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Abstract

We used an historical longline survey from 1966 to 1989 in the Indian Ocean basin to calculate

standardized CPUEs for the endangered shortfin mako shark (Isurus oxyrinchus). CPUEs were

generated using a zero-inflated negative binomial (ZINB) generalized additive model (GAM).

These CPUEs represent an important basin-wide baseline for shortfin mako abundance at the

start of industrialization of Indian Ocean fisheries. We also demonstrate how they can be used

in combination with effort data to generate estimates of catch. Regressed with CPUEs from

other fleets, we demonstrate a significant decline in shortfin mako abundance from the 1960s to

present. Finally, we show a decline in median fork length between the USSR and IOTC data.
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Introduction

The shortfin mako is a globally endangered species (Rigby et al., 2019). Like many other shark

species, it suffers from a lack of historical baseline data. Further, the Indian Ocean is one of the

least studied ocean sectors for shark exploitation and bycatch (Molina & Cooke, 2012). These

spatial and temporal phenomena compound into a significant management challenge for sharks

in the Indian Ocean region.

To address this issue, we utilize data from a scientific longline survey conducted throughout

the region from 1966 to 1989 to reconstruct trends of shark abundance (Fig. 1). The historical

longline survey was conducted by USSR scientists using gear targeting tuna (Romanov, Saka-

gawa, Marsac, & Romanova, 2006), making the data comparable to that recorded by modern

commercial longline fleets reporting to the IOTC. Shortfin mako stocks in the Indian Ocean

were thought to be near-pristine in 1971, five years after the start of the USSR survey (Brunel

et al., 2018). While Japan and Taiwan started exploiting these waters in a limited capacity

shortly before the survey began, the USSR survey period covers twenty other nations joining

the longline fishery (Fonteneau, 2017), along with significant improvements in longline gear

and refrigeration technology (Ward & Hindmarsh, 2007), the introduction of industrial purse

seining (Fonteneau, 2017), and the start of direct targeting of sharks due to increased global de-

mand for shark fins (Camhi, Valenti, Fordham, Fowler, & Gibson, 2009; Fabinyi, 2012). Thus,

the USSR survey reflects shark populations at pre-industrial fishing levels.
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Methods

Datasets used

USSR survey data

We estimated historical catch rates from a scientific longline survey carried out by the former

Soviet Union (USSR). Longline sets (n = 4,678) were cast throughout the Indian Ocean be-

tween 1961 and 1989 as part of the Soviet Indian Ocean Tuna Longline Research Programme

(SIOTLLRP) (Romanov et al., 2006). Scientists aboard the ship identified the sharks to species

or genus level and measured fork length. We discarded data collected prior to 1966 due to

concerns with the reliability of species identification.

SIOTLLRP surveyors recorded for each longline set: date, latitude, longitude, start and end

of longline setting and hauling, number of hooks set, basket length, buoyrope length, hookline

length, number of baskets, number of hooks per basket, estimated depth of each hook in a

basket, and hook number for each capture (Romanov et al., 2006). From these, we derived:

soak time, haul time, mean number of hooks per basket, ocean depth, distance from coast, and

Longhurst biogeographical province (Bart, 2012), using the “marmap” package to calculate

depth and distance to the nearest coast (Pante & Simon-Bouhet, 2013). Month was input into

the model as the sum of a sine and cosine transform to linearize the cyclical nature of the seasons

(Ferretti, Osio, Jenkins, Rosenberg, & Lotze, 2013). This yielded 14 explanatory variables

for shark abundance, which we tested for collinearity using the variance inflation factor (VIF)

(Faraway, 2016).
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Fig. 1. USSR survey effort by number of hooks (2° by 2° resolution). Purple dots are locations
of longline sets.

IOTC data

We used effort data from the Indian Ocean Tuna Commission’s (IOTC’s) publicly available

catch and effort database (Commission, 2021).

