Commission des Thons de l'Ocean Indien
Food and Agriculture
Organization of the
United Nations
iote ctoi

< Methodology of data collection (OPENARTFISH) and estimation of small-scale fisheries catches in Madagascar »

SUMMARY

Introduction

1-Fisheries data collection system in Madagascar
2-Note on fisheries
3-OPENARTFISH survey system:
.Context
.How to collect data (Strategies)
4-Methodological approach
5-OPENARTFISH results for the year 2020-2022
6-Future prospects

Introduction

An island country located in the southwest of the Indian Ocean, Madagascar, the fourth largest island in the world with an area of $587,000 \mathrm{~km}^{2}$, is located to the east of the African continent from which it is separated by the Mozambique Channel. The latest statistical estimates put its population at around 27 million inhabitants. With more than $5,600 \mathrm{~km}$ of coastline, 117,000 km^{2} of continental shelf, more than $113,000 \mathrm{~km}^{2}$ of territorial waters and an Exclusive Economic Zone (EEZ) extending over 1,140,000 km^{2}, Madagascar has immense resources fisheries. Furthermore, the surface area of lakes, lagoons and other bodies of water favorable to inland fishing, and therefore of obvious fishing interest, is estimated at around 1,500 km^{2}.

Tunas

- tunas and associated species which cross the Malagasy EEZ during their migration.

The main species targeted in the western Indian Ocean are skipjack, yellowfin, bigeye tuna and swordfish. Their potential in Malagasy waters is estimated at 51,600 t by the Indian Ocean Tuna Commission (CTOI) which supervises their exploitation. This is an indicative and unpredictable estimate due to the highly migratory nature of these species.

The potential for sensitive species (sharks and rays) is unknown for the ministry in 2021. Shark and ray species are mainly caught by industrial tuna fishing (longline and purse seine fishing), industrial shrimp fishing, artisanal fishing and small fishing

1-Fisheries data collection system in Madagascar

-The framework surveys (ECN)
These were carried out during the period two thousand twelve to two thousand thirteen (20122013), twenty-four years after that of nineteen hundred and twenty eight (1988) for marine waters traditional and continental. Updated national framework survey (ECN 2022-2023) currently undergoing final validation.
-Catch Evaluation Survey (CEE) or CAS
These data are not available since 1991-1997. Partials (1998-2005)
-Routine data collection
This is a daily data collection carried out by fisheries staff and management unit members. Mainly, it deals with the collection of data on catch weight and value of fish by species and fishing vessel

2-Note on fisheries

In Madagascar, there are 3 types of fisheries:
-Industrial fishing;

Industrial Fishing
-Artisanal fishing ;

Artisanal Fishing

-Small fishing or ex traditional or small scale fishing.

Small scale Fishing

Definition Small fishing:

Fishing activity reserved for natural persons of Malagasy nationality, practiced in waters under Malagasy jurisdiction using motorized boats, the total engine power of which is less than fifteen (15) horsepower (HP), non-motorized boats or foot.

REFERENCE IN AFRICA AND REGIONAL COUNTRIES:

-Small-scale fishing: Artisanal fishing (+7 to 13 m)
-Artisanal fishing: Semi-industrial

3-OPENARTFISH survey system: .Context

DOCUMENTS: National strategy on improving the collection, analysis and dissemination of fisheries and aquaculture data

The new strategy takes into consideration the Pan-African policy defined by the Policy Framework and Strategy for Fisheries and Aquaculture Reform in Africa.
At the national level, this strategy aligns with the MPEB Policy through its statement by promoting transparent and responsible governance by highlighting the implementation of reliable decision-making tools through the establishment of a centralized statistical system, reliable and usable in real time for the entire sector
-The last estimate of Malagasy small-scale fishing catches was in nineteen hundred and ninety (1990) (with the assistance of project MAG/85/014, Food and Agriculture Organization of the United Nations, Madagascar, October 1991), during the period from nineteen hundred and forty twenty-one to two thousand and eleven (1991-2011), no collection of information at the fishermen level, due to lack of resources (financial, human, material, etc.) and production remains still from a first estimate by the FAO in 1990.

From the year two thousand and twelve (2012) until today, the fisheries administration with the person responsible for fishing and aquaculture statistics has been decided to estimate the production of small-scale fishing from marketing data

- In two thousand fifteen to two thousand sixteen (2015-2016), the SWIOFISH2 project, at the level of the three (3) priority regions (Diana, Analanjirofo and Melaky) allowed the establishment of production data collection, with the support FAO of OPENARTFISH or (Approaches, Rules and Techniques for FISHeries statistical monitoring) systems with mobile phone application (ODK or IONIC) including an appropriate sampling strategy

CONVERT OPENARTFISH MADAGASCAR INTO A WEB APPLICATION BASED DATABASE

-In two thousand and nineteen (2019): it is strongly recommended (FAO statistics expert «M.GERTJAN Degraaf» in Madagascar) to convert the OPENARTFISH database to the WEB application to have a decentralized system.

The use of this software in general is divided into two categories including:
-Entry or consultation of data on the web application (decentralized statistical manager)
-Entering and sending data via mobile to server (data collectors or Investigators)

Link : (google chrome ou Microsoft edge)
154.126.93.188/peche_ext

Identifiez vous à votre compte
$\frac{\text { Email }}{\text { Courriel obligatoire! }}$

Mot de passe
Mot de passe obligatoire!

Pas encors inscrit? Créer un compte

WEB application interface:

-After the dissolution of the Antsiranana Tuna Statistical Unit or (Ex USTA) at the beginning of the year two thousand and twenty two (2022), the fisheries administration with the Directorate of Studies, Statistics and planning (DESP) was decided to estimate the production of small-scale tuna fishing and assimilated species from the OPENARTFISH system and software at the level of thirteen (13) coastal regions.

Why?
-No coastal fishing data and declaration of statistical data following the IOTC requirement from July 2021 until today.

