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SUMMARY 
This report summarises a stock assessment for Indian Ocean Skipjack tuna (Katsuwona pelamis) using 

Stock Synthesis 3 (SS3). The assessment assumed the Indian Ocean skipjack tuna constitute a single 

stock and is based on a spatially aggregated and seasonally structured model that integrates several 

sources of fisheries and biological data. The assessment model covers the period 1950–2022 and 

represents an update and revision of the 2020 assessment model with the inclusion of updated CPUE 

indices and length composition data. Standardised CPUE series from Maldives Pole and line fleet 1995 

– 2022 and EU associated Purse seine sets 1990 – 2021 were included in the models as relative 

abundance index of exploitable biomass. An additional index based on associative dynamics of skipjack 

tuna with floating objects was considered as an alternative index for the abundance trend for more recent 

years (2013–2022). Tag release and recovery data from the RTTP-IO program were included in the 

model to inform abundance and fishing mortality rates. Several sensitivity models are presented to 

explore the impact of key data sets and model assumptions.   

 

A model ensemble was proposed for quantifying the status of the stock which corresponds to a 

combination of model configurations, including alternative CPUE indices (PL, PSLS, and/or behaviour 

indices), alternative assumption on CPUE catchability (annual increase of 0 or 1%), alternative values 

of SRR steepness (0.7, 0.8, or 0.9), alternative growth parameter options (𝐿∞ fixed or estimated). The 

model ensemble (a total of 36 models) encompassed a range of stock trajectories and was aiming to 

address some of the major uncertainty in key data datasets and productivity parameters.  Estimates of 

stock status were combined across the 36 models and incorporated uncertainty estimates from 

individual models as well as across the model ensemble.  

 

There has been a substantial increase of fishery dependent abundance index in recent years:  the CPUE 

from the Maldivian Pole and line fishery increased by 75% from 2019 to 2022, and the PSLS also 

increased by over 30% between 2019 and 2021. As the overall catches for skipjack have been remaining 

high, the increase in abundance was driven primarily by an increase in recruitment which was estimated 

to be much above the long-term average. As such the overall stock status estimate is substantially more 

optimistic than the previous assessment, with the median estimate of current depletion increasing from 

45% (SB2019/SB0) in the 2020 assessment to 53% B0 (SB2019/SB0) in the current assessment. 

Spawning stock biomass in 2022 was estimated to be 230% of the level that can support MSY 

(SSB2022/SSBMSY = 2.30).  With high likelihood, current fishing mortality was estimated to be lower than 

FMSY (F2022/FMSY = 0.49). The probability of the stock being currently in the green Kobe quadrant is 

estimated to over 95%. Considering the quantified uncertainty, the stock is considered not to be 

overfished and is not subject to overfishing in 2022. The retrospective analysis provided some 

confidence on the robustness of the model with respect to recent data. However, the catches in the last 

two years have exceeded the catch limit set for 2021 – 2023 and are also higher than the estimated 

MSY. The estimated stock status is summarized as below: 

 

• Catch in 2022 648 695 

• Average catch 2017–2022 601 499 

• MSY (80% CI) 584 774 (512 228–686 071) 

• FMSY  0.99 (0.71–1.42) 

• F40%SSB 0.55 (0.48–0.65) 

• SB2022: 1 142 919 (842 723–1 461 772) 

• SBMSY  513 831 (369187–678936) 

• SB2022/SB0  0.53 (0.42–0.68) 

• SB2022 / SSBMSY 2.30 (1.57–3.40) 

• F2022 / FMSY  0.49 (0.32–0.75) 

  



IOTC–2023–WPTT25–09 

4 

 

1. INTRODUCTION 

The Indian Ocean skipjack tuna (Katsuwona pelamis, SKJ) fishery is one of the largest tuna fisheries 

in the world, with total catches of 400-600 thousand tons over the past decade. Some bioeconomic 

modelling of the fish population and fishery was undertaken a few years ago (Mohamed 2007).  Before 

2010, management advice has relied on data-based indicators, and mortality estimates from analyses of 

the recent RTTP-IO tagging data (Edwards et al. 2010).  A full integrated model-based assessment was 

developed in 2011 (Kolody et al 2011), and further updated in 2012, 2014 (Sharma et al. 2012, 2014), 

2017, and 2020 (Fu 2017, 2020). In 2016, the IOTC commission adopted a Harvest control rule (HCR) 

for the skipjack tuna through Resolution 16/02 (IOTC 2016). The HCR recommends a total annual 

catch limit inferred from a relationship between stock status (spawning biomass relative to unfished 

levels) and fishing intensity (exploitation rate relative to target exploitation rate) estimated from a 

model-based stock assessment.  

 

Previous skipjack tuna assessments have investigated the impact of a range of data and model 

assumptions (e.g., spatial and temporal structure) on estimates of stock status and a systematic approach 

was taken to evaluate interactions of model assumptions and to develop management advice. In 2017, 

the WPTT19 agreed to a final ensemble of 37 models to characterize key uncertainties related to 

steepness, natural mortality, tagging program, tag mixing period and tagging mortality (IOTC 2017); 

In 2020, WPTT22 adopted a full factorial uncertainty grid that include alternative spatial structure, 

steepness, tag data weights, and CPUE catchability assumption. The median estimate from each set of 

stock assessment model ensemble was then used to determine the catch limits to be implemented over 

the next three years through the HCR (470,029 tonnes of 2021-2020 and 513,572 tonnes for 2021-

2023). 

 

The HCR described in Resolution 16/02 requests that the skipjack tuna stock assessment is conducted 

every three (3) years, with the next stock assessment scheduled in 2023. In this context, this report 

provides an update and further development of the integrated stock assessment for skipjack in the Indian 

Ocean. The model incorporates three additional years of data (2020–2022), improved information on 

nominal catches from IOTC database, and revised CPUE time series for the Maldives Pole and line and 

European Purse seine fleets. The assessment provides estimates of population parameters, stock status and 

reference quantities (required for the calculation of the catch limit from the HCR), with uncertainties 

characterised through a model grid on combinations of model settings and parameter values.  The 

assessment builds on the work by Fu (2017, 2020), Sharma et al. (2012, 2014), and Kolody (2011), and 

uses a size based, age structured population model, implemented in Stock Synthesis 3 (Methot and Wetzel 

2013, Methot et al. 2020). 

 

1.1 Biology and stock structure  

Skipjack are the smallest of the major commercial tuna species and are found mainly in the tropical 

areas with geographic limits between 55-60° N and 45-50° S.  Skipjack are highly fecund and can spawn 

year-round over a wide area of the tropical and subtropical waters. Environmental conditions (such as 

sea surface chlorophyll) are believed to significantly influence recruitment and can produce widely 

varying recruitment levels between years (Marsac 2023). The historical Japanese surveys of skipjack 

larvae have identified large quantities of skipjack larvae in the Equatorial Eastern IO (Nishikawa et al 

1985), but these surveys have been quite rare in the Western IO. The location of skipjack nurseries 

remains widely unknown, as well as the biology of skipjack early juveniles, because very small sizes 

of skipjack have never been exploited significantly in the IO (Fonteneau 2014).  

 

A substantial amount of information on skipjack movement is available from tagging programs, which 

have documented some large-scale movement within the Indian Ocean. The average range of movement 

during the skipjack lifetime can be estimated at about 1000 miles, with maximum distance of about 

2000 miles (Fonteneau 2014). Skipjack movement is highly variable and is thought to be influenced by 

large-scale oceanographic variability (Mackenzie et al. 2016). 

 

Genetic analyses by Dammannagado et al. (2011) have suggested that there might be two (or more) 

skipjack populations in the Indian Ocean. A recent stock structure study based on analysis of the shape 
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of otolith from four areas south of Java showed that they are not statistically different among regions, 

suggesting that these skipjack belong to a single stock (Wujdi et al. 2017). However, Due to the limited 

spatial range of the samples, this conclusion cannot be applied to the whole Indian Ocean. Using next 

generation genetic sequencing, Grewe (2019) suggested a week genetic population differentiation of 

skipjack tuna from the central Indian Ocean through to the Eastern Pacific Ocean. 

 

1.2 Fishery overview 

The Indian Ocean skipjack catch history is shown in Figure 1. Catches increased steadily from the 1980s 

to a peak at over 600,000t in 2006, but have been decreasing since the mid-2000s. Since 2006 total 

catches have declined to around 340,000t in 2012 although since 2013 catches have increased sharply 

and in 2018 reached again a level of 600,000t mostly driven by the purse seine (associated school) 

fisheries. The catches dropped in 2019 and again in 2020 to about 550 000 t but increased to a historical 

peak at 655,000 t in 2021. The annual catches 2018 – 2022 have all exceeded the catch limit as set out 

by the skipjack Harvest Control Rule. Figure 2 illustrates the spatial distribution of the catches from the 

main fisheries (purse seine, pole and line, gillnet, line). In 2022, purse seine accounted for about 53% 

of the total catches, with the remainder of catches mainly taken by the pole and line (20%), gillnet 

(18%) and line (7%) fisheries (IOTC 2023). 

 

The Maldives has sustained a pole and line (PL, bait boat) skipjack fishery for many centuries, with 

catches increasing dramatically with the uptake of mechanization and deployment of larger vessels 

(more poles, larger bait and storage capacity, longer range) starting in the 1980s. The Maldives has 

experienced substantial catch declines since the peak in 2006, for reasons that are not entirely clear.  

Adam (2010) suggests that this may reflect declining skipjack abundance, limitations to bait availability 

or changing economic incentives (e.g., high fuel prices).  There has been an increasing trend in catch 

levels from 2018, with a slight drop in 2019 followed by a new increase in catches which peaked at 

128,000 t in 2021 (IOTC 2023).  

 

There has been a rapid increase in skipjack catches with the introduction of the purse seine fleets in the 

1980s, and the development of the fishery in association with Fish Aggregating Devices (FADs) since 

the 1980s (e.g., Chassot 2010, Delgado de Molina 2010). The European/Seychelles PS catch has 

fluctuated considerably since around 2000 without a clear trend.  Catch declines in the recent years are 

probably partly attributable to the effects of piracy in the prime fishing area near Somalia. From 2003-

06 the decline was due to very good fishing of large yellowfin tuna on free schools. After 2007 piracy 

or other ‘unknown’ reasons may be the cause of the decline. In recent years, well over 90% of the 

skipjack tuna caught by purse seine vessels are taken from around FADs. The fraction of catches from 

FAD associated schools was around 98% of skipjack catches reported in 2018 and around 96% in 2021. 

