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Abstract 

The age-based stock assessment model is the primary model used in current research on tuna stock assessment. The 

accuracy of age identification has a direct impact on the development of the stock assessment models. The specific 

application of age-identification methods for tuna varies widely across species, oceans, and historical periods, 

however, most methods use hard parts to infer age. There is currently no research on the development and evolution 

of tuna age-identification methods. Based on literature review, we used the Multinomial Logistic Regression (MLR) 

model to examine the differences of tuna age identification methods across species, oceans, and historical periods. 

We found that otoliths and dorsal fin spines analyses were most commonly used in the Pacific Ocean and the Indian 

Ocean than the Atlantic Ocean. Compared to albacore tuna（Thunnus alalunga）, otoliths analysis was more 

frequently used to age bigeye tuna （Thunnus obesus） and yellowfin tuna （Thunnus albacores）. As aging 

procedures advanced, fin spines and otoliths became the main aging materials. It is recommended that age and 

growth studies in the Indian Ocean should be intensified, especially for albacore tuna. 
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1 Introduction 

Many current stock assessments are based on age-structured stock studies that estimate the 

maximum sustainable yield based on stock status, fishing mortality, and parent recruitment, which 

are used to make scientific management recommendations to keep stock in a healthy status of 

exploitation[1]. Accurate age identification is an important precondition for using age-structure-

based stock assessment, which can provide growth data at multiple stages and investigate 

differences in growth patterns at various stages. Improving the accuracy and precision of age 

identification can refine the age differences between individuals and reduce the superposition of 

length groups, thus reducing observation errors in the stock assessment process and improving the 

accuracy of the stock assessment, as well as the subsequent recommendation of more efficient 

management strategies. 

Tuna is a member of the Scombroidi suborder, which contains 5 genera and 15 species[2], and it is 

widely distributed in low and mid-latitude oceans all around the world. Among them, there are seven 

main commercial tuna species: Pacific bluefin tuna (Thunnus orientalis), Atlantic bluefin tuna 

(Thunnus thynnus), southern bluefin tuna (Thunnus maccoyii), albacore tuna (Thunnus alalunga), 

bigeye tuna (Thunnus obesus), yellowfin tuna (Thunnus albacores), and skipjack tuna (Katsuwonus 

pelamis), with production exceeding 5.03 million tons in 2017 and 5.3 million tons in 2019[2]. The 

Atlantic bluefin tuna has the longest history of fishing, with paleontological investigations revealing 

that hard bone tissues was discovered in caves of the Rock of Gibralta more than 30,000 years ago 

[3]. The growth of tuna is tightly related to its environment, with significant variances between 

species and even within species depending on distribution. As a result, Regional Fisheries 
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Management Organizations (RFMOs) divided the seven major commercial tuna species into 23 

stocks based on oceans. After decades of assessment and management, 15 stocks are currently in a 

healthy state [4], but some species are still showing a declining trend in biomass and high fishing 

mortality. Most tuna species can live for up to 10 years, and bluefin tuna are up to 40 years old, with 

large individuals growing slowly and practically ceasing. Therefore, a proper understanding of tuna 

growth characteristics is essential for stock assessment. 

Age identification methods include length-frequency, tag-recapture, and hard-part methods, of 

which hard-part identification is commonly utilized for aging tuna. Compared with length-

frequency and tag-recapture, growth marks formed on hard parts provide more accurate age 

results[5], and the method also features cheaper sampling. The identification of Atlantic bluefin tuna 

by scales was the first aging study of tuna [6]. The emergence of Berry's method in the 1970s led to 

the maturation of vertebral age identification techniques[7, 8], while the use of otoliths made a 

breakthrough [7]. Besides, sampling of fin spines was simple, and the process did not damage the 

economic value of the fish [9], and the use rate increased throughout that period.  

Differences in growth patterns, as well as catching and process, impose varied criteria on the 

selection of material for age identification, which is a primary factor influencing the accuracy of 

age identification results. Age studies of tuna have been conducted by many countries and 

institutions for up to a century, but the temporal and spatial changes in methods using hard parts 

have not been studied. The purpose of this paper is to investigate the status of hard-part aging studies 

for yellowfin, bigeye, and albacore tuna over time. Multinomial Logistic Regression was used to 

analyze the evolution of hard-part methods and their spatial and temporal changes, based on when 

different scholars conducted their studies, the oceans and species. 

 

2 Materials and methods 

2.1 Data sources 

We searched the Web of Science database for literature on the "age and growth of tuna" as the 

subject in this paper, supplementing the earlier papers that are listed in previous studies as well as 

relevant tuna RFMOs[1, 10-13]. Besides, we searched for Chinese age studies of tuna through the 

China National Knowledge Infrastructure (CNKI) using the search term "age and growth of tuna". 

Search conducted on 9/20/2023. 