-OPENARTFISH coverage area since 2019-2023

SMALL FISHING: Estimated small-scale fishing catches
Branches of activity: Maritime and continental
Products: all species combined

.How to collect data (Strategies)

-Evaluate existing data sets;
-Describe the operating characteristics of the sector or sub-sector (e.g.: fishing, market, fleet, community, etc.), also known as census, framework survey;
-Decide which approach to take: complete enumeration or sampling
-Design collection methods based on the approach taken, including the form of stratification to be used in sampling;
-Implement a test phase to validate the method (pilot phase) including the participation of other stakeholders;
-Establish a continuous feedback mechanism between data sources and data users

4-Methodological approach

Data collection is carried out by full-time data collectors residing throughout the duration of the survey in the fishing village.

The OPENARTFISH system estimation procedure is summarized schematically as follows:
-NEED FOR DATA COLLECTORS (INVESTIGATORS) The aim is to collect sample data on total catch and species composition, associated effort, and other secondary data such as prices/values
-APPROACHES: by sampling, where only a portion of the members of the total population are assessed
-CALCULATION (sample, estimate) :

- CPUE sample (catches per unit of effort)

CATCHES/ESTIMATED DAILY VALUES $=$ total sample X extrapolation factor

Extrapolation factor $=$ Number of landings for the same boat-gear combination on the Number of samples of the same boat-gear combination

The quantity [TOTAL EFFORT] is not directly observable. It is therefore developed in the following form.

```
[TOTAL EFFORT] = [TOTAL UNIT] x [PAB] x [NUMBER OF FISHING DAYS]
```

[TOTAL UNIT] is the total number of fishing units. It is known during the framework investigation.
$[\mathrm{PAB}]$ is the abbreviation for "Probability of Boat Activity".

Total fishing effort $=\mathrm{F} \times \mathrm{PAB} \times \mathrm{D}$
Or:
F is the total number of canoes in the frame survey;
PAB is coefficient of boat activity or fishing activity;
D is the total number of days in a month for PAB.
$\mathrm{PAB}=($ Fishing yesterday $(\mathrm{yes}=1$ or no $=0)+$ Fishing before yesterday $(\mathrm{yes}=1$ or no $=0)+$ number of fishing days last week (1 to 7,0 if no activity) on the number of fishing days in a month

-PAB system: Direct interviews with fishermen (system adopted in Madagascar after the pilot survey in 2018)

-As the total number of units of the site is already known during the framework survey, it is enough to observe the "number of units released" per day and take the average to obtain the PAB of a site at course of one month. PAB SURVEY OR EFFORT SURVEY
-EFFORTsample
MONTHLY CATCHES/VALUES/FISHING EFFORT = total sampling days X Extrapolation factor

Extrapolation factor = number of fishing days in the month for the boat-gear combination over the number of sampling days in the month for the same boatgear combination
-STRATAL ESTIMATION
ESTIMATED CATCHES/VALUES/TOTAL EFFORT = total sample in stratum X extrapolation factor
Extrapolation factor $=$ total number of boats in the stratum on the total boats in survey sites)

Data on the number of boats must come from the framework survey

So, after extrapolation, the estimated total catches are:

Estimated TOTAL CATCHES: (Number of fishing units \mathbf{X} Average PAB X Monthly Days X Average CPUE) / 1000 (tons)

-EXISTENCE OF FRAMEWORK SURVEY DATA

The objective being to exhaustively enumerate fishing units in the entire study area, the work carried out in the field for data collection is of two types, namely the identification and enumeration of fishing villages. then the survey of fishing households.
-Definition of fishing unit:
Characteristic of canoes with their main gear or combination of boat / gear
example: monoxyl canoe + gill line
canoe plank + line

-TECHNIQUES:

In Madagascar there are two (2) fishing techniques:
a- Canoe fishermen
b- Fishermen on foot
-Design collection methods based on the approach taken, including the form of stratification to be used in sampling
-In principle, there are three sampling methods and their application depends on the availability of staff and budget.

Sampling in space and time is more or less the real situation

Important: to remember

-on certain sites, boats are sampled (space)
-sampling is carried out on certain days only (times)
-There are two main types of stratification in a data collection program:
-Major strata: done for administrative classification, e.g. region, district
-Minor strata: to improve sampling for greater precision and to reduce costs, e.g. boat types, gear types

A minor stratum must be a geographical partition of homogeneous climate
Homogeneity is essential because it is at the level of the minor stratum that the estimation and extrapolation will be made.

Stratification reduces error in sample estimates by systematically eliminating as much of the data variability as possible through the sampling design. This result is obtained by dividing the sample population into homogeneous groups or strata.

The major practical objective of stratification is to reduce the variability of sampled data, which will improve the reliability of the collected data

Example stratification :
.Major stratum: Madagascar
.Minor stratum: Region
.Survey site

-CHOICE OF SITES

The criteria for choosing sites are:
Representativeness with regard to the fishing techniques identified in the framework survey (all fishing units);
Representativeness with respect to the resources of the stratum;
The viability of the locality (accessibility, security in all areas)
Number of fishermen in the survey site
Existence of the telephone network (telma, orange, airtel)

-SAMPLING OF CATCHES

-It is also a sampling survey, that is to say that for the days defined on the calendar, it will record the catches of a few fishing units (exhaustiveness is not possible).
-It is the landing of a fishing unit that must be weighed and broken down by species according to the list previously defined with the supervisor.
-The type of fishing unit, which he notes on the form, must appear in the framework survey.
-The fishing duration in number of days must appear on the form.
-The following information was mentioned in the sheet established for this purpose: canoe/foot, fishermen's exit and the total weight landed.