 

Several fisheries using gillnets have reported large catches of skipjack tuna in the Indian Ocean, 

including the gillnet/longline fishery of Sri Lanka, driftnet fisheries of I.R. Iran and Pakistan, and gillnet 

fisheries of Indonesia. In recent years gillnet catches have represented as much as 20% to 30% of the 

total catches of skipjack tuna in the Indian Ocean. Moderate catches are taken by the line fishery 

representing a mixture of gears using handlines, trolling, and small longlines, mostly in the eastern 

Indian Ocean (Figure 2). 

 

A substantial portion of the total catch is taken by a mix of artisanal gears, with minor catches dating 

back before the pre-industrial period.  For the assessment, these fleets have been pooled together, in the 

heterogeneous Other fleet.  The bulk of the recent catch in this fishery is from the small purse seiners 

fisheries of India, Indonesia, Malaysia, and Mozambique.  These fleets were mostly operating in coastal 

waters. The aggregate catches of these fleets have been increasing more recently. 
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Figure 1: Total annual catch (1000s t) of skipjack tuna by fishery from 1950 to 2022. The red line 

indicates the catch limit of 470,029 t and 513,572 t established by the HCR for 2018–2020 and 2021–2023 

respectively. Gear codes are described in Section 2.3. 

 

 

 

  

Figure 2: Spatial distribution of Indian Ocean skipjack catches by main fisheries aggregated for1980-

2022. Gear codes are described in Section 2.3. 

 

2. OBSERVATIONS AND MODEL INPUTS 

Data used in the stock assessment of skipjack tuna consist of catch, length frequency data for the 

fisheries defined in the analysis, relative abundance indices and tag-recapture data. The details of the 

configuration of the fishery specific data sets are described below. 

 

 

 

 



IOTC–2023–WPTT25–09 

7 

 

2.1 Spatial stratification 

The assessment assumed that the entire Indian Ocean as one homogeneous area, with the different 

fisheries harvesting different portions of the skipjack population. The tagging data suggest that SKJ 

migrate quickly but the limited distribution of tag releases, and small number of returns outside of the 

European/Seychelles purse seine fleets (mainly operating in the western equatorial Indian Ocean) makes 

it difficult to quantify large-scale movements.  It is notable that basin-scale movements into the eastern 

Indian Ocean were observed from the EU/Seychelles fleet, but proper mixing might never occur at the 

basin scale. Thus, the inclusion of the tagging data in the aggregated spatial structure may induce bias 

due to the low mixing rates. Another concern is that Maldives PL CPUE is used as an index of 

abundance for the broader population in the aggregated model when in fact in it is derived from the 

relatively small area of the Maldives EEZ. 

 

The previous assessment included a two-region spatial structure which assumed discrete populations 

west and east of 80° (see Figure 2 of Fu 2020). The partition is based on the distribution of major 

fisheries and appears well fitted with geographical scale of the observed skipjack movements in the 

western Indian Ocean. The partition allows for spatial heterogeneity in tag mixing and changes in 

abundance (the mixing rate is probably quite low between the Northern and southern western Indian 

Ocean, see Fonteneau 2014). However, there is a lack of information on regional scaling (Hoyle and 

Langley 2018) to estimate the biomass distribution across the two regions because the purse seine and 

pole and line indices, which are assumed to index regional abundance, are not comparable in relative 

size. The tagging data contains little information about migration between the east and western Indian 

Ocean. These factors led to significant variations and uncertainty in estimates of regional abundance 

and movement rates across an array of model options. The spatial model requires further development 

and is not used in the current assessment.   

 

2.2 Temporal stratification 

The population was assumed to be in unfished equilibrium in 1950, the start of the catch data series. 

The model was iterated from 1950 to 2022. The population dynamics were represented with an annual/ 

season configuration, referred as the SS3 internal year-season (SSYS). The model was iterated on an 

annual time step which is split into four quarters to represent potentially important seasonal processes. 

The tag ages are assigned to annual increments and recruitment is apportioned among four seasons from 

a single recruitment event. The previous assessments also examined an alternative configuration 

(Calendar Season as Model Year, CSMY) which is commonly used for species with rapid dynamics 

such as tropical tuna. The CSMY defined quarterly time periods as years, i.e., each model “year” is a 

three-month period, and each age class is 3 months (see Fu 2017 for a detailed compassion of the two 

temporal structure). For this assessment, only the SSYS structure is used for all models. 

 

2.3 Definition of fisheries 

SS3 requires the definition of fisheries that consist of fishing units with similar selectivity and 

catchability characteristics.  Seven fleets were defined on the basis of gear and fleet of operation: 

 

1. PL – Maldivian Pole and Line fleet.  

2. PSLS - FAD/log associated Purse Seine (PS) sets from the EU/Seychelles fleets. 

3. PSFS - unassociated PS sets from the EU/Seychelles fleets.  

4. Gillnet - includes primarily gillnet fleets from Sri Lanka, Iran, Indonesia and Pakistan 

5. Line - includes primarily handline and small coastal longline gears from Yemen, Sri Lanka, 

Maldivian, and Madagascar. 

6. Longline – a trivial catches from Distant water longline fishing fleets  

7. Other – includes all other fleets, primarily non-EU/Seychelles PS fleets, trolling, and small 

coastal fleets (e.g. ring nets). 

In the earlier assessments, the “Other” fleet was defined broadly to have aggregated gillnet, line, 

longline fisheries (in total four fisheries were defined for the assessment). Consequently, the ‘Other’ 

fishery included a heterogeneous mix of fleets which caught different sizes of fish (e.g., the longline 
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generally caught much larger skipjack than other gears). The combined size distribution was unlikely 

to be representative of this composite fleet if the component fisheries had inconsistent size sampling 

over time. Therefore, it was decided to partition this composite fleet into fisheries with distinctive 

selectivity characteristics, with the aim to improve predicted sizes in the catch and the estimates of the 

selectivity patterns (Fu 2020). 

  

2.4 Catch history 

The total catches were calculated by the Secretariat (IOTC 2023). The nominal catches are not always 

reported by species and/or gear by the responsible institutions in each country. The catches reported 

under species and/or gear aggregates are decomposed by the IOTC secretariat using alternative sources 

of information (if available), or a pre-defined criterion so that all catches are separated into individual 

gears and species. The catch time series for the 7 fleets is shown in Figure 1. Total Skipjack catches in 

the years 1987-2018 have been relatively impacted by the revisions introduced to the official catch 

series submitted in late 2019 by Pakistan for its gillnet fisheries, with revised catches being now 69,244 

MT lower (in total) during considered years (IOTC 2020).  

 

2.5 CPUE indices 

 

2.5.1 Maldives PL CPUE series 

Medley et al. (2023) updated the abundance index for skipjack tuna from Maldives pole and line catch 

and effort data. The index was derived from multiple datasets with differing level of detail over the 

period 1995–2023 using a Bayesian approach (Figure 3). The main concern on this CPUE is that the 

spatial area in which the Maldives pole and line operates may not represent the Indian Ocean, and thus 

the index may be more appropriate as a regional abundance index. There has been a significant and 

sharp increase of the index since the last assessment, with the index in 2022 being 75% higher than in 

2019. 

 
2.5.2 EUROPEAN PSLS abundance indices series 

The European and associated flags purse seine fishing activities in the Indian Ocean during 1981–

2020 have been monitored through the collection of logbook and observer sampling. Standardized 

indices of the abundance of skipjack caught by the European purse seiners (Spain and France) under 

floating objects (including primarily sets on drifting fishing aggregating devices) was developed 

(Kaplan, et al. 2023). The standardization was based on the application of a generalized additive mixed 

model (GAMM) which considered a comprehensive list of candidate covariates, including non-

conventional covariates. Both a short time series from 2010 to 2021 and a long time series from 1990 

to 2021 were developed (the short time series includes several methodology improvements that make 

use of newly available information). The short series closely resembles the long series across 

comparable periods, but it is insufficient to be used as an independent index in the model (using the 

short series would yield results that are very similar to those of the long series in the model that included 

both the PL and PSLS index). Consequently, the assessment focuses on the long timeseries. The index 

has seen a significant increase in the last two quarters of 2021, which is about 50% higher than average 

of 2019-2020. 

 
2.5.3 Other abundance indices  

Baidai et al. (2023) developed a novel approach to construct estimates of tropical tuna population size 

based on their associative dynamics with floating objects and acoustic data collected from echosounder 

buoys. The approach was implemented to provide time series of abundance for skipjack tuna in the 

western Indian Ocean, over the period 2013 to 2021 (Figure 3).  
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Figure 3: Relative abundance indices for skipjack tuna: standardised CPUE indices from the Maldives PL 

fisheries 1995 – 2022 (PL); standardised CPUE indices from the European PS associated schools 1991 – 

2021 (PSLS); indices based on associative dynamics with floating objects and acoustic data 2013 – 2021 

(Behaviour).  

 

2.6 Length frequency data 

Available length-frequency data for each of the defined fisheries were compiled into 27 3-cm size 

classes (20−22 cm to 98−100 cm) and were aggregated to provide a composite length composition for 

each year/quarter. Each length frequency observation for purse seine fisheries represents the number of 

fish sampled raised to the sampling units (sets in the fish compartment) while for fisheries other than 

purse seine each observation consisted of the actual number of skipjack tuna measured. In the 

assessment, all length composition strata from all fleets were weighted by dividing the number of fish 

included in the aggregated sample by a factor of 1000, with a maximum initial sample size of 10, The 

Other fleet was down-weighted to have a maximum initial sample size of 1, because it represents a 

heterogeneous mix of fisheries, many of which are poorly sampled. Size data has been examined by the 

Secretariat and problematic data were removed from the database (country-gear-time-area strata for 

which the size data are removed can be made available upon request). For example, Maldivian PL from 

1987 to 2000 have been removed from the database as they are considered extremely unreliable. 

Similarly, the data for 2015/2016 was removed as only extremely small fish (less than 1kg on average) 

were reported. Aggregated catch-at-length distributions for each fishery are shown in Figure 4.  

