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Abstract: With the development of fisheries research, there has been a gradual shift 

from a single-species management model to an ecosystem-based fisheries 

management model (EBFM). The concept of EBFM is increasingly accepted by 

researchers and regional fisheries management organizations, but there is little 

relevant research and application in Indian Ocean tuna fisheries. In this study, a 

multi-species ecological model (LeMaRns) based on body-length structure was 

constructed based on publicly available data and studies from the Indian Ocean Tuna 

Commission (IOTC) to analyse the effects of different fishing fleets on stock status 

and ecosystem structure under different fishing effort. The results of the study showed 

that an increase in fishing effort resulted in a decrease in population biomass and that 

predatory and competitive relationships between species also influenced changes in 

population biomass. Two ecosystem indicators, Large Fish Index (LFI) and Mean 

Maximum Length (MML), may be more sensitive to the longline (LL) fleet, and both 

LFI and MML showed a decreasing trend with increasing fishing effort, suggesting 

that the proportion of small and medium-sized individuals in the community is 

increasing, which can have important implications for the stability of ecosystem 

structure. As fishing effort continued to increase, the number of stocks at risk of 

collapse began to gradually increase, and the number of stocks at risk of collapse may 

be more sensitive to the longline (LL) fleet. Therefore, inter-species relationships and 

the impacts of different fishing fleets on stock dynamics and marine ecosystems need 

to be fully considered in future fisheries management. 
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1. Introduction 

   The sustainable use of fishery resources is the main goal of current fishery 

research. Current fisheries management is mainly concerned with the stock status of 

target species, and fisheries resources assessment is generally based on single-species 

assessment models, such as the Surplus Yield Model and Stock Synthesis, etc. These 

models provide a powerful tool to further our understanding of the pattern of changes 

in fisheries resources, and they are also the mainstream models used in current 

fisheries management. However, it also has certain limitations. The single-species 

assessment model takes the target species as the object of study and focuses on the 

direct impacts of the fishery, i.e., the role of fishing activities on the composition, 

reproduction and replenishment of the target species' population. Its management 

objective is to maximise production while ignoring the indirect impacts of the fishery, 

such as the destruction of the habitats of target species and the changes in 

inter-species predation, competitive relationships and fish community structure within 

the marine ecosystem caused by fishing activities (Anne et al., 2000; Pikitch et al., 

2004). For most marine fish species, in addition to human harvesting, food 

competition and predation mortality are important causes of changes in fish stocks, 

and the relationships between species are changing as humans continue to exploit 

fishery resources. 

   Single-species models are suitable for assessing the current state of a population 

and making short-term predictions, but for long-term predictions, population mortality, 

abundance, and biomass are vulnerable to interactions between the populations 

(Spence et al., 2004). A number of multi-species models and ecosystem models have 

been developed internationally, including size spectrum model (SSM) (Blanchard et 

al., 2014), Ecopath with Ecosim (EwE) (Daniel et al., 2014) and Atlantis (Fulton et al., 

2005), among others, and these models often incorporate predatory relationships 

between species. LeMaRns (A Length-based Multi-species analysis by numerical 

simulation in R) is a length-based multi-species model developed by Hall (Hall et al., 

2006), which can be used to analyse the dynamics of fish stocks and the impact of 

fishing on marine ecosystems. The model can be used to analyse fish population 

dynamics and the impact of fishing on marine ecosystems. LeMaRns have been 

applied to assess the impacts of mixed fisheries (Thorpe et al., 2016) and the effects 
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of harvest control rules (Thorpe et al., 2019), among others. Since the LeMaRns 

model requires less data than other ecological models and has been successfully 

applied in the North Sea, the LeMaRns model was chosen to analyse the population 

dynamics of tropical tuna in the Indian Ocean. 

   In this study, we used the LeMaRns model to simulate the changes in tuna 

population dynamics and ecosystem structure under different fishing fleets and fishing 

levels, taking the main target species and bycatch species of tuna fisheries in the 

Indian Ocean as the objects of study. The results of this study may provide a reference 

for the sustainable use of tropical tuna resources and mixed fisheries management in 

the Indian Ocean. The results of this study may provide a reference for sustainable 

exploitation and mixed fisheries management of tropical tuna in the Indian Ocean. 

 

2.Materials and Methods 

2.1 Data sources 

   A total of 19 species were selected for modelling in this study, which were mainly 

target and bycatch species in the Indian Ocean tuna fisheries, as well as species at the 

bottom of the food web that have feeding relationships with tuna. The data on catch 

(C), biomass (B) and fishing mortality (F) required for modelling were obtained from 

publicly available data from the IOTC and research reports from relevant working 

groups. The above data spans a 10-year period from 2010-2019. Data required for 

species for which IOTC did not conduct a stock assessment were estimated based on 

relevant research literature. 