- SURVEY SHEETS

Modèle fiche d'enquête de la petite pêche
Échantillonnage des Captures

- SAMPLE MONITORING PER MONTH

FICHE DE SUIVI NOMBRE D'ECHANTILLON
Région: DIANA
Nom enquêteur : MODESTE 水iziky
Site : AMPASINDAKA

mos.Novembse		smemex.05,11, 2018				smmeneol2/11/2018					semine $19,11,200$					Semme a 0 - 1 ,					2mamina $1,1-1$						
nomengin		Un Mmar	Men kev	sen ven ${ }^{\text {som }}$		un	mer	$\int_{\text {er }}^{1} \mid{ }_{v e n}$				warl Mel	Jen ven			mom								,	ven Som	oim	Troal
Ligne	23	$5{ }^{\circ}$		34		3.			3.1		64			3													23
Pulgme	25											3.															
Palangra	10																										00
,																											
																											26

-DATA INPUT AND PROCESSING

The data to be compiled is obtained from a sample survey.
The entry and processing of data from the small-scale fishing effort/catch survey were carried out over time with the OPENARTFISH software.

-DISTRIBUTION OF THE SAMPLE

To obtain a relative error of fifteen to twenty percent (15 to 20%) for P.U.E at a 90% probability level, from approximately 50 to 75 samples, an average of 60 per month should be taken for each fishing unit and for each minor stratum

5-OPENARTFISH results for the year 2020-2022

Since two thousand and fifteen (2015), the statistics officer in charge of fishing with the SWIOFish2 project assistant has been trying to set up a statistical system for Malagasy small-scale fishing. Preparing such a system requires prior knowledge of the structural characteristics of the fishery. These types of information were obtained thanks to the results of the framework survey on the entire island in both the marine and continental environments (national framework survey report 2012-2013/PACP project).

The field phase of the pilot survey (field report no. 01) of small-scale fishing catches could only start between June and November 2018 for maritime fishing. The results of the 2019-2022 survey have already been processed and are the subject of an initial estimate of Malagasy small-scale fishing production (field report $\mathrm{n}^{\circ} 02$).

1-a-Number of samples/month and number of data collectors per survey site-Diana

IOTC-2023-WPDCS19-31

Region	district	Survey site	number of data collectors	Fishing unit		number of sample
DIANA	Ambilobe	ANKAZOMBORONASUD	2	Monoxyl canoe/pirogue	gill net	20
				Monoxyl canoe/pirogue	kaokobe	30
				Monoxyl canoe/pirogue	poto harato	30
				Monoxyl canoe/pirogue	poto horoba	15
				Monoxyl canoe/pirogue	sihitry	60
				Monoxyl canoe/pirogue	valakira	10
		ANKAZOMBORONA NORD	1	Monoxyl canoe/pirogue	gill net	10
				Monoxyl canoe/pirogue	poto horoba	35
				Monoxyl canoe/pirogue	valakira	30
		ANTSATRANA	1	Monoxyl canoe/pirogue	garigary	60
				Monoxyl canoe/pirogue	poto horoba	10
				Monoxyl canoe/pirogue	valakira	20
				Monoxyl canoe/pirogue	Longline	20
	Ambanja	AMPAMPAMENA	1	Monoxyl canoe/pirogue	gill net	15
				Monoxyl canoe/pirogue	kaokobe	30
				Monoxyl canoe/pirogue	Snorkel	10
		ANKIGNY	1	Monoxyl canoe/pirogue	gill net	10
				Monoxyl canoe/pirogue	line	10
				Monoxyl canoe/pirogue	Longline	20
	Diego II	AMBOLOBOZOKELY	1	Monoxyl canoe/pirogue	gill net	10
				Monoxyl canoe/pirogue	line	10
				Monoxyl canoe/pirogue	fusil à poissons	60
				Monoxyl canoe/pirogue	Snorkel	10
		AMPASINDAVA	1	Monoxyl canoe/pirogue	line	15
				Monoxyl canoe/pirogue	Longline	10
				Monoxyl canoe/pirogue	Snorkel	25
	Nosy Be	AMBATOZAVAVY	1	Canoe board/plank	gill net	60
				Canoe board/plank	line	60
		DZAMANDZAR AMPASY	2	Monoxyl canoe/pirogue	line	35
				Monoxyl canoe/pirogue	nasse	60
				Monoxyl canoe/pirogue	Turlute	60
				Monoxyl canoe/pirogue	Snorkel	20
				Monoxyl canoe/pirogue	Longline	30

1-b-Number of samples/month and number of data collectors per survey siteANALANJIROFO

Region	district	Survey site	number of data collectors	Fishing unit		number of sample
ANALANJIROFO	Maroantsetra	NAVANA	2	Monoxyl canoe/pirogue	Longline	15
				Monoxyl canoe/pirogue	line	15
				Monoxyl canoe/pirogue	jarifa	40
				Monoxyl canoe/pirogue	moustiquaire	50
		MASINDRANO	1	Monoxyl canoe/pirogue	jarifa	20
				Monoxyl canoe/pirogue	gill net	10
				Monoxyl canoe/pirogue	moustiquaire	10
		RANTOHELY	1	Monoxyl canoe/pirogue	Longline	15
				Monoxyl canoe/pirogue	gill net	10
			1	Monoxyl canoe/pirogue	line	15
		A	1	Monoxyl canoe/pirogue	gill net	10
	Mananara Nord	ANTANAMBE	1	Monoxyl canoe/pirogue	gill net	10
				Monoxyl canoe/pirogue	Snorkel	60
				Monoxyl canoe/pirogue	nasse	30
		FONTSIMARO	1	Monoxyl canoe/pirogue	Longline	60
				Monoxyl canoe/pirogue	gill net	10
				Monoxyl canoe/pirogue	line	15
		AGNIRIBE	1	Monoxyl canoe/pirogue	Longline	30
				Monoxyl canoe/pirogue	line	15
				Monoxyl canoe/pirogue	gill net	25