 

The Maldives PL fishery length distribution typically has two very distinct modes (about 50 cm and 70 

cm) indicating that the fishery appears to be catching two different life stages of skipjack tuna. The 

multimodal length frequency can introduce a significant amount of uncertainty into the assessment 

model because that changes in the composition of modes imply changes in selectivity.  Before 2015, 

the two modes are highly distinct, but then became less obvious after 2016 (Figure 4). Further 

investigation was done on the spatial and temporal distribution of the Maldives PL length samples 

(provided by 1x1⁰ resolution). Prior to 2015, all samples were collected from a few spots along 

longitudes 72⁰ to 73⁰. The multimodal distribution is mainly driven by samples from one spatial grid 

cell (0.5⁰ latitude and 73.5⁰ longitude 73.5), which accounted for over 30% of total samples.  After 2016, 

the samples were taken from a considerably wider range of locations and contains mainly smaller fish.  

The multimodal distribution doesn’t appear to be seasonal. 

 

The recent decline in mean size in the Other fleet probably reflects the erratic sampling from this fleet.   

It has been noted previously that the length frequency data from Thailand small purse seiners in 2007 
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and following years were of extremely poor quality. For the ‘Other’ category, size data between 2007 

and 2010 were not used. 

 

 

 

Figure 4: Length compositions of skipjack tuna samples aggregated by year and fishery. 

 

2.7 Tagging data 

A considerable amount of tagging data was available for inclusion in the assessment model (Hallier & 

Million 2009). Between 2005 and 2007, about 77000 tagged skipjack were released from Tanzania, 

Seychelles and Mozambique Channel under the RTTP-IO program (Figure 5). Additional tagging 

(~22000 releases) also occurred in the eastern Indian Ocean as part of small-scale tagging operations in 

2004–2009 (Figure 5). The most substantial small-scale project was based in the Maldives (Jauharee & 

Adam 2009), but tags were also released near Lakshadweep, Mayotte, western Sumatra and the 

Andaman Islands.  

 

Most skipjack tagged under the RTTP-IO were under 2-year of age (Figure 6) The percent of returns 

for the RTTP-IO tags is approximately 16% and the returns were primarily from the purse seine fishery 

in the western Indian Ocean within four years after release (Figure 7, Table 1). A significant proportion 

of the tag returns from purse seiners were not accompanied by information concerning the set type. 

These tag recoveries were assigned to either the free-school or FAD fishery based on the proportion of 

catch by each fishing mode. The low number of returns from other fisheries is partly due to lower catch 

numbers, particularly of the smaller size classes that were tagged, but probably due in most part to non-

reporting (Eveson 2012 et al.).   
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In contrast smaller fish was tagged under the small-scale program (Figure 6) and the percent of tag 

returns is approximately 12% (Table 1). The returns were primarily from the Maldives Pole and line 

fishery (Figure 7), but the numbers were variable over time. In general release cohorts with higher 

recovery rates were mostly tagged in Maldives waters 2007 – 2009, whereas releases made further 

east in the IO waters between 2004 and 2006 tend to have lower recovery rates. The recovery from the 

purse seine fishery is extremely low (less than 10 recoveries except for those released in the first two 

quarters of 2009).   

The RTTP-IO data is considered more reliable than the small-scale tagging programs, because the 

RTTP-IO has a much larger number of tags and was released by more experienced taggers.  In contrast, 

there was no tag shedding estimates for the fleets conducting the small-scale tagging programs, and the 

reporting rates from pole and line fishery were also unknown. The previous assessment included the 

small-scale data in part of the model grid considering that the small-scale tagging program may provide 

additional insight into spatial dynamics. However, the inclusion of the small-scale data is likely to 

introduce bias to the model estimates because (1) the recovery rate of small scale tags from the PS 

fishery is extremely low (the tag returns from the PS fishery is the primary source of information on 

abundance), and (2) very few tags (<5%) were recovered with a time of liberty exceeding 2 quarters, 

whereas it is generally agreed that longer periods are required to achieve sufficient tag mixing. The 

utility of small-scale tag data was thoroughly investigated in previous assessments and they are not 

included in the current assessment. 

 

For incorporation into the assessment model, tag releases were stratified by release region, time period 

of release (quarter) and age class. The returns from each tag release group were classified by recapture 

fishery and recapture time period (quarter). The tag data were further adjusted for tag losses and 

reporting rates to minimize the bias on estimates of fishing mortality and abundance in the assessment 

model. The procedure is described in below. 

Age assignment of tag release.  The length of release of each tag is recorded in the database but the 

model dynamics are based on ages.  The age of each individual tag was estimated from the mean of the 

growth curve, assuming a 1 January birthdate.  The age estimation occurs external to the model.  

Tagging mortality. The number of tags in each release group was reduced by 25% to account for initial 

tag mortality. Tagging mortality was estimated relative to those for the best tagger (Hoyle et al 2015). 

Hoyle et al. (2015) did not find any differences in tagging induced mortality between species in the 

Indian Ocean but tag mortality was estimated to be lower for skipjack in the Pacific Ocean where there 

are more data.  

Reporting rate. The results of the tag seeding experiments conducted during 2005−2008, have revealed 

considerable temporal variability in tag reporting rates from the IO purse-seine fishery (Hillary et al. 

2008a). Reporting rates were lower in 2005 (57%) compared to 2006 and 2007 (89% and 94%). 

Quarterly estimates were also available and were similar in magnitude (Hillary et al. 2008b). This large 

increase over time was the result of the development of publicity campaign and tag recovery scheme 

raising the awareness of the stakeholders, i.e. stevedores and crew. SS3 assumes a constant fishery-

specific reporting rate. To account for the temporal change in reporting rate, the number of tag returns 

from the purse-seine fishery in each stratum (tag group, year/quarter, and length class) were corrected 

using the respective estimates of the reporting rates.  Following Kolody (2011) and Fu (2017), tags 

recovered at-sea are assumed to have a 100% reporting rate; tags recovered from landings in Seychelles 

were corrected for the quarterly estimates of reporting rates from Hillary et al (2008b). The tag 

recoveries were further increased by the proportions of EU PS catches landed outside the Seychelles, 

to account for purse-seine catches that were not examined for tags. For example, the adjusted number 

of observed recaptures for a PSLS fishery as input to the model, 𝑅𝐿
′   was calculated using the following 

equation: 

 

𝑅𝐿
′ = 𝑅𝐿

𝑠𝑒𝑎 +
𝑅𝐿

𝑠𝑒𝑧

𝑃𝑠𝑒𝑧𝑟𝑠𝑒𝑧
 

where 
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𝑅𝐿
𝑠𝑒𝑎  = the number of observed recaptures recovered at sea for the PSLS fishery. 

𝑅𝐿
𝑠𝑒𝑧 = the number of observed recaptures recovered in Seychelles for the PSLS fishery. 

𝑟𝑠𝑒𝑧 = the reporting rates for PS tags removed from the Seychelles  

𝑃𝑠𝑒𝑧 = the scaling factor to account for the EU PS recaptures not landed in the Seychelles. 

 

The adjusted number of observed recaptures for a PSFS fishery was calculated similarly. A reporting 

rate of 94% was assumed for the correction of the 2009−2015 tag recoveries. The numbers of tag 

recoveries were also adjusted for long-term tag loss (tag shedding) based on an analysis by Gaertner 

and Hallier (2015). Tag shedding rates for skipjack tuna were estimated to be approximately 3% per 

annum.  

 

For the RTTP-IO, a total of 58 420 releases were classified into 40 tag release groups. Most of the tag 

releases were under age 2 (Figure 6) A total of 10458 actual tag recoveries were included in the tagging 

data set. The cumulative effect of processing the tag recovery data increased the number of recoveries 

to 11,640 tags. 
 

Table 1: Number of Tag releases by year (of release) and recoveries by year (of recovery) for the skipjack 

tuna RTTO-IO and small scale tag Programs.  

          Recovery  

RTTP Release   2004 2005 2006 2007 2008 2009 2010 2011 

2005 14744   160 1592 277 26 2   

2006 41387    2793 4277 303 39 5  

2007 21741     1901 1019 167 9  

           

SS Release   2004 2005 2006 2007 2008 2009 2010 2011 

2004 4339  254 39 6 3 2    

2005 2208   51 35 3    1 

2006 2883    176 19 2   3 

2007 741     29 19 8 3  

2008 5029      383 180 2  

2009 7233       1440 39 2 
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Figure 5: Location of releases (red) and density of recoveries for the skipjack tuna RTTO-IO and small-

scale tag Programs 

 
 

Figure 6 : Number of tag releases quarter and age class for the skipjack tuna from the RTTO-IO and 

small-scale tag Programs. Ages were assigned based on the length.  

 

 
 
Figure 7: Number of tag recoveries by year/quarter and fishery for the skipjack tuna from the RTTO-IO 

and small-scale tag Programs. Purse seine tag recoveries have not been corrected for reporting rate. 
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3. MODEL STRUCTURAL AND ASSUMPTIONS 

 

3.1 Population dynamics 

The model was sex-aggregated (and reported spawning biomass is the summed mass of all mature fish).  

The stock assessment model partitioned the Indian Ocean skipjack age groups 0–8 years with the last 

age a plus group (in unfished equilibrium, <0.25% of the population survives to reach the plus-group 

with the constant M value considered).  

 

The population was assumed to be in unfished equilibrium in 1950, the start of the catch data series. 

The model was iterated from 1950-2022 using a quarterly time-step. The nominal unit of time in the 

model is one year during which population processes (e.g., recruitment, spawning, and ageing) were 

applied in sequence according to the dynamics implemented within the Stock Synthesis model (Methot 

2013). The Observations were fitted to model predictions on the seasonal basis within the year.  

 

An alternative model option commenced in 1970 and assumed an exploited, equilibrium initial state, 

considering that the main fisheries were developed after 1970 and there is almost no data prior to that. 

Initial fishing mortality parameters were estimated for each of these fisheries, based on early catches. 

The resulting fishing mortality rates are applied to determine the initial numbers-at-age. This model 

option yielded very similar results and thus was not reported further.  

 

3.1.1 Recruitment 

For some of the tuna species there is an indication of a strong seasonal pattern in recruitment. However, 

Itano (2000) suggested tropical tuna spawning does not always follow a clear seasonal pattern but occurs 

sporadically when food supplies are plentiful. SKJ has been assumed to have a continuous spawning 

season. 

