coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.60522 0.02552 102.098 < 2e-16 ***
countryspain 0.13489 0.03135 4.302 1.70e-05 ***
follow_echono echo -0.51069 0.11505 -4.439 9.06e-06 ***
follow_echoecho_1freq 0.05005 0.01123 4.455 8.41e-06 ***
follow_echoecho_2freq -0.09884 0.12449 -0.794 0.427
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Approximate significance of smooth terms:
edf Ref.df F p-value

te(lon,lat):quarter1 45.866 45.866 11.50 <2e-16 ***
te(lon,lat):quarter2 36.056 36.056 10.58 <2e-16 ***
te(lon,lat):quarter3 29.641 29.641 16.59 <2e-16 ***
te(lon,lat):quarter4 39.487 39.487 20.18 <2e-16 ***
s(year):follow_echono follow 8.663 8.663 111.69 <2e-16 ***
s(year):follow_echono echo 1.000 1.000 6.53 0.0106 *
s(year):follow_echoecho_1freq 8.380 8.380 97.63 <2e-16 ***
s(year):follow_echoecho_2freq 5.447 5.447 22.98 <2e-16 ***
s(month) 7.661 8.000 90.34 <2e-16 ***
ti(year,month) 65.020 72.000 14.21 <2e-16 ***
s(density) 5.836 5.836 19.06 <2e-16 ***
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Table 2: Summary statistics and p-values for fixed and smooth terms included in the
non-random part of the GAMM model.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.605 0.026 102.098 0.000 ***
countryspain 0.135 0.031 4.302 0.000 ***
follow_echono echo -0.511 0.115 -4.439 0.000 ***
follow_echoecho_-
1freq

0.050 0.011 4.455 0.000 ***

follow_echoecho_-
2freq

-0.099 0.124 -0.794 0.427

edf Ref.df F p-value
te(lon,lat):quarter1 45.866 45.866 11.502 0.000 ***
te(lon,lat):quarter2 36.056 36.056 10.576 0.000 ***
te(lon,lat):quarter3 29.641 29.641 16.591 0.000 ***
te(lon,lat):quarter4 39.487 39.487 20.181 0.000 ***
s(year):follow_echono follow 8.663 8.663 111.692 0.000 ***
s(year):follow_echono echo 1.000 1.000 6.530 0.011 *
s(year):follow_echoecho_1freq 8.380 8.380 97.634 0.000 ***
s(year):follow_echoecho_2freq 5.447 5.447 22.980 0.000 ***
s(month) 7.661 8.000 90.338 0.000 ***
ti(year,month) 65.020 72.000 14.206 0.000 ***
s(density) 5.836 5.836 19.063 0.000 ***
s(capacity) 3.111 3.111 14.748 0.000 ***
s(hours_since_sunrise) 4.549 4.549 592.017 0.000 ***

s(capacity) 3.111 3.111 14.75 <2e-16 ***
s(hours_since_sunrise) 4.549 4.549 592.02 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

R-sq.(adj) = 0.188
Scale est. = 0.72883 n = 53285

Checking to see if the basis dimensions chosen for the smooth effects are sufficient with
the gam.check function of the mgcv package indicated that this is the case for all smooths
(though, it should be noted that using the gam.check function with gamm models is
generally discouraged; in this case, the variance explained by the random vessel effect
is relatively small compared to the unexplained variance and therefore the results of
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gam.check should be reasonably reliable for our model).

3.1.2 Marginal effects of predictor variables
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Figure 5: Marginal effect of lon,lat on log SKJ catch per FOB set for each of the four
quarters.
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Figure 6: Marginal effect of year on log SKJ catch per FOB set by follow+echo category.
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Figure 7: Marginal effect of month on log SKJ catch per FOB set.
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Figure 9: Marginal effects of fishing-efficiency-related individual smooths on log SKJ
catch per FOB set. The red horizontal bars on the panels indicate the central
95% of the data of the corresponding predictor variable in the model training
data set.