123 tuna age studies using different hard parts were searched, and categorized and summarized by 

the ocean, species, hard parts, year of publication, and time of sampling. The year of publication 

represented the use of hard part age identification methods in different historical periods, and 81 

studies specifically described the sampling time. If multiple hard part or tuna species were studied 

in the literature, they were counted separately as study samples. 

2.2 Multinomial Logistic Regression (MLR) 

The development and evolution of tuna hard-part age identification methods were examined in this 

paper. The dependent variable consisted of four levels, including scales, vertebrae, otoliths, and fin 

spines, and the effects of three independent variables on the dependent variable were determined: 

year of publication, ocean, and species. The dependent variables were multi-categorical and non-
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sequential, and the independent variables included two qualitative variables, oceans, and species, 

and one quantitative variable, so disordered MLR was used [14], and the equations were as follows: 

ln (
𝑝𝑖
𝑝1
) = 𝛼𝑖 + 𝛽𝑖1𝑥1 + 𝛽𝑖2𝑥2 + 𝛽𝑖3𝑥3，𝑖 = 2，3，4 (1) 

where p1+p2+p3+p4=1, p1, p2, p3, and p4 are the four levels of scales, vertebrae, otoliths, and fin 

spines, respectively, x1, x2, and x3 are oceans, the species, and the years of publication in the 

literature. Respectively, i is the level of the dependent variable, α is the intercept, and β is the 

coefficient of the independent variable. 

Unordered MLR must first set a reference level to obtain the relative parameter values under the 

reference level. Because this study included four levels, a single reference level cannot include the 

changes under all levels. Thus, different reference levels should be established to analyze the 

changes at the remaining levels, and the order of the use of hard parts based on the significance 

relationship. Oceans and species are qualitative variables, and variables need to be chosen as the 

reference group. 

2.3 Model evaluation 

Different independent variables were chosen to fit the multinominal logistic regression equation, 

which was tested by the Akaike Information Criterion (AIC)[15], with the minimum value of AIC 

indicating that it has a significant effect on the selection of hard parts and the equation is as follows: 

𝐴𝐼𝐶 = −2 ln(𝐿) + 2𝑘 (2) 

where k is the number of parameters and L is the likelihood function. 

McFadden R2 is used to evaluate the fitting effect of the logistic regression model, which belongs 

to the pseudo-R2 value. When R2 is in the range of 0.2~0.4 [16], it indicates that the model is well-

suited, and the formula is as follows: 

𝑅McFadden
2 = 1 −

log(𝐿𝑐)

log(𝐿𝑛𝑢𝑙𝑙)
(3) 

where Lc is the model likelihood and Lnull is the corresponding value for the null model, i.e., 

containing only the intercept. 

All computational procedures in this study were implemented through the R-4.1.3, using the nnet 

package for model fitting and the ggpubr package for plotting. 

 

3 Results and analysis 

3.1 Frequency analysis of hard part age studies 

As shown in Figure 1, the number of studies counted by different hard parts and species in the 

Atlantic Ocean waters was 49, accounting for 39.8 % of the total, of which 19 used fin spines and 

28 albacore tuna. There were a total of 25 studies in the Indian Ocean, with otoliths and bigeye tuna 

being the main subjects, and there were a total of 49 studies in the Pacific Ocean, of which otoliths 

and bigeye tuna were the main subjects. 
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In Fig. 2, otoliths were used for age identification for most years. Otoliths were employed for a long 

period in three oceans, and had the highest cumulative number of sampling, occupying 62.1% of 

the total sampling years. Fin spines were one of the main materials used for aging albacore in the 

Atlantic Ocean, with vertebrae and scales being the least overall. 

 

Fig.1 Frequency analysis of studies on hard parts by publication year 
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Fig.2 Frequency analysis of studies on hard parts by sampling year 

 

3.2 Model evaluation 

The independent and dependent variables were fitted separately to obtain the AIC and McFadden 

R2 values for different reference levels as shown in Table 1. Among the three independent variables, 

the year of literature publication had the most significant effect on the selection of hard parts, 

followed by oceans and tuna species. The combination of species and years of literature publication 

fitted the dependent variable better among the combinations of two independent variables. When 

the three independent variables were functioning simultaneously, the AIC value was the lowest 

when compared to others, and the McFadden R2 value was at 0.48, which was the best model. 