 

Recruitment was assumed to occur annually at the start of the year and the SS3 will allocate recruitment 

to each season (the population will have a collection of seasonal cohorts with different birthdays), with 

the proportion being estimated as time-varying parameters. New recruits enter the population as age-

class 0 fish (averaging approximately 20 cm). A Beverton-Holt stock recruitment relationship was 

assumed with steepness fixed at a range of options. ISSF (2011) summarises steepness estimates from 

tuna fisheries, the high values reported seem to be consistent with SKJ life history. The final model 

options included three (fixed) values of steepness of the BH SRR (h 0.7, 0.8 and 0.9). These values are 

considered to encompass the plausible range of steepness values for tuna species and are routinely 

adopted in tuna assessments conducted by other tuna RFMOs.  

 
Annual deviations from the stock-recruitment relationship were estimated for 1983–2021, assuming a 

lognormal distribution. Assessments of major tropical tuna species using a quarterly model time-step 

typically assumed the quarterly recruitment events to have a fixed standard deviation (σR) of 0.6 for 

recruitment deviates (Kolody et al. 2018), corresponding to an annual CV of about 0.3 (assuming 

quarterly recruits are independent, and the annual recruitment is calculated as the mean of four seasonal 

events). Season-specific parameters were estimated to distribute the mean recruitment among seasons 

(quarter). Recruitment anomalies by season were estimated for 1983 – 2021 with a standard deviation 

of 0.3. 

 

3.1.2 Growth and Maturation 

Skipjack growth is rapid compared to yellowfin and bigeye tuna. Young skipjack is approximately 

between 10–20cm as age of 40–90 days after hatching and inmature fish is approximately in a range of 

20 cm to 40 cm as age of 90 days to one year after hatching (Kiyofuji et al. 2019).  Earlier assessments 

have considered length-at-age relationships that followed the standard von Bertalanffy growth function. 

But there were concerns that the von-B growth curves might not be capturing the rapid initial growth 

rate for this species (e.g. Kayama et al. 2004). The 2017 assessment adopted a two stanza VB-logK 

curve of Eveson (2012), derived from the tag-recapture data. The VB-logK curve was approximated 

using a Richards curve in SS3, with 𝐿∞ = 70cm, k=0.34, and the inflexion parameter fixed at 2.96.  
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However, the 𝐿∞ appears to be low compared to the Pacific, where a number of estimates suggested 

maximum length above 80 cm. The two-stanza growth is considered to be appropriate for skipjack tuna 

as it captures the rapid growth of juveniles, and diminished growth from a transfer of energy from 

somatic growth to gonad development (Grande et al. 2010).  A CV of 0.2 and 0.1 is assumed for the 

length at the initial and maximum age, respectively with linear interpolations for intermediate ages 

(Figure 8–left), loosely based on evidence from tagging data. 

 

Maturity was estimated by Grande et al. (2010):  invariant over time with 50% maturity at length 38 

cm (Figure 8–right), corresponding to an age-at-maturity of 0.4 y with the Richard growth curve. This 

is also very similar to the 40 cm value reported in the Pacific, where the maturity is estimated to 

follow a knife-edge pattern with all fish two quarters or less being immature and all fish older being 

fully mature (Vincent et al. 2019).  The weight-length relationship was estimated from Chassot et al. 

(2016), where W = 4.97e-006 L.39292. 

 

Grande et al. (2010; 2014) studies used the ‘cortical alveolar’ oocyte development stage and above as 

the threshold indicating a fish was mature, A slightly updated ogive was estimated by Grande et al. 

(2014) with L50 at 39.9 cm FL. Zudaire et. al (2022) estimated reproductive parameters for skipjack 

tuna in the Indian Ocean as part of the ‘GERUNDIO’ project.  The estimate of L50 (41.3 cm FL) 

obtained in this study is slightly higher than that obtained by Grande et al. (2010; 2014).  probably 

affected by different maturity thresholds used in both studies.  

 

 

  
Figure 8: Fixed growth function for skipjack tuna following Eveson et al. 2012 (left) and length-based 

maturity Ogive following Grande et al. (2010). For the growth function, the red line represents the 

estimated mean length (FL, cm) at age and the grey area represents the assumed distribution of length at 

age).  

 
3.1.3 Natural mortality 

Independent estimates of natural mortality for skipjack tuna were available from tagging data (Everson 

2011) but the estimates appeared to be very low compared to the assumed or estimated M in the other 

oceans. For the assessment, the natural mortality of 0.8 (constant across all ages) is used, which is the 

equal to the value used by the ICCAT). Previous assessment also considered estimating M within the 

model when the small-scale tagging data were included, and the estimates were similar in magnitude to 

the assumed value of 0.8. 

 

3.2 Fishery dynamics 

Length based selectivity were assumed for all fisheries. Within the model, the length-based selectivity 

is used to calculate the predicted catch-at-length distribution.  Selectivity is internally converted to an 

age-based selectivity for purposes of removing the appropriate portion of the population in the catch. A 
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non-parametric, cubic spline function was estimated independently for the selectivity of pole and line, 

and purse seine fleets (both PSLS and PSFS).  The function is flexible enough to represent polymodal 

functions (and was motivated by the clear bimodal distribution of the PL fleet).  Seven nodes were 

estimated for the PL fleet, and 5 nodes for the PSLS, PSFS fleets. The selectivities of the Gillnet and 

Line fisheries were estimated using a dome-shaped, double normal functional form, and the selectivity 

of the longline fisheries was estimated using a monotonically increasing, logistic function. 

  

Fishing mortality was modelled using the hybrid method that estimates the harvest rate using Pope’s 

approximation and then converts it to an approximation of the corresponding F (Methot & Wetzel 

2013). 

 

 

3.3 Dynamics of tagged fish 

In the population model, tagged fish are assumed to have identical dynamics to the general population.  

Therefore, a reasonable period of mixing is required before this assumption would be valid. Tag 

displacement appears to suggest rapid mixing within the core PS area. However, this would be 

contingent upon the distribution of fishing effort (i.e., if the gear is deployed a long way from the release 

site, all recoveries will suggest rapid movement, but they might not represent the movement of the 

general population). Also, directed seasonal migration can cause large displacements, without 

necessarily resulting in uniform mixing. The Stock Synthesis model specifies a tag mixing period during 

which observations do not contribute to the overall likelihood function. Previous analyses examined tag 

mixing periods ranging from 2 to 6 quarters, with a longer mixing period effectively de-weighting the 

tagging dataset.  The current assessment model used a four-quarter tag mixing period, retaining about 

20% recovered tags in the model. 

 

3.4 Modelling methods, parameters, and likelihood 

The total likelihood is composed of four main components: catch data, the abundance indices (CPUE), 

length frequency data and tag release/recovery data. There are also contributions to the total likelihood 

from the recruitment deviates and priors on the individual model parameters. The model was configured 

to fit the catch almost exactly so the catch component of the likelihood is very small. There are two 

components of the tag likelihood: the multinomial likelihood for the distribution of tag recoveries by 

fleets over time and the negative binomial distribution of expected total recaptures across the model 

region.  

 

Assumed CV of 20% (lognormal observation errors) was applied to standardised CPUE indices.  The 

CV of 20% is probably not realistic for these fisheries, but it allows the model to fit the core features of 

the relative abundance series. 

 

The individual length frequency observations was assigned a sample size that is proportional to the 

number of fish measured, with a maximum sample size capped at 10 (except for the ‘Other’ fisheries, 

where the maximum is capped at 1).  

 

The negative binomial distribution allows for overdispersion relative to the ideal, independent 

movement, fully mixed, tag recovery distribution (e.g., which might be expected to conform to the 

Poisson distribution).  The overdispersion parameter τ was fixed at 20 and was applied equally across 

all tag groups. Previous assessments attempted to estimate τ but the estimate was strongly driven by 

prior. 

 

The parameters estimated by the model included:  

 

• Catchability for the CPUE series  

• Selectivity parameters  

• Virgin recruitment  

• Annual recruitment deviations from the stock recruitment relationship  
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• Annual seasonal-specific recruitment deviations  

 

The Hessian matrix computed at the mode of the posterior distribution was used to obtain estimates of 

the covariance matrix, which was used in combination with the Delta method to compute approximate 

confidence intervals for parameters of interest. 

 

 

3.5 Reference points 
The harvest control rule for skipjack tuna as per IOTC Resolution 16/02 calculates a catch limit based 

on a relationship between stock status (spawning biomass relative to unfished levels) and fishing 

intensity (exploitation rate relative to target exploitation rate), to be estimated from a model-based stock 

assessment. The assessment therefore estimated the required inputs for the HCR, including 

SB2022/SB0 (current depletion), SB40% (40% of unfished spawning biomass), F40%SSB (fishing mortality 

corresponding to 40% of the unfished spawning biomass).  

 

Provisions for interim reference points for skipjack tuna based on MSY are included in IOTC Resolution 

15/10. Attempts to estimate MSY-related references in earlier assessments were not successful (Kolody 

et al. 2011) and as a result depletion-based proxies were used. The WPTT19 in 2017 uncovered an error 

in the definition of a selection curve that is thought to have caused a flat-top yield curve in some 

circumstances when Fmsy cannot be calculated. Subsequent assessments have fixed the error. In the 

current assessment, MSY-based reference points are estimated and the stock status is reported in respect 

to the MSY-based target reference points in line with resolution 15/10. 

 

 

4.  ASSESSMENT MODEL RUNS  

The approach is to explore a range of model assumptions and parameter configurations, and to examine 

areas of uncertainty that would impact assessment results. A basic model was identified for diagnostic 

purposes. Final model options included a grid of models running over permutations of plausible 

parameters and/or model settings, from which the uncertainty was quantified. The grid approach aims 

to provide an approximate understanding of variability in model estimates due to assumptions in model 

structure, which is usually much larger than the statistical uncertainty conditional on any individual 

model (McKechnie et al. 2016, Kolody et al. 2011). The assessment was conducted using the 3.30 

version of the Stock Synthesis software. The stock status was reported for the terminal year of the model 

(i.e., 2022).  

 

4.1 2020 model continuity run 

In the 2020 assessment the final model options selected for management advice included 24 models 

with alternative assumptions on spatial structure, steepness, CPUE catchability, and tag data weighting. 

The model io_h80_q0_ tlambda01 (single region, steepness of 0.8, constant catchability, tag likelihood 

lambda of 1) was considered as a reference model (Fu 2020).  The 2020 reference model was updated 

sequentially to ensure continuity, and to assess the influence of the revised and new data. The model 

period was extended to 2022 with incremental changes made to the observational data and other 

configurations (see Table 2 for details).    