   Table 1 shows the biological parameters required for modelling, with data taken 

from the research literature on related species in the Indian Ocean and from the 

fishbase website. The productivity parameter a and the density-related parameter b 

related to the Ricker stock-recruitment relationship, which could not be found to be 

available, were calculated according to the following equations (Stephen et al., 2006): 

a = e11−2.3lnL∞              

b = e0.1513−0.9484lnSmax 

Where: 𝐿∞ is the asymptotic body length of the species; 𝑆𝑚𝑎𝑥 is the maximum 

observed spawning stock size. 
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Table 1. Biological parameters of the 19 species in the model 

Common name Scientific name Linf W_a W_b k Lmat a b 

Tropical two-wing flyingfish Exocoetus volitans 31.5 0.00427 3.12 1.08 14.7905 21.4351 8020 

Pacific chub mackerel Scomber japonicus 41.6 0.00759 3.05 0.3 20.8656 11.3064 2370 

Bullet tuna Auxis rochei 44 0.00955 3.06 0.57 22.2022 9.9380 246 

Frigate tuna Auxis thazard 49 0.00955 3.07 0.95 25.1994 7.7587 148 

Indo-Pacific king mackerel Scomberomorus guttatus 69.6 0.00794 3.01 0.75 35.4373 3.4613 64 

Kawakawa Euthynnus affinis 81.7 0.00955 3.05 0.67 41.8066 2.3940 83.9 

Skipjack tuna Katsuwonus pelamis 82 0.01122 3.11 0.59 42.8506 2.3739 178 

Longtail tuna Thunnus tonggol 111 0.01549 2.97 0.32 60.4327 1.1830 29.4 

Albacore Thunnus alalunga 134 0.01862 2.99 0.15 73.5408 0.7672 5.03 

Narrow-barred Spanish mackerel Scomberomorus commerson 146 0.00676 3 0.4 80.1265 0.6298 34.2 

Yellowfin tuna Thunnus albacares 183 0.01514 3.02 0.4 104.5313 0.3746 11.8 

Bigeye tuna Thunnus obesus 203 0.01413 3.02 0.24 114.1149 0.2951 7.18 

Long snouted lancetfish Alepisaurus ferox 218.5 0.00389 3.12 0.77 43.3708 0.2492 1.45 

Indo-Pacific sailfish Istiophorus platypterus 241 0.00575 3.14 0.15 138.3514 0.1989 0.84 

Swordfish Xiphias gladius 252.2 0.0038 3.15 0.13 146.0899 0.1792 0.63 

Striped marlin Tetrapturus audax 264 0.0055 3.15 0.53 155.3917 0.1613 0.0444 

Black marlin Istiompax indica 306 0.00447 3.13 0.16 177.6091 0.1148 0.5 

Blue shark Prionace glauca 340 0.00447 3.1 0.12 200.5263 0.0901 0.22 

Blue marlin Makaira nigricans 363 0.00427 3.11 0.39 210.2721 0.0775 0.247 

Note: Linf, the von-Bertalanffy asymptotic length of each species (cm); W_a and W_b, length-weight conversion parameters; k, the 

von-Bertalanffy growth parameter; Lmat, the length at which 50% of the individuals are mature (cm); a and b, Ricker stock-recruitment 

relationship parameter. 
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   Table 2 shows the food web matrix of the 19 species in the model, and the data were obtained from the results of stomach contents analyses 

and a review of relevant research literature (Xu et al., 2008; Zhu et al., 2008). 

Table 2. The food web matrix for the 19 species in the model 

  
Species 

Predator 

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

Prey 

1 Tropical two-wing flyingfish 0 0 0 0 0 1 1 0 0 0 1 1 0 1 1 1 1 1 1 

2 Pacific chub mackerel 0 0 1 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 

3 Bullet tuna 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 1 0 1 1 

4 Frigate tuna 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 1 0 1 1 

5 Indo-Pacific king mackerel 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

6 Kawakawa 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 

7 Skipjack tuna 0 0 0 0 0 0 1 0 0 0 1 0 0 1 1 1 1 1 1 

8 Longtail tuna 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 

9 Albacore 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 

10 Narrow-barred Spanish mackerel 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

11 Yellowfin tuna 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 

12 Bigeye tuna 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 

13 Long snouted lancetfish 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 0 

14 Indo-Pacific sailfish 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

15 Swordfish 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

16 Striped marlin 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

17 Black marlin 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

18 Blue shark 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

19 Blue marlin 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Note: 1. Predation relationship; 0. No predation relationship. 