1-c-Number of samples/month and number of data collectors per survey site-MELAKY

Region	district	Survey site	number of data collectors	Fishing unit	number of sample
MELAKY	MAINTIRANO	Ampasimandroro Sud	1	Canoe board/plank + longline	15
				Planché+Filet maillant	7
				Planché+Jarifa	7
				Planché+Moustiquaire	10
		Ampasimandroro Sud	1	Canoe board/plank + longline	15
				Canoe board/plank + Gillnet	7
				Planché+Jarifa	7
				Planché+Moustiquaire	10
		Maro-Antaly	1	Planché+Jarifa	10
				Planché+Filet zz	10
		Ambalahonko	1	Canoe board/plank + longline	5
				Canoe board/plank + Gillnet	10
				Planché+Moustiquaire	20
		Nosy- lava	1	Planché+Jarifa	6
				Planché+Palme masque tuba	60
	MASOARIVO	Mozambiky	1	Monoxyl canoe/pirogue+Gillnet	12
				Monoxyl canoe/pirogue+longline	10
				Monoxyle+Moustiquaire	8
		Antsingilo	1	Monoxyl canoe/pirogue+Gillnet	4
				Monoxyl canoe/pirogue+longline	5
				Monoxyle+Moustiquaire	6
				Monoxyle+Garigary	15
		Ankelilaly	1	Monoxyl canoe/pirogue+Gillnet	4
				Monoxyl canoe/pirogue+longline	5
				Monoxyle+Moustiquaire	6
				Monoxyle+Garigary	15
	BESALAMPY	Ampongobe	1	Canoe board/plank + longline	15
				Canoe board/plank + Gillnet	10
		Beloba	1	Canoe board/plank + Gillnet	15
				Planché+Filetzz	15

2-Number of sample per fishing unit per month per minor stratum : case of the DIANA-2020 Region

Fishing unit	Number of fishing units in the framework survey	Jan	Feb	Mar	Apr	May	Jun	July	Aug	Sept	Oct	Nov	Dec
Monoxyl canoe/pirogue +fusil à poissons	95	60	35	12	14	0	0	0	0	0	0	0	18
Monoxyl canoe/pirogue+ garigary	56	2	0	0	0	0	0	0	0	0	0	0	0
Monoxyl canoe/pirogue+ harato poto	58	0	0	15	15	15	15	15	16	15	0	30	12
Monoxyl canoe/pirogue+ horoba	88	9	10	10	11	15	10	45	32	16	34	33	24
Monoxyl canoe/pirogue+ kaokobe	83	30	30	30	30	15	30	30	30	28	30	56	29
Monoxyl canoe/pirogue + line	207	66	70	39	72	70	35	35	35	40	61	57	55
Monoxyl canoe/pirogue+moustiquaire	459	31	31	30	29	31	24	30	30	31	26	57	30
Monoxyl canoe/pirogue + nasse	251	59	60	0	60	60	0	0	0	60	60	53	53
Monoxyl canoe/pirogue + longline	402	0	0	2	0	0	0	0	0	2	3	10	10
Monoxyl canoe/pirogue+snorkel	97	30	30	30	32	36	30	30	30	28	42	52	65
Monoxyl canoe/pirogue+Gill net	2511	42	45	44	45	45	45	94	52	45	33	36	44
Monoxyl canoe/pirogue + turlute	89	60	60	58	58	60	60	58	60	59	60	60	59
Monoxyl canoe/pirogue+ valakira	280	0	0	10	9	22	10	37	11	10	24	14	0
Canoe board/plank + Line	64	59	58	56	51	60	60	60	60	58	58	52	60
Canoe board/plank + Gillnet	425	0	1	0	60	59	55	12	53	57	54	49	59

Orange color: OK
Red color: Insufficient sample number
Green color: Error
Color white: No sending to the server

3-a-Catches by fishing unit and by species (Unit: Tons): case of the DIANA Region 2020

Fishing unit	squid	chubs	Congress	crabs	shrimp	rays	fish	octopuses	sharks	tunas nca	blue marlin	bigeye tuna	king mackerel	sea cucumber	varilava	
Monoxyl canoe/pirogue +fusil à poissons							151,47			8,29						
Monoxyl canoe/pirogue + garigary				31,41												
Monoxyl canoe/pirogue + harato poto				0,16	33,03		6,36								1,29	
Monoxyl canoe/pirogue + horoba		160,19		3,48	70,42		37,18								16,22	
Monoxyl canoe/pirogue + kaokobe	1,92		0,65		27,77	9,53	1147,22	1,65	8,01	6,28		5,52	7,06			
Monoxyl canoe/pirogue + line	0,25			1,56		1,42	697,05		2,97	15,80	13,56	2,71	29,82			
Monoxyl canoe/pirogue + moustiquaire		938,62		27,50	373,31		535,08								117,46	
Monoxyl canoe/pirogue tnasse							517,59									
Monoxyl canoe/pirogue + longline						10,44	391,46		54,54	1,49			0,79			
Monoxyl canoe/pirogue+snorkel	0,51							56,35						333,74		
Monoxyl canoe/pirogue+Gill net	27,06	9,31		25,72	900,20	287,58	7996,70	27,20	48,39	34,44		118,03	235,00	235,59		
Monoxyl canoe/pirogue +turlute	317,82													1,66		
Monoxyl canoe/pirogue + valakira		0,95	0,95	15,35	207,26	20,91	310,21		39,52						35,29	
Canoe board/plank + Line						2,32	258,66						15,24			
Canoe board/plank + Gillnet							1690,74									
grand total	347,56	1109,07	1,60	105,18	1611,99	332,20	13739,72	85,20	153,43	66,30	13,56	126,26	287,91	570,99	170,26	18721,23

3-b-Catches by fishing unit and by species (Unit: Tons): case of the ANALANJIROFO Region 2020

products	Monoxyl canoe/pirogue + line	monoxyle nasse	Monoxyl canoe/pirogue + longline	Monoxyl canoe/pirogue+snorkel	Monoxyl canoe/pirogue+Gill net	
squid				0,85		
Congress	3,29			0,43		
shells				74,82		
crabs		2,30		0,63	33,12	
shrimp					117,83	
lobsters		8,01		6,38		
rays	6,58			29,99		
fish	950,49	1724,26	27,68	100,45	6485,83	
octopuses				35,43		
sharks	3,84				41,84	
tunas nca	87,75		30,20			
blue marlin			22,65			
bigeye tuna	331,12		352,63		701,78	
king mackerel	4,39		16,36			
sea cucumber	4,39			37,42	12,80	
varilava					0,43	
Grand total	1391,85	1734,57	449,51	286,41	7 393,63	11 255,96