 
Table 2: Description of the sequence of model runs to update the 2020 reference model 

 

Model Description 

io_h80_q0_ tlambda1 2020 reference model 

1-update-catch Model extended to include 2020–2022, with updated catches 

2-update-LF Revised and updated length composition data for 2020–2022 

3-update-CPUE Revised and updated PL CPUE index 1995–2022, PSLS index 1990 – 2021 

 

Basic Extend period of estimation for recruitment deviates (to 2021); 

Definition of F-age for determination of MSY (2022);  
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4.2 Basic and sensitivity models  

Minor revisions were made to the updated model to attain a basic model (Table 3), which served as a 

starting point for further exploratory, sensitivity analysis and the development of the final model 

ensemble. The basic and sensitivity models examined a range of model options related to the CPUE 

series, length composition and tagging data, biological parameters and model structure. The analysis 

complemented the suite of exploratory models conducted previously, with the goal of determining a 

suitable ensemble of model options to account for various levels of stock estimate uncertainty. Table 4 

provides a description of the alternative model options considered for the sensitivity analysis. 
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Table 3: Main structural assumptions of the basic model and details of estimated parameters. 

Category Assumptions Parameters 

Recruitment Occurs at the start of each quarter as 0 age fish. 

Recruitment is a function of Beverton-Holt stock-recruitment relationship (SRR). 

Seasonal apportionment of recruitment with temporal deviates 1983 – 2021 

Temporal recruitment deviates from SRR, 1983−2021.  

 

R0 Norm(10,10); h = 0.80 

SigmaR = 0.3. 

Initial population A function of the equilibrium recruitment in each region assuming population in an 

initial, unexploited state in 1950. 

 

Age and growth 8 age-classes, with the last representing a plus group.  

Growth based on a Richard growth model which approximate the two-stanza growth 

estimated by Eveson et al (2012).  

SD of length-at-age based on a coefficient of variation decreasing linearly from 20% at 

age 0 to 10% at maximum age. 

Mean weights ( jW  ) from the weight-length relationship 
baLW = . 

 

𝐿∞ = 70 cm, k = 0.35, Richard parameter of 2.90. 

a = 4.97 e-06, b = 3.39 

 

Natural mortality Constant at 0.8  

Maturity Length specific logistic function from Grande et al. (2010). 

Mature population includes both male and female fish (single sex model). 

Mat50  38 cm 

Mat slope  -1.25 

Selectivity Cubic spline (7 nodes) selectivity for PL Fishery 

   Cubic spline (5 nodes) selectivity for PSLS and PSFS Fisheries 

   Double normal selectivity for Gillnet, Line, and ‘Other’ fisheries 

Logistic selectivity for the longline fishery 

 

 

CPUE indices PL index 1995 – 2022; PSLS index 1990 – 2021. Temporally invariant catchability  

Fishing mortality Hybrid approach (method 3, see Methot & Wetzel 2013).  

Tagging data 

 

Included only tag release from the RTTP program, and EU PS tag recoveries (adjusted 

for externally estimated reporting rates); tags assumed to be randomly mixed at the 

model region four quarters following release; 

 

 

Length composition Multinomial error structure. Length samples assigned maximum ESS of 10. 
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Table 4: Description of the sensitivity models for the 2023 assessment. Description of changes are relative 

to the basic model.  

Model Description 

CPUE indices 

PL Only PL 1995 – 2022 index is included  

PSLS Only PSLS 1991 – 2021 index is included 

Behaviour PSLS 1991 – 2021 index (update to first two quarters of 2021) and the index 

based on the associative dynamics with floating objects and acoustic 2013 – 

2022 are included;  

Tagging data  

TagLambda01 Tag lambda = 0.1 for both components of tag likelihood. 

exTag Tagging data excluded 

Biological parameters 

Linf Estimating the 𝐿∞ growth parameter in the model; increase the ESS of longline 

fishery to 1000 

Model structure 

seas Split the PSFS fishery into four quarterly fisheries and estimate independent 

selectivity for each quarter; Tagging data excluded  

st1980 Starting the model from 1980 assuming a fished equilibrium   

 

 

4.3 Proposed model ensemble (grid) 

On basis of the exploratory analysis, final options were configured to capture the uncertainty related to 

CPUE indices, stock-recruitment steepness, and growth, which are thought to contribute to the main 

sources of uncertainty (Table 5). Thus, the final models involved running a full combination of options 

on CPUE index (2 options), CPUE catchability assumption (2 options), steepness (3 values), growth 

parameter 𝐿∞ (2 options). The final model grid differs to the options chosen for the 2020 assessment: 

the suggested model ensemble does not contain the option of an alternative, two-area spatial structure, 

or the lower tag data weighting option.  

 

 
Table 5: Description of the final model options for the 2023 assessment. The final models consist of a full 

combination of options below, with a total of 36 models.  

Model options Description 

 

CPUE option • U1 – PL 1995 – 2022 index is included 

• Ua – Only PSLS 1991 – 2021 index is included 

• Ub – PSLS 1991 – 2021 index (update to first two quarters of 2021) and 

the index based on the associative behavior 2013 – 2022  

 

CPUE catchability  • q0 – no annual catchability change  

• q1– annual catchability increases of 1.25% (both PL and PSLS) 

 

Steepness • h70 – Stock-recruitment steepness parameter 0.7 

• h80 – Stock-recruitment steepness parameter 0.8 

• h90 – Stock-recruitment steepness parameter 0.9 

 
Growth • L70 – 𝐿∞ parameter fixed at 70 cm  as of Eveson et al. 2012 

• Linf – 𝐿∞ parameter estimated  
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5. MODEL RESULTS 

 

5.1 2020 model continuity run 

The historical stock estimations from model updates up to 2019 are very comparable to the 2020 

assessment reference model (Figure 9), demonstrating the assessment model's relative stability. 

However, there are significant disparities between 2020 and 2022 when the catches, length 

compositions, and CPUE are sequentially updated. The stock biomass significantly dropped under the 

recent catches when there was no updated abundance indicator to inform current recruitment. However, 

the new CPUE index, notably the PL index, which indicates a strong pulse of recruitment into the 

fisheries in recent years, is what is driving the substantial increase in biomass between 2020 and 2023. 

It's important to note that recent compositions of length also seem to indicate above-average recruitment 

in recent years (Model 2-update-LF also suggested biomass increased under the current high catches, 

although to a much lesser extent compared to model 3-update-CPUE). 

 

 

 
Figure 9: Spawning biomass trajectories for IO skipjack tuna from the stepwise model updates from the 

2020 assessment reference model ‘io_h80_q0_tlambda1’. 

 

5.2 Basic models 

The basic model (see Table 3) extends the definition of F-age for the determination of associated 

reference points (e.g., FMSY) to be the current model year (i.e., 2022). The summary and diagnostics 

in this section is largely based on the basic model, but also make references to Model PL and PSLS (see 

Table 4), as the latter are the basis for the proposed model ensemble. 

 

5.2.1 Model fits 

The basic model included both the Maldives PL index and EU PSLS index (as in the previous 

assessment) with equal weighting. The two sets of indices are broadly consistent, in view of their overall 

trend (the increase from 1995 to 2005, the subsequent decline from 2006 to 2015, and the increase in 

more recent years). The model fitted the PL and PSLS indices reasonably and has broadly captured the 

inter-annual variability of both time series (Figure 10 
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Figure 10). However, there were some misfits in some years reflecting differences in the timing of the 

peaks in the two CPUE series, and there are also divergent trends in the residuals from the fits (Figure 

10), which reflected some of the disagreements between the two series (in terms of the severity of the 

historical decline and the recent increases).  While compromise is expected when fitting multiple 

abundance indices corresponding to regional fisheries in a spatially aggregated model, it was thought 

that it would be more appropriate in this case to have separate models based on individual indices 

independently, each of which would serve as an alternative but equally plausible scenario of historical 

abundance trend.  Figure 11 demonstrates how separate models better capture the uncertainty in stock 

productivity and trend induced by the various fluctuations in both indices, and how separate models 

enhance the fits of both the PL and PSLS indices. 

 

The fits to the fleet-aggregated length frequency appear generally satisfactory (Figure 12), and the 

model has captured the gross features of the length composition data (indicating that there is probably 

no significant bias in the estimates of fishery selectivities). However, there is a lack of fit to the larger 

fish in the length samples from the longline fishery (see further discussion in Section 5.3), although it 

is clear that smaller fish were most likely under-sampled. The model has tracked the mean length in the 

catches reasonably well:  it predicted a moderate declining trend for most fisheries which is consistent 

with the observations (Figure 13). The model does not adequately account for the large inter-annual 

variability in the PSFS fishery. The length composition from the PSFS fishery shows some seasonal 

variation as well, with more large fish (>50 cm) in quarters 3 and 4, potentially as a result of seasonal 

growth or shifts in availability (see further discussions in Section 5.3).  