Vessel carrying capacity had an increasing, approximately linear impact on log SKJ
catch per set, whereas dFAD density and set time hours since sunrise both had decreas-
ing effects (Figure 9; note the different scales on the panels). The impacts of spatial
(Figure 5) and temporal (Figure 6, Figure 7 & Figure 8) predictors on log SKJ catch are
more difficult to interpret.
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Table 5: Annual spatially weighted and unweighted standardized CPUEs and nominal
CPUEs for SKJ catch per FOB set in the Indian Ocean European purse seine
fleet. Values are in units of tonnes per set.

Year
Unweighted,

Mean
Unweighted,

2.5%
Unweighted,

97.5%
Weighted,

Mean
Weighted,

2.5%
Weighted,

97.5%
2010 17.60 14.09 24.32 18.57 15.09 25.35
2011 14.03 11.54 17.89 14.38 12.02 18.07
2012 12.93 10.79 15.66 13.13 11.14 15.65
2013 14.47 12.42 16.86 14.87 12.98 17.03
2014 15.91 13.73 18.44 16.59 14.56 18.89
2015 16.08 13.76 18.79 16.67 14.49 19.17
2016 17.95 15.52 20.77 18.62 16.36 21.18
2017 20.13 17.49 23.18 21.19 18.71 23.99
2018 22.85 19.98 26.15 23.85 21.20 26.84
2019 21.22 18.47 24.39 22.10 19.56 25.00
2020 18.91 15.97 22.41 20.01 17.11 23.42
2021 25.47 22.01 29.48 26.95 23.65 30.72

3.1.3 Standardized CPUEs
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Table 6: Quarterly spatially weighted and unweighted standardized CPUEs and nominal
CPUEs for SKJ catch per FOB set in the Indian Ocean European purse seine
fleet. Values are in units of tonnes per set.

Year Quarter Unweighted, Mean Unweighted, 2.5% Unweighted, 97.5% Weighted, Mean Weighted, 2.5% Weighted, 97.5%
2010 1 18.56 14.85 25.66 19.16 15.49 26.26
2010 2 14.45 11.37 20.28 14.67 11.73 20.30
2010 3 21.83 17.70 29.82 21.94 18.01 29.67
2010 4 16.95 13.65 23.32 17.39 14.15 23.71
2011 1 17.69 14.54 22.56 18.27 15.19 23.04
2011 2 10.93 8.81 14.21 11.10 9.10 14.19
2011 3 13.36 11.13 16.85 13.43 11.35 16.72
2011 4 13.78 11.44 17.42 14.14 11.89 17.68
2012 1 15.51 12.95 18.77 16.02 13.54 19.16
2012 2 11.29 9.23 13.92 11.45 9.54 13.89
2012 3 11.73 9.92 14.03 11.80 10.13 13.91
2012 4 12.69 10.69 15.23 13.02 11.11 15.45
2013 1 15.52 13.31 18.10 16.03 13.92 18.45
2013 2 13.46 11.34 15.97 13.66 11.71 15.92
2013 3 15.16 13.19 17.43 15.24 13.46 17.27
2013 4 13.91 12.06 16.04 14.27 12.54 16.25
2014 1 19.27 16.62 22.34 19.90 17.38 22.77
2014 2 12.65 10.66 14.99 12.84 11.02 14.94
2014 3 18.03 15.79 20.59 18.13 16.10 20.39
2014 4 14.25 12.42 16.35 14.62 12.91 16.56
2015 1 21.47 18.38 25.09 22.16 19.19 25.60
2015 2 12.14 10.13 14.53 12.32 10.46 14.50
2015 3 17.38 15.02 20.10 17.47 15.31 19.93
2015 4 13.49 11.70 15.54 13.84 12.15 15.75
2016 1 16.97 14.64 19.67 17.53 15.31 20.06
2016 2 17.88 15.18 21.05 18.14 15.66 21.00
2016 3 20.83 18.26 23.77 20.94 18.62 23.55
2016 4 17.13 14.95 19.62 17.57 15.53 19.89
2017 1 20.18 17.49 23.27 20.83 18.28 23.72
2017 2 17.44 14.93 20.38 17.70 15.42 20.31
2017 3 24.79 21.81 28.18 24.92 22.25 27.91
2017 4 19.71 17.21 22.57 20.21 17.86 22.88
2018 1 25.82 22.55 29.56 26.64 23.57 30.12
2018 2 18.75 16.13 21.81 19.02 16.65 21.73
2018 3 26.11 23.08 29.56 26.24 23.55 29.26
2018 4 21.72 19.12 24.68 22.28 19.86 24.99
2019 1 22.68 19.73 26.08 23.41 20.62 26.58
2019 2 17.74 15.12 20.83 18.00 15.59 20.78
2019 3 23.67 20.83 26.91 23.79 21.24 26.66
2019 4 21.61 19.00 24.58 22.16 19.74 24.89
2020 1 18.70 15.88 22.01 19.30 16.58 22.47
2020 2 14.61 12.04 17.71 14.82 12.40 17.71
2020 3 22.76 19.17 27.03 22.88 19.48 26.87
2020 4 21.02 17.97 24.60 21.56 18.63 24.96
2021 1 25.30 21.77 29.41 26.11 22.71 30.03
2021 2 19.69 16.82 23.06 19.97 17.36 22.99
2021 3 30.78 26.93 35.21 30.94 27.45 34.89
2021 4 28.05 24.33 32.35 28.76 25.25 32.78