3-c-Catches by fishing unit and by species (Unit: Tons): case of the MELAKY Region 2020

Fishing unit	chubs	Congress	crabs	shrimp	rays	fish	sharks	tunas nca	Yellofin Tuna	common dolphinfish	Bigeye Tuna	sea cucumber	
Monoxyl canoe/pirogue+Gill net	47,60	1,00	14,50	49,40	35,70	1750,70	229,80	43,10		1,70	113,50		
Monoxyl canoe/pirogue+ Filet ZZ					76,90	407,00	160,70	657,60			38,20		
Monoxyl canoe/pirogue+ garigary			11,90										
Monoxyl canoe/pirogue+ Jarifa					507,90	268,70	1259,90					10,10	
Monoxyl canoe/pirogue+snorkel						0,60						247,20	
Monoxyl canoe/pirogue+moustiquaire	954,70				41,90	990,00	146,50						
Monoxyl canoe/pirogue + longline		39,40	1,80	0,10	220,10	1259,50	94,40	17,00	1,80		1,80		
Grand Total	1002,30	40,40	28,20	49,50	882,50	4676,50	1891,30	717,70	1,80	1,70	153,50	257,30	9702,70

4-Catches by fishing unit and by species (Unit: in Tons): case of the ANALANJIROFO Region 2020

	Fishing unit				
Products	Monoxyl canoe/pirogue + line	monoxyle nasse	Monoxyl canoe/pirogue + longline	Monoxyl canoe/pirogue+snorkel	Monoxyl canoe/pirogue+Gill net
squid				0,09	
Congress	0,19			0,37	
shells				5,39	
crabs		0,33		0,18	0,37
shrimp					1,23
lobsters		1,12		0,92	
rays	0,39			2,60	
fish	42,53	33,98	2,64	9,19	50,10
octopuses				3,06	
sharks	0,23				1,40
tunas nca	2,99		2,88		
blue marlin			2,16		
bigeye tuna	7,52		17,63		4,13
king mackerel	0,26		1,56		
sea cucumber	0,26			6,92	0,20
varilava					0,01

5-Estimates of catches/values by minor stratum and species and local name and the relative error in CPUE and catches at the 90\% probability level (Unit: Tons): case of the DIANA Region 2020

Famille	Espèces	Nom local	Nom scientifique	Capures totales (tonnes)	composition espèces (\%)	$\begin{aligned} & \text { Prix } / \mathrm{Ke} \\ & \text { en Ar } \end{aligned}$	Valeurs totales (Ar)
Echneidae	Poissons	Samakeboana	Echeneis naucrates	53,256	0,28	4049	215612
Echneidae	Poissons	Sampatra	Valamugil spp	1,767	0,01	3538	6251
Lethrinidae	Poissons	Senta, Ambitryfo	Lethrinus harak	695,092	3,71	5623	3908720
Drepaneidae	Poissons	Takropa	Drepane longimana	517,625	2,76	3	1656
Drepaneidae	Poissons	Takropa	Drepane africana	525,51	2,81	3	1682
Sparidae	Poissons	Tsiboraina	Acanthopagrus berda	20,112	0,11	3829	77001
Psettodidae	Poissons	Tsimananila	Psettodes erumei	25,449	0,14	3537	90018
Serrantdae	Poissons	Tsivaravarabe, kikiantany, alovo, gabamainty	Serranidae	121,064	0,65	3666	443769
Lethrinidae	Poissons	Vahô, Zavotrohy	Lethrinidae	322,718	1,72	5961	1923729
Chanidae	Poissons	Vano	Chanos chanos	125,504	0,67	2018	253289
Clupeides	Poissons	Vatritra	Amblygaster sirm	120,815	0,65	3586	433213
Lethrinidae	Poissons	Vôtro	Gymnocranius grandoculis	11,585	0,06	2784	32248
	Poissons	zoho	Lutjanus argentimaculatus	65,979	0,35	3027	199714
Octopodidae	Poulpes	Orita	Octopodidae	85,2	0,45	3818	325252
	Requins	Ankio	Selachimorpha (Pleurotremata)	112,821	0,60	2873	324169
	Requins	Maroalala (Ankio)	Arildae	40,616	0,22	2017	81925
Scombridae	Thons	Bepakitsy	Lutjanus sebae	14,1	0,08	2709	38194
Scombridae	Thons	jaodary, lamatra	Thunnus obesus	33,149	0,18	3628	120268
Scombridae	Thons	Jaodary, lamatra	Thunnus albacares	8,772	0,05	4000	35090
Scombridae	Thons	Tabaka, lamatra	Katsuwonus pelamis	10,269	0,05	3161	32464
Scombridae	Thons (Makaire bleu)	Androaro	Makaira nigricans	11,277	0,05	2767	31203
Scombridae	Thons (Makaire bleu)	Ndoaro, androaro	Istiophorus platypterus	2,285	0,01	3000	6854
Scombridae	Thons (Patudo, thon obese)	Jaodary, angoho. belonary, diodary	Euthynnus affinis	126,263	0,67	4024	508038
Scombridae	Thons (thazard)	Ango, variagnavo, angoho, lamatra	Acanthocybium solandri	287,757	1,54	4064	1169381