 

The fit to the observed number of tag recoveries was examined for the fisheries which accounted for 

most of the tag returns (i.e., PSLS). The fit to the number of tag recoveries was examined by 

recombining the tags into individual release periods (i.e., aggregating the releases by age class) and 

excluding those recoveries that occurred during the mixing period (Figure 14). The number of tag 

recoveries varied considerably amongst the release periods and most releases occurred in 2006.  Most 

of the observed tag recoveries in the post mix period were from the PSLS fishery and a high proportion 
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of the total recoveries occurred during the first four quarters following the mixing period. The number 

of tag recoveries in the first quarter following the mixing period was generally underestimated (Figure 

14). This can be an indication that the tags weren't properly mixed with the fish population that was 

susceptible to the PSLS fishery. Over the longer term, tagged fish were less vulnerable to the purse 

seine fishery, which resulted in a sharp decline in the number of recoveries. Fits to longer-term 

recoveries may be also reflecting variable tag reporting or mis-specification of natural mortality.  
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Figure 10: Fits to Maldives PL CPUE 1995 – 2022 (a) and the EU PS CPUE 1991 – 2022 (b) for the basic 

model. Residuals from the fits are (c) for the PL index and (d) for the PSLS index. 
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Figure 11: Fits to Maldives PL CPUE 1995 – 2022 (a) for model ‘PL’, and to the EU PS CPUE 1991 – 

2021 for model ‘PSLS’; Residuals from the fits are (c) for the PL index and (d) for the PSLS index. 
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Figure 12: Observed (grey bars) and predicted (red line) length compositions (in 3 cm intervals) for each 

fishery and season aggregated over years for the basic model. 
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Figure 13: A comparison of the observed (grey points) and predicted (red points and line) average fish 

length (FL, cm) of skipjack tuna by fishery for the basic model. 
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(a) PSFS 

 
 

(b) PSLS 

 
 
Figure 14: Observed and predicted the number of tag recoveries over time following the mixing period for 

(a) PSLS and (b) PSFS fishery the basic model. Tag release groups represent the total releases in each 

quarter (aggregating the age groups that define individual release groups). 
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5.2.2 Model estimates 

The selectivity estimates show that smaller fish (40–60 cm) are caught in the PSLS fishery, whereas 

larger fish are caught in the GI, LI, and LL fisheries and the youngest ages (including the 38cm maturity 

threshold) are only weakly vulnerable to the fisheries (Figure 15).  The shape of the selectivity for the 

PL and PSFS reflects the multi-modal length distributions in the fisheries corresponding to a few 

younger and older age classes. The overall dome-shaped selectivity for most fisheries (except LL) could 

also be an artefact of the fixed M assumption, combined with the small number of observations of large 

fish, and uncertain growth curves. 

Estimated annual recruitment has a standard deviation of about 0.3, which is commensurate with the 

assumed value of σR. Assuming larger values of σR did not change of the pattern nor increase the 

magnitude of the recruitment deviations, suggesting that the current assumption of σR did not impose 

excessive constraint on estimates of annual recruitment deviations, and that moderate variability is 

required to match the size composition and CPUE data. The trends in estimated recruitment deviations 

are very similar between model PL and PSLS, with periods of low recruitment correspond to the major 

decline in the PL and PS CPUE indices and recent recruitment has been well above the historical 

average (Figure 16), driving the increase of the abundance index (model PSLS estimated recruitment in 

2021 that was 60% above the long-term average, whereas model PL estimated that recruitment in 2021 

was 95% higher than the average). 

 

The seasonal recruitment distribution estimated by the PL and PSLS models is comparable throughout 

the four quarters and remarkably constant over time, with season one recruitment estimated to be 

somewhat higher and season four recruitment to be lower. The seasonal recruiting distribution was 

mainly driven by seasonal pattern in the CPUE indices.   

 

Estimated biomass showed two steep declines, one in the 1980 through to late 1990s and the other after 

the mid-2000s (Figure 17), which are explained by a combination of catch removals and recruitment 

anomalies. The biomass has increased over the last eight years from the historically low level, although 

the amount of the increase varies depending on which abundance index was employed in the model. It 

is clear from the stock biomass is strongly driven by recruitment (Figure 18). For both PL and PSLS 

models, the deterministic yield curve is well defined, allowing the maximum sustainable yield to be 

determined (Figure 19). The recruitment variability has a major impact on the surplus production of the 

stock, which causes the stock trajectory time series to vary significantly from the equilibrium yield 

curve. 
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Figure 15: Length-based selectivity estimates by fishery for the basic model (overlaid dashed line is the 

length-at-maturity).   

 

(a) PL 

 

(b) PSLS 

 
Figure 16: Estimated annual recruitment deviations for (a) model PL and (b) model PSLS. The shaded 

area represents uncertainty estimates from the MPD fits.  
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Figure 17: Estimated spawning biomass for model PL, PSLS, and behaviour (see Table 4 for model 

descriptions). 

 
(a) PL 

 
(b) PSLS 

 
Figure 18:: Estimated annual surplus production, overlaid with catches, biomass, and recruits for model 

(a) PL and (b) PSLS. 
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(a) PL 

 

(b) PSLS 

 
Figure 19: Phase plots of yields (as ratio of MSY) vs. depletion for model (a) PL and (b) PSLS. The parabola 

curve is the equilibrium yield curve. The purple dots are time series of catch (as ratio of MSY) vs depletion 

1950 – 2022. White and red dots is the actual surplus production in the same year (white indicates the 

surplus production greater than catch and red indicates lower). The region is partitioned into Kobe 

quadrats. 

 

5.3 Sensitivity models 

Selected results from the sensitivity models are provided in Appendix A. Table A1 summarised the 

estimates of key model quantities. The estimated SSB0 ranged from 1,700,000 to 2,300,000 t (Figure 

A1), and current depletion ranged from 41% to 82% (Table A1). 

 

As demonstrated before, separate model fits to the PL and PSLS index produced stock trend estimates 

that are more consistent with the respective index, and the PL index model estimated a more optimistic 

level of current depletion. Alternatively model behaviour included both the PSLS index and the 

behavior-based index (the behaviour-based series are too short to be a stand-alone index, but this model 

removed the very high index in the last two quarters of the PSLS series to alleviate the conflict between 

the two series), which estimated a significantly lower level of current depletion than the model based 

solely on the PSLS index. 

 

The longline fishery has extremely low catches of skipjack tuna, but they are included to provide size-

based information. The LL fishery caught mostly large skipjack tuna and the right-hand side of the LL 

length distribution appeared to be poorly fitted (see Figure 12). The LL catches of skipjack tuna is 

negligible and any bias in the LL selectivity is not expected to have any noticeable impact on the model. 

However, the lack of fits to the larger size classes may indicate that the assumed growth is probably 

biased.  Model Linf estimated the 𝐿∞ as a free parameter (to do that the model also increased the sample 

size of the longline length composition data). The 𝐿∞parameter was estimated to be about 88 cm (about 

18 cm higher than the estimate of Evenson et al. 2012), which allowed the model to better explain the 

larger fish in the LL length samples (Figure A2). The model estimated a more depleted current stock 

status (41% B0) as a higher  𝐿∞ implied that there had been more large fish in the unfished population. 

Although lower values of 𝐿∞ was estimated across the proposed model ensemble (ranging from 79 to 

81 cm, see section 5.4), they are still much higher than the estimate of Evenson et al. 2012. 

 

A seasonally structured fishery where selectivity is independently estimated for each quarter can better 

account for the variability in the length distribution of the PSFS fishery (Figure A3). Model seas 

estimated a significant difference in selectivity between the first two and last two quarters, and there is 

a shift towards the selection of larger fish in the second half of the year. The use of seasonal selectivity 

in this fishery appears to have little impact on overall estimates of stock abundance because the catch 
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from the PSFS fishery is very small.  

 

There is conflict between the tag release/recovery data and the CPUE data, and the relative weighting 

of each dataset influences the population scale parameter (R0). Downweighting the tag data yielded 

substantially higher level of stock biomass and MSY (Table A1). Reducing the weight of tag data (via 

the lambda multiplier of the likelihood component) to 10% has a similar effect to a model that excluded 

the tagging data. A likelihood profile analysis may provide further insights into the conflict between 

the CPUE and tag data.  

 

5.4 Proposed model ensemble  

Despite of the overall consistency between the PL and PSLS index, they differed in the extent of implied 

stock productivity (e.g., B0) and depletion, with the PL index representing a larger decline in vulnerable 

abundance since mid-2000 but a more significant increase from 2016 – 2022.  The index based on the 

associative dynamics with floating objects corroborate the increasing trend in the PSLS index from 

2015 to 2018, but showed an opposite trend from 2018 – 2022, with a large decline in the latter years. 

There has also been some concern about the reliability of abundance indices produced from the purse 

seine fishery, it is important to account for these alternate abundance trend scenarios in the model 

ensemble. 

 

The WPTT22 in 2020 suggested including catchability trends of 0 and/or 1.25% per year in the final 

model grid for the PSLS index, based on a proof-of-concept analysis that assessed PS catchability 

changes using bigeye and yellowfin tuna assessments (IOTC 2020). Given the technological 

advancements that are well known to have happened in the fisheries and the resulting increased fishing 

efficiency, the WPTT22 also advised applying the catchability changes to the Maldives PL index. 

 

It is also suggested to include the scenarios where the 𝐿∞ parameter is freely estimated within the model 

(and increasing the sample size of the LL length composition data) given the uncertainty associated 

with growth parameters as evident in the poor model fits to the longline length composition. 

 

The proposed model options also included three alternative values of steepness of the BH SRR (h 0.7, 

0.8 and 0.9). These values are considered to encompass the plausible range of steepness values for 

skipjack tuna. 

 

Synthesizing above, the proposed model ensemble corresponds to a full combination of three CPUE 

options, two catchability trend scenarios, three steepness values, and two growth parameter options, 

with a total of 36 models (see Table 5). These models encompass a wide range of stock trajectories 

(Figure 20). Across the model ensemble, initial spawning biomass (SB0) ranged from  1 826 990 t to 2 

494 210 t, current depletion ranged from 36% to 74% (SSB2022/SSB0) (Table 6 and Figure 20). 𝐿∞ 

was estimated for half of the models in the ensemble, ranging from 79 to 81 cm. In general, high 

steepness, the PL index, and fixed 𝐿∞ are associated with lower SB0 and higher current stock status 

(depletion), whereas low steepness, the behaviours and the PSLS index, free 𝐿∞ option, are typically 

associated with high SB0 and lower current stock status (Table 6). As expected, the assumption of 

increasing catchability overtime also resulted in lower estimates of the current stock depletion. 
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Table 6: Maximum Posterior Density (MPD) estimates of the main stock status indicators from individual models from final model options.  