 

1.2 Constructing the model 

   The LeMaRns model is a length-structured fish community model, with the fish 

community being represented in terms of both species and length (Hall et al. 2006). In 

fisheries, body length data are more readily available than body weight data (Lynda et 

al., 2017), and in addition, fishing selectivity is often correlated with body length and 

gear structure, making it easier to perform model parameterisation for mixed fishery 

situations (Spence et al., 2020). The LeMaRns model constructs community structure 

based on the length structure of the fish, reducing predation behaviour to a function of 

the relative lengths of the predator and prey, with feeding changing as the individual 

fish grows (Simon et al., 2002). The LeMaRns model represents many life-history 

processes, including fishing mortality, natural mortality, and predation mortality, as a 

function of body length and can be modelled to reproduce community dynamics with 

a relatively small number of parameters, making the model suitable for fisheries with 

limited data. The basic equations for the LeMaRns model and ecological indicators 

are presented in Table 3, and detailed information on the model equations can be 

found in (Spence et al., 2020). 

Table 3. Basic equations for the LeMaRns model and ecological indicators 

Growth  

von Bertalanffy 𝐿𝑡,𝑖 = 𝐿∞,𝑖[1 − 𝑒−𝑘𝑖(𝑡−𝑡0,1)] 

Mature ratio 𝑀𝑗,𝑖 =
1

1 + 𝑒𝑥𝑝 {−𝜅𝑖(𝐿𝑗 − 𝐿𝑖
(𝑚𝑎𝑡))}

 

Recruitment  

Ricker function 𝑅𝑖 = 𝛼𝑖𝑆𝑖𝑒
−𝛽𝑖𝑆𝑖 

Spawning stock biomass (kt) 𝑆𝑖 =
1

109
∑𝑀𝑗,𝑖𝑁𝑗,𝑖𝑊𝑗,𝑖

𝑛𝑙

𝑗=1

 

Mortality  

Predation mortality (M2) 𝑀2(𝑚,𝑛) =∑∑𝐼𝑖,𝑗𝑁𝑖,𝑗
𝑣𝑖,𝑗,𝑚,𝑛

∑ ∑ 𝑣𝑖,𝑗,𝑘,𝑙𝑊𝑘,𝑙𝑁𝑘,𝑙 + 𝑂𝑙𝑘
𝑗𝑖
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Fishing mortality 𝐹𝑗,𝑖 = ∑𝑒𝑘𝑞𝑖,𝑘(𝐿𝑗)

𝐻

𝑘=1

 

Catchability  

Logistic curve 𝑞(𝐿) =
1

1 + 𝑒𝑥𝑝(−𝜂(𝐿 − 𝐿50))
 

Indicators  

Large fish indicator (LFI) 𝐿𝐹𝐼𝑡 =
∑ ∑ 𝑁𝑗,𝑖,𝑡𝑊𝑗,𝑖𝐼(𝐿𝑖 ≥ 𝐿𝐿𝐹𝐼)

𝑛𝑙
𝑗=1

𝑛𝑠
𝑖=1

∑ 𝐵𝑖,𝑡
𝑛𝑠
𝑖=1

 

Mean maximum length 

(MML) 
𝑀𝑀𝐿𝑇 =

∑ 𝐵𝑖,𝑡𝐿∞,𝑖
𝑛𝑠
𝑖=1

∑ 𝐵𝑖,𝑡
𝑛𝑠
𝑖=1

 

 

   In this paper, fishing effort is used to represent the level of fishing, and for the 

same species being fished by the same fleet, fishing effort is related to fishing 

mortality as follows: 

 

𝐹 = 𝐸
𝐹2010−2019
𝐸2010−2019

 

 

where 𝐸 represents the assumed fishing effort and 𝐸2010−2019represents the average 

fishing effort from 2010-2019, and 𝐹2010−2019 (Table 4) represents the average 

fishing mortality rate of the fleet from 2010-2019. By making the effort coefficient 

𝑋 =
𝐸

𝐸2010−2019
, 𝐹 can be expressed as 𝐹 = 𝑋𝐹2010−2019. Setting the fishing mortality 

rate can then be adjusted by adjusting the assumed effort coefficient 𝑋. 