Famille	Espèces	Nom local	Nom scientifique	Capures totales (tonnes)	composition espèces (\%)	$\begin{aligned} & \text { Prix } / \mathrm{Kg} \\ & \text { en } \mathrm{Ar} \\ & \hline \end{aligned}$	Valeurs totales (Ar)
Echneidae	Poissons	Samakeboana	Echeneis naucrates	53,256	0,28	4049	215612
Echneidae	Poissons	Sampatra	Valamugil spp	1,767	0,01	3538	6251
Lethrinidae	Poissons	Senta, Ambitryfo	Lethrinus harak	695,092	3,71	5623	3908720
Drepaneidae	Poissons	Takropa	Drepane longimana	517,625	2,76	3	1656
Drepaneidae	Poissons	Takropa	Drepane africana	525,51	2,81	3	1682
Sparidae	Poissons	Tsiboraina	Acanthopagrus berda	20,112	0,11	3829	77001
Psettodidae	Poissons	Tsimananila	Psettodes erumei	25,449	0,14	3537	90018
Serranidae	Poissons	Tsivaravarabe, kikiantany, alovo, gabamainty	Serranidae	121,064	0,65	3666	443769
Lethrinidae	Poissons	Vahô, Zavotrohy	Lethrinidae	322,718	1,72	5961	1923729
Chanidae	Poissons	Vano	Chanos chanos	125,504	0,67	2018	253289
Clupeides	Poissons	Vatritra	Amblygaster sirm	120,815	0,65	3586	433213
Lethrinidae	Poissons	Vôtro	Gymnocranius grandoculis	11,585	0,06	2784	32248
	Poissons	zoho	Lutjanus argentimaculatus	65,979	0,35	3027	199714
Octopodidae	Poulpes	Orita	Octopodidae	85,2	0,45	3818	325252
	Requins	Ankio	Selachimorpha (Pleurotremata)	112,821	0,60	2873	324169
	Requins	Maroalala (Ankio)	Arildae	40,616	0,22	2.017	81,925

IOTC-2023-WPDCS19-31

Unite de pêche	Famille	Espèces	Nom local	Nom scientifique	Capures totales	Composition espèces (\%)	Prix/kg en Ar	Valeurs totales	Moy Erreur Relative PUE 90\%	Moy Erreur Relative Capture 90\%
monoxyle periky		Requins	Ankio	Selachimorpha (Pleurotremata)	48,393	0,26	3775,96	182730	24	31
monoxyle ligne		Requins	Ankio	Selachimorpha (Pleurotremata)	2,972	0,02	2217,36	6590	16	22
monoxyle kaokobe		Requins	Ankio	Selachimorpha (Pleurotremata)	6,912	0,04	3727,00	25761	22	27
monoxyle palangre		Requins	Ankio	Selachimorpha (Pleurotremata)	54,544	0,29	1999,98	109087	97	97
monoxyle kaokobe		Requins	Maroalala (Ankio)	Ariidae	1,101	0,01	2628,52	2894	23	28
monoxyle valakira		Requins	Maroalala (Ankio)	Ariidae	39,516	0,21	1999,97	79031	23	37
monoxyle ligne	Scombridae	Thons	Bepakitsy	Lutjanus sebae	12,613	0,07	2674,62	33735	18	25
monoxyle palangre	Scombridae	Thons	Bepakitsy	Lutjanus sebae	1,486	0,01	3000,67	4459	21	21
monoxyle periky	Scombridae	Thons	jaodary, lamatra	Thunnus obesus	26,075	0,14	3408,63	88880	54	64
monoxyle periky	Scombridae	Thons	Jaodary, lamatra	Thunnus albacares	8,361	0,04	4000,00	33444	29	38
monoxyle ligne	Scombridae	Thons	jaodary, lamatra	Thunnus obesus	3,188	0,02	4631,12	14764	11	17
monoxyle kaokobe	Scombridae	Thons	jaodary, lamatra	Thunnus obesus	3,886	0,02	4 277,92	16624	25	30
monoxyle kaokobe	Scombridae	Thons	Jaodary, lamatra	Thunnus albacares	0,411	0,00	4002,43	1645	29	34
monoxyle fusil à poissons	Scombridae	Thons	Tabaka, Iamatra	Katsuwonus pelamis	8,29	0,04	3 200,00	26528	19	20
monoxyle kaokobe	Scombridae	Thons	Tabaka, Iamatra	Katsuwonus pelamis	1,979	0,01	2999,49	5936	26	31
monoxyle ligne	Scombridae	Thons (Makaire bleu)	Androaro	Makaira nigricans	11,277	0,06	2766,96	31203	22	29
monoxyle ligne	Scombridae	Thons (Makaire bleu)	Ndoaro, androaro	Istiophorus platypterus	2,285	0,01	2999,56	6854	6	11
monoxyle periky	Scombridae	Thons (Patudo, thon obèse)	Jaodary, angoho, belonary, diodary	Euthynnus affinis	118,028	0,63	4020,10	474484	36	44
monoxyle ligne	Scombridae	Thons (Patudo, thon obèse)	Jaodary, angoho, belonary, diodary	Euthynnus affinis	2,713	0,01	4586,07	12442	19	27
monoxyle kaokobe	Scombridae	Thons (Patudo, thon obèse)	Jaodary, angoho, belonary, diodary	Euthynnus affinis	5,522	0,03	3823,25	21112	25	30
monoxyle periky	Scombridae	Thons (thazard)	Ango, variagnavo, angoho, lamatra	Acanthocybium solandri	235	1,25	3843,95	903329	30	37
monoxyle ligne	Scombridae	Thons (thazard)	Ango, variagnavo, angoho, lamatra	Acanthocybium solandri	28,939	0,15	4871,56	140978	18	25
plancheNM Ligne	Scombridae	Thons (thazard)	Ango, variagnavo, angoho, lamatra	Acanthocybium solandri	15,236	0,08	5985,10	91189	10	12
monoxyle kaokobe	Scombridae	Thons (thazard)	Ango, variagnavo, angoho, lamatra	Acanthocybium solandri	7,055	0,04	4242,66	29932	24	28
monoxyle palangre	Scombridae	Thons (thazard)	Ango, variagnavo, angoho, lamatra	Acanthocybium solandri	0,79	0,00	5003,80	3953	66	66
monoxyle ligne	Carangidae	Thons (thazard)	Tefo, ango	Elagatis bipinnulata	0,879	0,00	5005,69	4400	21	28