18



10

15

20

25

30

2010 2013 2016 2019
Year

A
vg

. S
K

J 
ca

tc
h 

pe
r 

F
O

B
 s

et
 (

to
nn

es
)

CPUE estimate

Unweighted

Weighted

Nominal, raw data

Nominal, filt. data

Statistic

Mean

2.5%

97.5%

Figure 10: Yearly standardized CPUE predictions from the single-component GAMM
model. CPUEs are in units of tonnes of SKJ catch per PS FOB set in the
Indian Ocean. Solid curves indicate mean tendencies, whereas dashed curves
indicate the upper and lower limits of the 95% confidence interval. Red curves
correspond to the spatially unweighted approach to averaging predictions over
space, whereas green curves correspond to the spatially weighted approach to
spatial averaging. Black and gray curves indicate the nominal CPUE derived
from the original, unfiltered data and the filtered data used for training the
GAMM model, respectively.
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Figure 11: Quarterly standardized CPUE predictions from the single-component GAMM
model. CPUEs are in units of tonnes of SKJ catch per PS FOB set in the
Indian Ocean. Solid curves indicate mean tendencies, whereas dashed curves
indicate the upper and lower limits of the 95% confidence interval. Red curves
correspond to the spatially unweighted approach to averaging predictions over
space, whereas green curves correspond to the spatially weighted approach to
spatial averaging. Black and gray curves indicate the nominal CPUE derived
from the original, unfiltered data and the filtered data used for training the
GAMM model, respectively.

Nominal and standardized CPUE curves are shown by year in Figure 10 and Table 5, and
by quarter in Figure 11 and Table 6. The weighted and unweighted standardized CPUE
curves are generally similar to each other and similar to the nominal CPUE curves.
The most notable differences between nominal and standardized CPUEs are reduced
variability in standardized CPUEs over the period 2018-2021, approximately the period
covered by the YFT quota and COVID. Nominal CPUEs based on the original, unfiltered
data and the filtered data used for GAMM model training differ most notably in the
early part of the time series, likely due to the exclusion of Spanish data due to partial
VMS coverage in this time period needed for estimating set time.
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3.2 GLMM

(a) (b)

Figure 12: The number of FOB sets as a function of 1∘ × 1∘ grid cell and year-quarter in
number (left panel) and on a log scale (right panel).

ANOVA results for the GLMM model indicate that all predictors had significant effects,
though deviance explained by density and follow_echo were small (Table 7). The spe-
cific formula for the final model including random effects was (in R formula notation):

logskj ~ year:quarter + area + country + hours_since_sunrise +
follow_echo + density + (1 | numbat) + (1 | (year:quarter:area))

The proportion of deviance explained by the final GLMM model was 19% and model
diagnostics were satisfactory (Figure 13). Standardized CPUE values are shown in Fig-
ure 14 and Table 8.
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Table 7: Analysis of deviance for the GLMM Lognormal.
Variable Deviance Resid. Df Resid. Dev F Pr(>F) Dev. Exp.

year:quarter 47 3143 49564 58323 65 0 5.11 %
area 61 1149 49503 57174 18 0 1.87 %
country 1 1136 49502 56037 1105 0 1.85 %
density 1 123 49501 55915 119 0 0.2 %
hours_since_sunrise 1 2531 49500 53384 2461 0 4.12 %
numbat 32 947 49468 52436 29 0 1.54 %
follow_echo 3 28 49465 52409 9 0 0.04 %
year:quarter:area 1094 2667 48371 49742 2 0 4.34 %

Figure 13: Standard diagnostic plots for the GLMM model.
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Figure 14: Standardized CPUE index by quarter from the GLMM model. Open circles
show the nominal CPUE, the black curve and points shows the standardized
CPUE and the gray area is one standard error around that curve.