   In this paper, it is assumed that there are four different fishing fleets in the Indian 

Ocean tuna fishery, including longline (LL), gillnet (GN), purse seine (PS) and other 

(OT). Actual fishing activities are complex and variable, and to simplify the model 

and make it easier to study, it is assumed that each species can only be fished by one 

fleet. Based on the proportion of each species' catch by each fleet to the total catch of 

that species in 2010-2019, the fleet with the largest proportion was selected to be 

assumed to be the only fishing fleet for that species (Table 4). 
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Table 4. Fishing fleet and average fishing mortality rate (𝐹2010−2019) for each species 

Species Gear 𝐹2010−2019 

Tropical two-wing flyingfish OT 0.01 

Pacific chub mackerel OT 0.01 

Bullet tuna LL 0.4843 

Frigate tuna LL 0.4843 

Indo-Pacific king mackerel GN 0.4843 

Kawakawa GN 0.4849 

Skipjack tuna PS 0.3985 

Longtail tuna GN 0.5563 

Albacore LL 0.2669 

Narrow-barred Spanish mackerel GN 0.4902 

Yellowfin tuna PS 0.1901 

Bigeye tuna LL 0.2141 

Long snouted lancetfish OT 0.01 

Indo-Pacific sailfish GN 0.2796 

Swordfish LL 0.1134 

Striped marlin LL 0.5367 

Black marlin GN 0.3098 

Blue shark LL 0.2458 

Blue marlin LL 0.2716 

 

2.3 Model fitting and validation 

   Uncertainty in the model parameters is an important factor causing model error, 

and in order to reduce the uncertainty in the model parameters, the uncertain 

parameters b of the LeMaRns model were fitted in this study using a Bayesian 

framework (Spence et al., 2016). Within this framework, we use a Markov chain 

Monte Carlo (MCMC) algorithm (Gelman et al., 2013) with parallel tempering 

(Swendsen et al., 1986) to sample from the posterior distribution. 

   To obtain reasonable results, the initial model should meet the following two 

criteria (Thorpe et al., 2016): (1) run the model in the unfished scenario, where all 

species should persist and ultimately reach equilibrium; and (2) Using the final 

equilibrium state of validation criterion (1) as a starting point, run the model for 30 

years with current fishing effort (1 × 𝐸2010−2019). The resulting ratio of predicted 

biomass 𝐵𝑖 to the 2010-2019 average biomass (𝐵2010−2019) assessed by the IOTC 

single-species assessment model ranges from 0.5 to 2.0. 

   It was verified that after 50 years of running the model without fishing, all 19 
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species persisted and eventually the biomass of each species reached equilibrium (Fig. 

1), and the ecosystem indicators MML and LFI also reached equilibrium after 

fluctuating in the early period (Fig. 2), which meets the validation criteria (1) of the 

model. Using the end state at equilibrium as a starting point, after 30 years of model 

runs at the current level of fishing effort (1 × 𝐸2010−2019), the ratio of biomass 𝐵𝑖 to 

𝐵2010−2019 for each species ranged from 0.5 to 2.0 (Table 5), which meets the 

validation criteria (2) of the model. In summary, the LeMaRns established for 

modelling tropical tuna fisheries ecosystems in the Indian Ocean is reasonable. 

 

Fig.1. Changes in biomass of each species over 50 years of running the model under a 

no-fishing scenario 
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Fig.2. Changes in ecosystem indicators over 50 years of running the model under a 

no-fishing scenario 

 

Table 5. Ratio of LeMaRns model predicted biomass 𝐵𝑖 to IOTC single species 

model biomass estimates 𝐵2010−2019 

Species 𝐵𝑖 𝐵2010−2019⁄  

Tropical two-wing flyingfish 1.04 

Pacific chub mackerel 0.92 

Bullet tuna 1.01 

Frigate tuna 0.99 

Indo-Pacific king mackerel 1.03 

Kawakawa 0.91 

Skipjack tuna 0.98 

Longtail tuna 0.78 

Albacore 1.05 

Narrow-barred Spanish mackerel 1.03 

Yellowfin tuna 0.99 

Bigeye tuna 1.08 

Long snouted lancetfish 0.98 

Indo-Pacific sailfish 0.97 

Swordfish 1.07 

Striped marlin 0.90 

Black marlin 1.06 

Blue shark 0.90 

Blue marlin 0.95 

 

2.4 Model run 

   As the IOTC has banned fishing with gillnets in the high seas areas of the Indian 

Ocean from 2022, only three types of fishing fleets other than gillnets are analysed in 

this study. Using the end state of validation criterion 2 as a starting point, it was 

assumed that the three fishing fleets fished for 50 years at five levels of fishing effort 