 
 SB0 SBMSY  SB2022 SB2022/SB0 SB2022/SBMSY F2022/FMSY F40%SB FMSY MSY Max grad 

io_h70_U1_q0_L70 1 956 540 547 916 1 453 510 0.74 2.65 0.48 0.55 0.81 521 849 0.00053 

io_h70_U1_q0_Linf 2 339 430 658 645 1 306 350 0.56 1.98 0.65 0.46 0.69 485 130 0.00210 

io_h70_U1_q1_L70 2 003 620 561 136 1 312 620 0.66 2.34 0.53 0.55 0.81 534 009 0.00003 

io_h70_U1_q1_Linf 2 40 9610 678 643 1 143330 0.47 1.68 0.74 0.46 0.69 499 321 0.00048 

io_h70_Ua_q0_L70 2 228 800 621 379 1 403 300 0.63 2.26 0.50 0.54 0.80 585 842 0.00010 

io_h70_Ua_q0_Linf 2 494 210 701 165 1 369 270 0.55 1.95 0.60 0.48 0.71 535 164 0.00009 

io_h70_Ua_q1_L70 2 293 910 639 860 1 224 510 0.53 1.91 0.57 0.54 0.80 603 143 0.00003 

io_h70_Ua_q1_Linf 2 575 490 724 391 1 123 150 0.44 1.55 0.73 0.47 0.71 551 499 0.00011 

io_h70_Ub_q0_L70 2 155 140 600 518 1 084 760 0.50 1.81 0.65 0.54 0.80 566 358 0.00004 

io_h70_Ub_q0_Linf 2 395 580 673 029 1 005 350 0.42 1.49 0.82 0.48 0.71 515 189 0.00035 

io_h70_Ub_q1_L70 2 223 240 619 821 987 715 0.44 1.59 0.71 0.54 0.80 584 455 0.00008 

io_h70_Ub_q1_Linf 2 485 230 698 480 869 198 0.35 1.24 0.94 0.48 0.71 533 129 0.00064 

io_h80_U1_q0_L70 1 826 990 437 787 1 393 910 0.76 3.18 0.38 0.61 1.05 560 600 0.00009 

io_h80_U1_q0_Linf 2 146 560 519 452 1 232 100 0.57 2.37 0.52 0.51 0.91 510 709 0.00065 

io_h80_U1_q1_L70 1 869 290 448 055 1 252 150 0.67 2.79 0.42 0.61 1.05 573 278 0.00000 

io_h80_U1_q1_Linf 2 209 420 535 040 1 067 650 0.48 2.00 0.60 0.51 0.90 525 233 0.00088 

io_h80_Ua_q0_L70 2 121 290 505 021 1 377 500 0.65 2.73 0.39 0.60 1.04 641 512 0.00008 

io_h80_Ua_q0_Linf 2 344 650 566 044 1 329 570 0.57 2.35 0.47 0.52 0.93 577 874 0.00003 

io_h80_Ua_q1_L70 2 182 590 520 149 1 203 870 0.55 2.31 0.45 0.60 1.04 660 308 0.00035 

io_h80_Ua_q1_Linf 2 419 580 584 759 1 090 350 0.45 1.86 0.57 0.52 0.93 595 181 0.00011 

io_h80_Ub_q0_L70 2 051 060 488 064 1 067 550 0.52 2.19 0.51 0.60 1.04 620 349 0.00013 

io_h80_Ub_q0_Linf 2 245 850 541 942 971 641 0.43 1.79 0.64 0.53 0.93 554 983 0.00238 

io_h80_Ub_q1_L70 2 114 620 503 715 973 243 0.46 1.93 0.55 0.60 1.04 639 847 0.00001 

io_h80_Ub_q1_Linf 2 329 300 562 599 841 019 0.36 1.49 0.74 0.52 0.93 574 250 0.00018 
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 SB0 SBMSY  SB2022 SB2022/SB0 SB2022/SBMSY F2022/FMSY F40%SB FMSY MSY Max grad 

io_h90_U1_q0_L70 2 243 070 434 653 1 305 060 0.58 3.00 0.35 0.57 1.28 630 177 0.00002 

io_h90_U1_q0_Linf 2 106 230 396 125 1 191 810 0.57 3.01 0.33 0.64 1.43 728 398 0.00120 

io_h90_U1_q1_L70 2 313 580 449 361 1 072 110 0.46 2.39 0.42 0.57 1.28 648 661 0.00007 

io_h90_U1_q1_Linf 1 979 980 371 473 1 057 620 0.53 2.85 0.37 0.64 1.43 684 778 0.00034 

io_h90_Ua_q0_L70 2 144 490 415 543 951 836 0.44 2.29 0.47 0.57 1.29 604 187 0.00009 

io_h90_Ua_q0_Linf 2 040 080 383 563 965 943 0.47 2.52 0.41 0.64 1.43 705 790 0.00009 

io_h90_Ua_q1_L70 2 223 470 431 785 826 690 0.37 1.91 0.54 0.57 1.28 624 958 0.00009 

io_h90_Ua_q1_Linf 2 243 070 434 653 1 305060 0.58 3.00 0.35 0.57 1.28 630 177 0.00000 
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Figure 20: Spawning biomass trajectories from the proposed model ensemble (details in Table 5) 

 

5.5 Diagnostics  
Several diagnostic tools were run for the PL and PSLS model, including Jittering, likelihood profiling, 

and retrospective analysis. 

 

5.5.1 Jitter analysing 
Jittering involves running the model using different initial values of the estimated parameters (adding 

random error to the initial values) and comparing the final values of the objective function negative 

(negative likelihood). It provides an effective way to test whether model estimates converge to a 

(relative) global  minimum. Twenty jitter analyzes were performed on the PL and PSLS models and 

there was no indication that the models converged to a local minimum (as shown by the same likelihood 

values and estimated SB0). Interestingly, the final gradient values fluctuated across  runs,  many of 

them exceeding the convergence threshold (set at 0.0001), possibly because the model converged to a 

region close to the minimum which include different gradients. This suggests that the final convergence 

value itself may not be a good indicator of model convergence, whereas the Jittering of the objective 

function values is more useful. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



IOTC–2023–WPTT25–09 

37 

 

 

(a) PL 

 

(b) PSLS 

 
 

 
Figure 21: Jittering analysis performed to the PL and PSLS model, showing the final objective function 

values, gradient, and estimate of SB0 obtained by running the model from different parameter starting 

values (n=20).  

 

5.5.2 Profile likelihood 
The profile likelihood on R0 confirmed that the (relative) global minimum was obtained by the 

maximum likelihood estimate for both the PL and PSLS models (Figure 22). For the PL model, there 

are conflicts between the PL index, size frequency, and tagging data, where the size data appears to 

support a higher R0, the PL index favours a low R0, and tag data supports an even lower R0; for the 

PSLS model, the tag data supports a lower R0, but there is more consistency between the PSLS index 

and size data, both supporting a higher R0.  Further breakdown of the likelihood components suggested 

that the length composition from the main fisheries (i.e., PL and PSLS) appears to be consistent with 

the total likelihood, providing both the upper and lower bounds for R0, whereas fisheries that caught 

mostly large fish (i.e. LL, GI, LI) provide no constrain on the upper bound for R0 (Figure 23). The 

average fish length in the PL and PSLS fisheries shows a declining trend whereas it remains relatively 

stable in the GI fisheries (see Figure 13). Nonetheless, under the current weighting (i.e., effective sample 

size), the overall influence of the length composition on the stock estimates appears small. 
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(a) PL 

 

(b) PSLS 

 
Figure 22: Likelihood profile for the PL model (left) and PSLS model (right).  

 

(a) PL 

 

(b) PSLS 

 
Figure 23: Component likelihood profile from the length composition data for the PL model (left) and 

PSLS model (right).  

 

5.5.3 Retrospective analysis 
Retrospective analysis is a diagnostic approach to evaluate the reliability of parameter and reference 

point estimates and to reveal systematic bias in the model estimation. It involves fitting a stock 

assessment model to the full dataset. The same model is then fitted to truncated datasets where the data 

for the most recent years are sequentially removed. The retrospective analysis was conducted to both 

PL and PSLS models for the last four years of the assessment time horizon to evaluate whether there 

were any strong changes in results. The analysis indicated that there is only a very minor retrospective 

pattern for the virgin biomass estimate (e.g., reduced SB as data was sequentially removed), but biomass 

estimates since 1985 are very consistent with respect of the recent data. Overall, the retrospective pattern 

appears insignificant (with Mohn’s pho for SB ≈ -0.05), which provided some confidence on the 

robustness of the models.  
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(a) PL 

 
 

(b) PSLS 

 
 
Figure 24: Retrospective analysis summary for the basic model. Each panel shows estimates of key 

indicators from models with data sequentially removed for 1 – 4 years. 

 

6. STOCK STATUS 

 

6.1 Current status and yields 

Estimates of stock status were determined from the model ensemble, which has included alternative 

options on CPUE indices, alternative assumptions on catchability, and alternative values of SRR 

steepness and growth. Stock status was determined for individual models (Table 6), as well as the for 

all (36) models combined, incorporating uncertainty of each model based on estimated variance-

covariance matrix of parameters (Table 7). 

  

MSY-based reference points (see Section 3.5) were derived based on the average F-at-age matrix in 

2022, representing the most recent pattern of exploitation from the fishery. For he selected model 

options, point estimates of MSY ranged from 485 000 t to 728 000 t (Table 6). Annual catches over the 

last five years have been within the range of the estimated target yield (Figure 25). Models with higher 

steepness generally yielded comparatively higher estimates of optimal yield. 

In general, current stock biomass relative to the MSY-based benchmarks are not fundamentally different 

for the range of model options. Averaging across the model grid, fishing mortality rates have been 

increasing significantly since 1980, and has decreased rapidly since 2016, despite that catches have 

peaked at historical high levels over the last few years (Figure 25). Biomass was estimated to have 

declined considerably in the 1980s, again in the mid-2000s, but have increased rapidly since 2015 

(Figure 25).  

Estimates were combined across from the 36 models to generate the KOBE stock status plot (Figure 

26). For individual models, the uncertainty is characterised using the multivariate lognormal Monte-

Carlo approach (Walter & Winker 2019, Winker et al. 2019), based on the maximum likelihood 
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estimates and variance-covariance of F/FMSY and SB/SBMSY. Thus, estimates of stock status included 

both within and across model uncertainty. Combined across the model ensemble, SB2022 was estimated 

to be of 2.30 SSBMSY (1.57– 3.40), and F2022 was estimated 0.49 FMSY (0.32–0.75). Current depletion, 

SB2022/SB0 was estimated to be about 53% (42%-68%), which is also above the target level of 40% 

specified in the HCR (res. 16/02).  The probability of the stock being in the green Kobe quadrant in 

2023 is estimated to be about 98%. The stock is therefore considered not to be overfished and is not 

subject to overfishing in 2022.  While all models in the grid has estimated that the stock is located in 

green Kobe quadrat, models assuming high steepness, fixed 𝐿∞, PL index, and constant catchability  led 

to estimates of higher current status and lower fishing pressure, and models assuming low steepness, 

higher 𝐿∞(estimated),   PSLS and behaviour based indices, and increased catchability led to estimates 

of lower current status and higher fishing pressure (Figure 27). 