4 Discussion

Model results are very similar to those presented at the WPTT data preparatory meeting
(Kaplan et al. 2023) despite a number of significant changes in the data included in
analyses, predictor variables used and model formulations. Both GLMM and GAMM
results show an initial decrease in standardized skipjack catch per FOB set over the
period 2010-2012, followed by an increase 2012-2018 and ending in a period of increased
variability and stabilization or modest increast 2018-2021.

There are a number of future improvements that could be made to the analyses carried
out:

• Implementation of the 2-component model to better assess uncertainty in abun-
dance estimates due to uncertainty in species composition.
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Table 8: Quarterly standardized CPUE predictions from the GLMM.
Year Quarter Nominal Standardized se cv

2010 1 8.05 11.00 0.99 0.090
2010 2 9.30 11.35 1.06 0.094
2010 3 13.96 19.09 1.75 0.092
2010 4 7.56 10.44 0.99 0.095
2011 1 10.68 13.37 1.27 0.095

2011 2 6.85 7.88 0.80 0.101
2011 3 7.91 9.75 0.87 0.090
2011 4 9.47 11.46 1.08 0.094
2012 1 10.97 9.32 0.77 0.082
2012 2 7.54 6.29 0.54 0.086

2012 3 9.37 9.37 0.76 0.081
2012 4 8.32 7.47 0.67 0.090
2013 1 11.54 9.59 0.82 0.086
2013 2 9.79 8.45 0.69 0.081
2013 3 8.97 9.37 0.80 0.086

2013 4 11.55 11.36 0.91 0.080
2014 1 12.73 12.52 1.02 0.081
2014 2 7.49 7.05 0.56 0.080
2014 3 11.83 12.23 0.91 0.075
2014 4 8.50 8.36 0.70 0.083

2015 1 14.31 13.40 1.17 0.087
2015 2 7.70 6.96 0.57 0.082
2015 3 10.80 11.82 0.89 0.075
2015 4 9.05 8.97 0.70 0.078
2016 1 10.81 10.88 0.93 0.086

2016 2 10.98 10.80 0.88 0.082
2016 3 13.54 14.19 1.11 0.078
2016 4 10.74 11.71 0.94 0.080
2017 1 12.39 12.18 0.99 0.081
2017 2 10.13 10.21 0.82 0.080

2017 3 14.99 14.55 1.14 0.078
2017 4 14.85 16.02 1.37 0.086
2018 1 17.63 17.68 1.31 0.074
2018 2 13.02 11.61 0.93 0.080
2018 3 18.50 18.53 1.48 0.080

2018 4 14.43 12.86 1.05 0.082
2019 1 12.41 12.23 0.99 0.081
2019 2 11.43 10.35 0.82 0.079
2019 3 16.03 15.46 1.15 0.075
2019 4 16.07 14.67 1.03 0.070

2020 1 9.74 11.99 0.97 0.081
2020 2 8.30 9.92 0.87 0.087
2020 3 14.28 18.18 1.65 0.091
2020 4 11.17 13.69 1.19 0.087
2021 1 14.68 14.67 1.16 0.079

2021 2 12.16 11.91 0.90 0.076
2021 3 18.24 17.75 1.39 0.078
2021 4 18.24 18.44 1.62 0.088
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• Improved estimation of covariance (or lack thereof) in model prediction uncertain-
ties when standardizing CPUEs using a bootstrap approach based on the Cholesky
trick.

• Inclusion of other predictors that might impact fishing efficiency and catchability,
such as vessel age and mixed-layer depth.

• Inclusion of dFAD densities more directly related to fishing decision making and
potential catch, such as the total number of dFADs within detection distance of
the vessel and the number of followed dFADs within a reasonable travel distance
from the set position.
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