Unite de pêche	Espèces	Nom local	Nom scientifique	Jours de petche annuelle	Captures totales	Valeurs totales en Ar	CPUE ($\mathrm{Kg} /$ jour)	Moy Erreur Rel PUE 90\%	Moy Erreur Rel Capture 90\%
monoxyle kaokobe	Rales	Makoba	Himantura uarnak	16852	9,525 t	33886 Ar	0,565	22	27
monoxyle ligne	Raies	Makoba	Himantura uarnak	11648	1,422 t	2165 Ar	0,122	18	25
monoxyle palangre	Raies	Makoba	Himantura uarnak	7236	10,436 t	20871 Ar	1,442	66	66
monoxyle periky	Raies	Makoba	Himantura uarnak	494777	285,069 t	1176481 Ar	0,576	39	46
monoxyle valakira	Raies	Makoba	Himantura uarnak	19125	20,911 t	41822 Ar	1,093	40	60
plancheNM Ligne	Raies	Makoba	Himantura uarnak	4356	2,320 t	4853 Ar	0,533	9	12
monoxyle kaokobe	Requins	Ankio	Selachimorpha (Pleurotremata)	13351	6,912 t	25761 Ar	0,518	22	27
monoxyle kaokobe	requins	Maroalala (Ankio)	Arildae	3501	1,101 t	2894 Ar	0,314	23	28
monoxyle ligne	Requins	Ankio	Selachimorpha (Pleurotremata)	15550	2,972 t	6590 Ar	0,191	16	22
monoxyle palangre	Requins	Ankio	Selachimorpha (Pleurotremata)	14713	54,544 t	109087 Ar	3,707	97	97
monoxyle periky	Requins	Ankio	Selachimorpha (Pleurotremata)	221502	48,393 t	182730 Ar	0,218	24	31
monoxyle valakira	requins	Maroalala (Ankio)	Ariidae	21161	39,516 t	79031 Ar	1,867	23	37
monoxyle fusil à poissons	Thons	Tabaka, lamatra	Katsuwonus pelamis	3792	8,290 t	26528 Ar	2,186	19	20
monoxyle kaokobe	Thons	jaodary, lamatra	Thunnus obesus	8490	3,886 t	16624 Ar	0,458	25	30
monoxyle kaokobe	Thons	Jaodary, lamatra	Thunnus albacares	1630	0,41t	1645 Ar	0,252	29	34
monoxyle kaokobe	Thons	Tabaka, lamatra	Katsuwonus pelamis	1609	1,979 t	5936 Ar	1,23	26	31
monoxyle ligne	Thons	Bepakitsy	Lutjanus sebae	47578	12,613 t	33735 Ar	0,265	18	25
monoxyle ligne	Thons	jaodary, lamatra	Thunnus obesus	15530	3,188 t	14764 Ar	0,205	11	17
monoxyle palangre	Thons	Bepakitsy	Lutjanus sebae	7477	1,486 t	4459 Ar	0,199	21	21
monoxyle periky	Thons	jaodary, lamatra	Thunnus obesus	169992	26,075 t	88880 Ar	0,153	54	64
monoxyle periky	Thons	Jaodary, lamatra	Thunnus albacares	55124	8,361 t	33444 Ar	0,152	29	38
monoxyle ligne	Thons (Makaire bleu)	Androaro	Makaira nigricans	23624	11,277 t	31203 Ar	0,477	22	29
monoxyle ligne	Thons (Makaire bleu)	Ndoaro, androaro	Istiophorus platypterus	3886	2,285 t	6854 Ar	0,588	6	11
monoxyle kaokobe	Thons (Patudo, thon obese)	Jaodary, angoho, belonary, diodary	Euthynnus affinis	10257	5,522 t	21112 Ar	0,538	25	30
monoxyle ligne	Thons (Patudo, thon obese)	Jaodary, angoho, belonary, diodary	Euthynnus affinis	11619	2,713 t	12442 Ar	0,233	19	27
monoxyle periky	Thons (Patudo, thon obèse)	Jaodary, angoho, belonary, diodary	Euthynnus affinis	272136	118,028 t	474484 Ar	0,434	36	44
monoxyle kaokobe	Thons (thazard)	Ango, variagnavo, angoho, lamatra	Acanthocybium solandri	8325	7,055 t	29932 Ar	0,847	24	28
monoxyle ligne	Thons (thazard)	Ango, variagnavo, angoho, lamatra	Acanthocybium solandri	47578	28,939 t	140978 Ar	0,608	18	25
monoxyle ligne	Thons (thazard)	Tefo, ango	Elagatis bipinnulata	4435	0,87t	4400 Ar	0,198	21	28
monoxyle palangre	Thons (thazard)	Ango, variagnavo, angoho, lamatra	Acanthocybium solandri	7236	0,79t	3953 Ar	0,109	66	66
monoxyle periky	Thons (thazard)	Ango, variagnavo, angoho, lamatra	Acanthocybium solandri	436638	0,23t	903329 Ar	0,54	30	37
plancheNM Ligne	Thons (thazard)	Ango, variagnavo, angoho, lamatra	Acanthocybium solandri	17175	15,236 t	91189 Ar	0,887	10	12

6- Catch/value estimates by minor stratum and species (Unit: Tons): DIANA, ANALANJIROFO and MELAKY regions for the year 2020

	Diana		Analanjirofo		Melaky	
Products	Quantity (t)	Values in MGA (000')	Quantity (t)	Values in MGA (000')	Quantity (t)	Values in MGA (000')
squid	347,55	4562613	0,85	5660		
Chubs	1109,07	7176365			1002	1002282
Congress	1,60	2568	3,73	22967	40	74261
crabs	105,19	377290	36,05	114162	28	47285
shrimp	1611,97	8914868	117,83	1080579	50	239452
rays	332,19	1291366	36,58	148330	882	774859
octopuses	85,20	325252	35,43	131717		
sea cucumber	571,00	6688496	54,61	80444	258	4816249
varilava	170,26	170263	0,43	1296		
shells			74,82	40013		
lobsters			14,39	211307		
fish	13739,72	49678994	8650,98	47860795	4680	7990065
tunas nca	494,01	1945891,00	1546,86	12041794,00	875	5037762
sharks	153,44	406093	45,68	186573	1891	3616279
Grand Total	18 721,20	81540065	10 618,23	61925637	9706	23598494