 

 

Table 7: Estimated Status of skipjack tuna in the Indian Ocean from the model ensemble.  

Catch in 2022: 648 695 

Average catch 2018–2022: 601 499 

MSY (1000t) (80% CI) 584 774 (512 228–686 071) 

FMSY 0.99 (0.71–1.42) 

F40%SSB 0.55 (0.48–0.65) 

SB0 (1000 t) (80% CI): 2 177 144 (1 869 035–2 465 671) 

SB2022 (1000 t) (80% CI): 1 142 919 (842 723–1 461 772) 

SBMSY 513 831 (369187–678936) 

SB2022/SB0 (80% CI): 0.53 (0.42–0.68) 

SB2022 / SBMSY 2.30 (1.57–3.40) 

F2022 / FMSY 0.49 (0.32–0.75) 
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Figure 25: Estimated stock trajectories for the Indian Ocean skipjack from the final model grid. Thin 

black lines represent 5%, 50%, 95% percentiles. In the catch plot, dotted lines represent estimate of 

Yield40%SSB, the shaded area represents 5th and 95th percentiles.  

 

Figure 26: current stock status, relative to SBMSY (x-axis) and FMSY (y-axis) reference points for the final 

model grid.  Triangles represent MPD estimates from individual models (black, models based on PL index; 

red, models based on PL index; blue, models based on and both PSLS and behaviour index). Grey dots 

represent uncertainty from individual models.  The arrowed line represents time series of historical stock 

trajectory for model PSLS. The dashed lines represent limit reference points for IO skipjack (SBlim = 

0.4SBMSY; Flim = 1.5FMSY). Contours represents 50, 80, and 90% confidence region.
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Figure 27: range distribution of key reference quantities (SB0, SB/SB0, SB/SBMSY, and MSY) 

across models in the final ensemble by uncertainty axis.   

 

7. DISCUSSION 

This report presents a stock assessment for Indian Ocean skipjack using a sex-aggregated, age-

structured Stock Synthesis model. It represents an update and revision of the 2020 assessment model 

with newly available information, including updated and revised CPUE indices and length composition 

data. There are no fundamental changes to the structure of the model compared to the previous 

assessment (Fu 2020), with the revisions mostly concerning the refinement of the fleet compositions. 

A range of sensitivity models were explored to assess the impact of key data sets and model 

assumptions. The final model options involved running a combination of configuration and model 

settings related to the CPUE options, catchability assumptions, stock-recruitment steepness, and 

growth. These model options are thought to have contributed to the main source of uncertainty 

associated with estimates of stock dynamics and productivity. The final estimates of stock status are 

based on a model grid of 36 models, incorporating uncertainty estimates from both within and across 

the model ensemble. Considering the quantified uncertainty, spawning stock biomass in 2022 was 

estimated to be 53% of the unfished levels (SB2022/SSBMSY =2.30). Current fishing mortality was 

estimated to be lower than the target fishing mortality (F2022/FMSY =0.49). The overall estimates 

indicate that the condition of the stock has significantly improved since the assessment.  

 

There has been a substantial increase of fishery dependent abundance index in recent years:  the CPUE 

from the Pole and line fishery increased by 75% from 2019 to 2022, and the PSLS also increased by 

over 30% between 2019 and 2021. As the overall catches for skipjack have been remaining high, the 

increase in abundance was driven by an increase in recruitment which was estimated to be much above 

the long-term average. Environmental conditions (such as sea surface chlorophyll) are believed to 

significantly influence recruitment of skipjack tuna and can produce widely varying recruitment levels 
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between years. Druon et al. (2016) showed that there is significant correlation between the size of 

favourable feeding habitat, catch rates and total catches of skipjack in the Indian Ocean, and that SKJ 

populations respond rapidly to annual changes in the occurrence of productive surface fronts.  Marsac 

(2023) discovered a high correlation between the annual recruitment deviations predicted by the 

assessment model and the sea surface chlorophyll (as a proxy for ocean productivity). The high 

recruitment anomaly estimated in 2022 appears to be supported by the strong positive phase of sea 

surface chlorophyll.  

 

The model ensemble adopted for the previous assessment included an additional spatial dimension. The 

spatial partition could more effectively account for differential regional depletion and the absence of 

basin-scale tag mixing, thus reducing the potential bias inherent in the aggregated model. However, the 

extra complexity brought by the spatial structure necessitates greater data support, which the model 

most likely lacks (for instance, limited tag releases and recovery across area boundaries are not 

informative of movement). The ability of the model to estimate the relative level of biomass among 

regions is also weakened by the absence of information needed to correlate the various CPUE indicators 

among regions (Hoyle and Langley 2018). Given these issues, the spatially disaggregated model 

requires further development and was therefore not considered for the proposed model ensemble. The 

previous model ensemble also had a downweighting option for the tagging data, which accounted for 

some of the uncertainty associated with the tagging data. This option was based on the consideration 

that proper mixing of the tagged and untagged population might never occur at the basin scale. 

However, there is a wide concern over the accuracy of the PL index, which is very spatially constrained, 

and the PSLS index, which is based on fish aggregations and may experience hyperstability. With the 

range of model options explored, downweighting or removing the tagging data produced estimates of 

MSY values that seemed to be unrealistic (twice the highest historical skipjack catches). 

 

Growth is an important source of uncertainty. As the change in mean size of a fished population relative 

to the unfished state is interpreted by the model as being linked to fishery-induced depletion, the lack 

of large fish in the catch, relative to a higher asymptotic length in the model would imply a higher level 

of fishing mortality and, hence a large fishery depletion effect. There is high degree of uncertainty in 

the growth estimates used for skipjack assessment. The 𝐿∞ parameter estimated by Eveson et al. 2012 

was about 70 cm, which was based on tagging data where only a few tags were recovered above 70 cm. 

An earlier study (Evenson 2011) fixed the 𝐿∞ at 75 or 83 cm when estimating the growth curve, in 

recognition of the mode of large SKJ observed in the (poorly sampled) longline fishery. Based on the 

similar RTTO-IO data, Gartner et al. (2011) estimated 𝐿∞ to be 76.9 cm (the study used Fabens’s 

method as opposed to the LEP approach as in Eveson et al. 2012).  A collation of growth parameter 

estimates from a vast array of regional studies for skipjack in the world’s oceans shows an 

average/median 𝐿∞ of 81 cm (Murua et al. 2017). Higher 𝐿∞ values are currently used for skipjack 

assessment in the Atlantic (67, 76, and 87 cm, ICCAT 2009) and Pacific (74, and 86 cm. Jordan et al. 

2012).  Rapid-growing, individual skipjack with a fork length of 80 cm are common, while maximum 

fork length is thought to be about 110 cm (WWF 2015). Given above by having the option of estimating 

𝐿∞  within the model allowed some of the uncertainty associated with growth parameters to be 

incorporated into the assessment to a certain extent. The estimates of  𝐿∞ range from 78-81 cm across 

the model ensemble.  

 

Based on these preliminary results, the stock is considered not to be overfished and is not subject to 

overfishing in 2022. The high productivity and life history characteristics of skipjack tuna (fast growing, 

early maturation, and high fecundity) suggest that this species is resilient and not easily propone to 

overfishing (ISSF 2012). However, some of the early analysis of fishery trend based on indictors of PS 

fishery up until mid-2010s, including declining SKJ catches for purse seiners, declining percentages 

and catch rates of SKJ in FAD schools, decline of SKJ catch per FAD sets, reduced average weight of 

SKJ during this period, suggested symptoms of overfishing in the Western Indian Ocean (Marsac et al. 

2017, Fonteneau 2014). The analysis of the correlation between the annual size of favourable feeding 

habitat and the catch rates and the total catches of skipjack using an ecological niche model agrees with 

the near full exploitation of skipjack in the IO since the 2000s and the subsequent decline in population 

productivity as regulated by habitat size (Druon, et al. 2016). The recent increase in PS FAD CPUE 
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associated with declining catch rate in the free schools could be a result of school fragmentation 

(Fonteneau and Marsac 2016), which hypothesized that the growing number of drifting FADs could 

have partitioned biomass from free schools. There could also be environmental changes or fluctuations 

(e.g., reduced feeding habitats) that resulted in a geographical contraction in SKJ populations and 

therefore higher fishing accessibility (Druon, et al. 2016).  
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APPENDIX A: SELECTED RESULTS FROM THE SENSIVITY MODELS 

 
Table B1. Maximum Posterior Density (MPD) estimates of the main stock status indicators from the sensitivity model options. 

 
 SB0 SBMSY  SB2022 SB2022/SB0 SB2022/SBMSY F2022/FMSY F40%SB FMSY MSY Max. grad 

(0.0001) 

basic 1 734 090 419 342 1 257 130 0.72 3.00 0.41 0.62 1.06 540 824 0.0002 

PL 1 826 990 437 787 1 393 910 0.76 3.18 0.38 0.61 1.05 560 600 0.00009 

PSLS 2 121 290 505 021 1 377 500 0.65 2.73 0.39 0.60 1.04 641 512 0.00008 

behaviour 2 016 190 479 074  971 370 0.48 2.03 0.56 0.60 1.05 609 441 0.0003 

Tag01 2 061 790 497 977 1 654 170 0.80 3.32 0.32 0.61 1.05 633 962 0.0003 

tagEx 2 152 650 518 931 1 776 190 0.83 3.42 0.30 0.60 1.05 659 106 0.0008 

Linf 2 402 830 581 151 994 121 0.41 1.71 0.79 0.44 0.79 477 536 0.0027 

seas 2 113 790 508 901 1 728 960 0.82 3.40 0.31 0.60 1.05 647 316 0.0003 

st1980 1 722 740 420 634 1 201 220 0.70 2.86 0.43 0.62 1.07 542 513 0.002 
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Figure A1: A comparison of estimated spawning biomass from sensitivity models (see Table 4 for a 

description of sensitivity). 

 

  
 
Figure A2: A comparison of estimated growth (𝑳∞) Linf and the fixed growth (𝑳∞ = 𝟕𝟎 𝒄𝒎) (left), and 

fits to the longline length compositions (aggregated) between model Linf and the basic model. 
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Figure A3: A comparison of fits to the PSFS length compositions (aggregated for each quarter) between 

model seas and the basic model (left), and estimated selectivity for each quarter for model seas (right). 

 