Tab.1 AIC and McFadden R2 of the reference group for each independent variable 

Independent 

Variable 

Scale Vertebrae Otolith Spine 

AIC McFadden 

R2 

AIC McFadden 

R2 

AIC McFadden 

R2 

AIC McFadden 

R2 

Ocean 314.19 0.07 314.19 0.07 314.19 0.07 314.19 0.07 

Year 243.12 0.27 241.01 0.28 239.99 0.28 240.94 0.28 

Specie 304.77 0.10 304.77 0.10 304.77 0.10 304.77 0.10 

Specie + 

Ocean 

299.38 0.15 299.38 0.15 299.38 0.15 299.38 0.15 

Specie + Year 215.38 0.40 214.36 0.40 214.38 0.40 214.31 0.40 

Ocean + Year 230.58 0.35 226.84 0.36 226.99 0.36 226.84 0.36 

Ocean + Year 203.38 0.47 201.63 0.48 201.64 0.48 201.70 0.48 



IOTC-2023-WPTT25-10  
 

+ Specie 

 

3.3 MLR statistic 

3.3.1 Differences in the use of hard parts between oceans 

Differences in hard part studies between oceans are shown in Table 2, with a declining trends in 

using otoliths, scales, vertebrae, and fin spines in the Pacific compared to tuna age studies in the 

Atlantic. The Indian Ocean has the highest number of aging studies using scales, vertebrae, and 

otoliths, and the lowest number utilizing fin spines. 

Tab.2 Relative regression statistics for the effect of the ocean on the selection of hard parts 

Reference 

Levels 

Dependent 

Variable 

Independent 

Variable 

Coefficient Standar

d error 

OR P 

 

Scale Vertebrae Pacific -1.53 0.53 3.43 0.004 

  Indian -0.66 0.27 3.17 0.015 

 Otolith Pacific 2.41 0.48 0.06 <0.001 

  Indian 0.02 0.44 1.56 0.96 

 Spine Pacific -0.41 0.50 1.17 0.404 

  Indian -1.26 0.48 5.07 0.008 

Vertebrae Otolith Pacific 1.25 0.40 0.28 0.002 

  Indian -1.08 0.52 2.87 0.037 

 Spine Pacific -1.62 0.53 5.04 0.002 

  Indian -2.33 0.56 10.35 <0.001 

Otolith Spine Pacific -2.89 0.57 0.06 <0.001 

  Indian -1.25 0.61 0.29 0.04 

 

3.3.2 Differences in the use of hard parts between tuna species 

Table 3 shows that yellowfin tuna age studies employed otoliths more frequently than albacore tuna 

studies. Bigeye tuna age identification studies used otoliths, fin spines, scales, and vertebrae in a 

decline trend. 

Tab.3 Relative regression statistics for the effect of species on the selection of hard parts 

Reference 

Levels 

Dependent 

Variable 

Independent 

Variable 

Coefficient Standard 

error 

OR P 

 

Scale Vertebrae Yellowfin 

tuna 

-0.33 0.48 1.10 0.488 

  Bigeye tuna -1.64 0.40 3.13 <0.001 

 Otolith Yellowfin 

tuna 

4.19 0.56 0.01 <0.001 

  Bigeye tuna 2.85 0.39 0.03 <0.001 

 Spine Yellowfin 

tuna 

0.13 0.46 0.76 0.776 

  Bigeye tuna 1.00 0.46 0.24 0.029 
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Vertebrae Otolith Yellowfin 

tuna 

4.23 0.52 0.01 <0.001 

  Bigeye tuna 1.79 0.53 0.17 <0.001 

 Spine Yellowfin 

tuna 

0.02 0.55 0.98 0.974 

  Bigeye tuna -0.11 0.46 1.11 0.810 

Otolith Spine Yellowfin 

tuna 

-4.24 0.75 0.01 <0.001 

  Bigeye tuna -1.92 0.51 0.15 <0.001 

 

3.3.3 Differences in the use of hard parts between different historical periods 

Differences in hard part studies from different historical periods are shown in Table 4, where the 

frequency of otoliths, fin spines, scales, and vertebrae used for tuna age identification decreases 

over time. 

Tab.4 Relative regression statistics for the effect of publishing year on the selection of hard parts 

Reference 

Levels 

Dependent 

Variable 

Independent 

Variable 

Coefficient Standard 

error 

OR P 

 

Scale Vertebrae Year -0.20 0.0003 1.15 0 

 Otolith Year 0.22 0.0002 0.75 0 

 Spine Year 0.17 0.0003 0.81 0 

Vertebrae Otolith Year 0.08 0.0003 0.92 0 

 Spine Year 0.02 0.0002 0.98 0 

Otolith Spine Year -0.06 0.0002 0.94 0 

 

4 Conclusion 

The use of hard parts is directly related to tuna species, oceans, and the year in which the study was 

conducted. The utilization of hard parts and spatial and temporal variation have the strongest 

association of the three parameters. In the late 1970s, breakthroughs in dealing with otolith 

procedures permitted the use of this hard part, resulting in a huge increase in the number of studies 

and hard parts collections. Aging bigeye and yellowfin tuna favored otolith contrast to albacore tuna, 

and dorsal fin spines are the predominant hard part in the Atlantic. Fewer hard-part age studies of 

tuna in Indian Ocean have been done, with the majority of them focussing on the time following the 

creation of the IOTC. 
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