7-Catch estimates/values at level 14 Coastal regions by species after reconstitution (Unit: in Tonnes): For the year 2021-2022

Year: 2021										
Products	Menabe	Analanjirofo	Atsimo Andrefana	Atsimo Atsinanana	Atsinanana	Boeny	Melaky	Diana	Vatovavy Fitovinany	TOTAL
Rays	-	156,19		0,49	6,94	-	-	241,22	22,60	427,44
Sharks	0,10	9,74		3,24	17,32	7,22	0,32	930,53	28,96	997,44
Tunas	-	1230,83		7,25	13,84	-	-	327,11	-	1 579,03

Year:	2022										
Products	Menabe	Analanjirofo	Atsimo Andrefana	Atsimo Atsinanana	Atsinanana	Boeny	Melaky	Diana	Vatovavy	Fitovinany	TOTAL
Rays	-	154,74	14,54	4,69	2,77	-	107,54	135,19	15,00	10,37	444,84
Sharks	1,69	215,84	18,65	4,45	2,06	30,49	140,31	78,76	-	10,18	502,43
Tunas	-	739,25	-	9,85	11,52	-	27,38	78,81	40,62	5,34	912,77

Source: DRPEB activity report
Unit : Tons

-Per fishing unit per species

Year: 2021

Fishing unit	Rays	Sharks (Mâchoirons nca)	Sharks nca	Total Sharks (Tons)	Bastard mackerel	Kawakawa	Unclassified tuna and bullet tuna	Yellofin tuna	Bigeye tuna	Skipjack tuna	Indo Pacific sailfish	Total Tunas (Tons)	Grand Total(Tons)
Monoxyl canoe/pirogue+ kaokobe	20,55	5,36		25,91		11,50			8,84			20,34	46,24
Monoxyl canoe/pirogue + line	144,94	3,36	-	148,30	52,22	156,91	-	0,61	89,90	5,14	8,21	312,99	461,30
Monoxyl canoe/pirogue+Gill net	479,83	905,10	657,81	2042,74	3,15	760,52	222,85	-	344,47	-	-	1330,99	3 373,73
Monoxyl canoe/pirogue+ valakira	29,31	23,55	2,89	55,76								-	55,76
Canoe board/plank + Line	11,84			11,84	20,95							20,95	32,79
Monoxyl canoe/pirogue + longline (palangrotte)	8,27			8,27		166,64			484,02		18,59	669,25	677,52
Monoxyl canoe/pirogue+snorkel	13,14			13,14								-	13,14
Monoxyl canoe/pirogue + longline	56,60		66,10	122,70		1,70						1,70	124,40
	764,48	937,38	726,81	2 428,66	76,32	1097,27	222,85	0,61	927,22	5,14	26,80	2 356,22	4 784,87

Sharks:

Tunas:

Year: 2022

Fishing unit	Rays	Sharks (Mâchoirons nca)	Sharks nca	Hammerhead sharks nei	Total Sharks (Tons)	Bastard mackerel	Kawakawa	Yellofin tuna	Bigeye tuna	Skipjack tuna	Indo Pacific sailfish	Tunas nca	Total Tunas (Tons)	Grand Total(Tons)
Monoxyl canoe/pirogue +fusil à poissons	4,09				4,09								-	4,09
Monoxyl canoe/pirogue+ kaokobe	4,60	2,06			6,66		4,34	0,36	0,98				5,68	12,34
Monoxyl canoe/pirogue + line	293,10	38,20	254,49	-	585,79	122,52	295,72	5,44	126,36	18,17	7,28	94,71	670,21	1255,99
Monoxyl canoe/pirogue+Gill net	78,33	33,20	21,59	-	133,12	-	59,43	-	129,68	21,46	-		210,58	343,70
Monoxyl canoe/pirogue+ valakira	64,71	51,41	6,08	8,74	130,94								-	130,94
Canoe board/plank + Line					-	5,70							5,70	5,70
Monoxyl canoe/pirogue + longline (palangrotte)		88,35			88,35				20,61				20,61	108,96
Grand Total(Tons)	444,83	213,22	282,16	8,74	948,95	128,22	359,49	5,80	277,64	39,63	7,28	94,71	912,77	1861,72

Sharks :

Tunas:

8-Catch estimate Per species (Unit :Tons)

Species	$\mathbf{2 0 2 1}$	$\mathbf{2 0 2 2}$
Bastard mackerel	76,32	128,22
Unclassified tuna and bullet tuna	222,85	
Kawakawa	1097,27	359,49
Yellofin tuna	0,61	5,80
Bigeye tuna	927,22	277,64
Skipjack tuna	5,14	39,63
Indo Pacific sailfish	26,80	7,28
Tunas nca	764,48	94,71
Rays	937,38	444,83
Sharks (Mâchoirons nca)	726,81	213,22
Sharks nca		8,74
Hammerhead sharks nei		

In summary, the data from OPENARTFISH are all species of the small-scale fishery combined, on the one hand the estimate of tuna fishing catches is between two thousand three hundred and fifty six $(2,356)$ tonnes to three thousand one hundred and sixty $(3,160)$ tonnes (maximum catches) and on the other hand for sharks and rays it is between two thousand four hundred and thirty $(2,430)$ tonnes to two thousand eight hundred $(2,800)$ tonnes (maximum catches) .

6-Future prospects

-Carry out a framework survey specific to small-scale tuna fishing (Analanjirofo, Atsinanana, Sofia, Boeny, Atsimo Andrefana, Menabe, Androy, Anosy, Melaky, Atsimo Atsinanana and Diana);
-Recruitment and deployment of data collectors at the survey site level;
-Establishment of a data collection network on small-scale tuna fishing;
-Updating basic data in the WEB application: framework survey, species identification and settings in the web application and updating the mobile application, distribution of the sample by investigators;

-measurement: height and weigh