［(0、0.5、1、1.5、2、2.5) × 𝐸2010−2019］. The changes in biomass and population 

status of each species were observed under different fishing scenarios, while changes 

in fish community structure and ecosystem stability were monitored through Large 

Fish Index (LFI), Mean Maximum Length (MML). 
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3. Results 

3.1 Biomass of each species 

   The results of the study showed that as fishing effort increased, the biomass of 

each species showed a clear downward trend based on the model setup of a single 

fishing fleet (Fig.3.). The biomass of bigeye tuna, yellowfin tuna, albacore tuna and 

skipjack tuna were less affected by other fishing fleets, but the biomass of swordfish 

and blue shark were affected by other fishing fleets in addition to a single fishing fleet 

set up by the model, which is closely related to predation and competition between 

species. 

 

(a) Bigeye tuna 

 

(b) Yellowfin tuna 
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(c) Albacore tuna 

 

(d) Skipjack tuna 

 

(e) Swordfish 



IOTC-2023-WPTT25-14 
 

 

 

(f) Blue shark 

Fig.3. The effect of varying fishing effort on the biomass of each species. 

 

3.2 Ecosystem indicators 

   The ecological indicators showed different trends with increasing fishing effort 

under different fishing fleets.(Fig.4.) As the fishing effort of the LL fleet increased, 

both LFI and MML showed a downward trend; as the fishing effort of the PS fleet 

increased, LFI showed an upward trend, and MML showed an upward trend followed 

by a gradual downward trend.(Fig.4.) Overall, LFI and MML are more sensitive to 

the LL fleet. 
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Fig.4. The effect of varying fishing effort on the ecological indicators (LFI and 

MML). 

 

3.3 Risk of stock collapse 

   A stock is deemed to have collapsed if its spawning stock biomass (SSB) falls 

below 10% of its unfished SSB (Worm et al., 2009). Fig.5. depicts the number of 

stocks at risk for each fleet at different levels of fishing effort. As fishing effort 

increased, the number of stocks at risk of collapse for species fished by the other two 

fleets except OT began to increase, and the number of stocks at risk of collapse was 

primarily sensitive to the effort of the LL fleet. 

 

Fig.5. The effect of varying fishing effort on the number of stocks at risk of collapse. 
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4. Discussion 

4.1 Effects of fishing on species biomass 

   The results of this study showed that with increasing fishing effort, the biomass of 

each species showed a decreasing trend based on a single fishing fleet in the model 

setup, which is consistent with the results of related studies (Feng et al., 2019). The 

biomass of species such as swordfish and blue shark responded to fishing fleets other 

than the one set up by the model, e.g., as the fishing effort of the PS fleet increased, 

the biomass of swordfish and blue shark nevertheless showed an increasing trend (Fig. 

3.). This is related to predatory and competitive relationships between species, e.g. a 

reduction in food competitors will indirectly lead to a rise in their biomass. 

4.2 Impacts of fishing on ecosystems 

   Ecosystem indicators can be used to monitor the status of fish communities and to 

analyse the effects of fishing on fish community structure. Both LFI and MML have 

proven their utility in studying marine ecosystems in past studies (Thorpe et al., 2014). 

In tuna fisheries, individuals caught in longline fisheries are generally larger, i.e. the 

main target is individuals in the medium to high length groups. As two length-based 

ecosystem indicators, both LFI and MML are more sensitive to LL fishing fleets, 

suggesting that fleets fishing for larger fish have a greater impact on ecosystem 

structure. Decreases in LFI and MML indicate a decrease in the proportion of large 

individual fish and an increase in the proportion of small individual fish in the 

ecosystem, which may have a negative impact on ecosystem stability. A deeper 

understanding of how the LL fleet operates and careful trade-offs with the rest of the 

fleet are therefore central to achieving the objectives of mixed fisheries management 

in fisheries management. 

4.3 Risk of stock collapse 

   In the results of this study, the number of populations at risk of collapse began to 

gradually increase as fishing effort increased, which is consistent with the actual 

pattern of population change, i.e., when increasing fishing effort reaches a certain 

threshold it will result in population collapse. Especially after fishing effort exceeded 

3× 𝐸2010−2019, the number of stocks at risk of collapse began to gradually increase. 

Fishing effort should therefore be reasonably controlled to avoid the occurrence of 



IOTC-2023-WPTT25-14 
 

 

stock collapse. The effects of different fishing gears on stock status should be fully 

considered in future studies to achieve sustainable use of fishery resources. 
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