CPUE standardization

We used a frequentist statistical modeling approach to produce standardized CPUEs (individu-

als per 1000 hooks deployed) from the USSR data. Our modeling approach consisted of three

stages: statistical distribution and model framework selection, variable selection, and simula-

tion. We used the blue shark as a model species owing to its status as the most abundant species

in the dataset (n = 1,156) and one of the most commonly caught shark species in the Indian
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Ocean (Tsai & Liu, 2018). We used the blue shark catch data to choose a statistical distribu-

tion and model framework to use for all species, but variable selection and simulation were

performed for each species for which we produced standardized CPUEs.

We considered 14 statistical distributions and modeling frameworks commonly used in the

literature for CPUE standardization (Table 1). We selected the zero-inflated negative binomial

(ZINB) generalized additive model (GAM) based on its low Akaike information criterion (AIC)

value relative to other models (Table 1) (Akaike, 1998) and the ability of GAMs to model non-

linear trends in the data.

Table 1. AIC values of candidate models for catch rate standardization. Selected statistical
distribution and model framework is in bold.

Model AIC R function
Poisson GLM 9066.62 glm()
Negative binomial GLM 7124.69 glm.nb()
Zero-inflated Poisson GLM 8488.14 zeroinfl()
Zero-inflated negative binomial GLM 7013.7 zeroinfl()
Poisson GAM 9066.62 gam()
Negative binomial GAM 7120.81 gam()
Zero-inflated Poisson GAM 8171.72 zipgam()
Zero-inflated negative binomial GAM 7034.77 zinbgam()
Zero-inflated Poisson GLMM Did not converge glmmTMB()
Zero-inflated negative binomial GLMM Did not converge glmmTMB()
Tweedie GLM Did not converge glm()
Tweedie GAM 7837.2 gam()
Tweedie GLMM Did not converge glmmTMB()
Delta-lognormal 7424.85 deltaLN()

The ZINB GAM is a mixture model with two component models: a negative binomial GAM

predicting counts and a binomial GAM predicting the probability of a false zero. We used the

“zigam” package in R to fit ZINB GAM models (Wotherspoon & Burch, 2017). We modified
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the package’s source code to produce confidence intervals for predicted values using a Monte

Carlo approach (Preacher & Selig, 2012).

For variable selection, we followed Babyak’s (Babyak, 2004) rule of having at least 10 non-

zero counts in the data for each variable. To select variables under this limit, we conducted

variable selection in two steps, first permuting the variables to find which produced the best

models, and then determining whether any of those variables could be dropped from a prelim-

inary model. For the first step, we tried all possible combinations of the 14 candidate variables

in a process known as dredging (Barton, 2020). We tested the component models of the ZINB

GAM separately and used GLMs because of the computationally expensive nature of dredging.

Variables appearing in every model in the 95th percentile confidence set of model performance

were then considered for their respective component of the ZINB GAM model. In our second

step, to reduce the risk of overparameterization, we tested the negative binomial and binomial

GAMs to see if any variables could be removed without significant (> 1%) loss of % deviance

explained.

In our final step of model development, we performed simulations to test the statistical

power of our ZINB GAM and its ability to capture the underlying biological processes in the

data. We generated simulated counts for the survey data using the ZINB distribution from the

model 100 times. A new model was fit to each simulated dataset and the coefficients of the

variables recorded. We plotted a histogram of each coefficient for each variable and examined

the distribution for approximate normality. If the coefficients were not centered on the esti-

mate generated from the real data, we concluded that the model did not successfully capture

the process of the data. In cases where this was true, we added or removed variables until the

coefficient distributions were centered and approximately normal. The final parameterization

of the shortfin mako ZINB GAM was:

Count process: count ∼ year + lat + depthn + lhprovince + hookdmin + lenbasket +
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offset(log(nhooks))

Zero process: w ∼ year+lat+lon+hookdmin+lhprovince+lenbasket+offset(log(nhooks))

Multiple CPUE series regression

To construct a longer-term trend, we combined our CPUEs with those published by Japan

(Kai & Semba, 2019) and Taiwan (Tsai, Wu, & Liu, 2019). We excluded CPUEs from Spain

and Portugal because these fleets target swordfish in the Indian Ocean, as opposed to tuna.

From the CPUE series, we created a generalized linear mixed-effects (GLMM) model using the

”glmmTMB” package in R (Brooks et al., 2017). We used year as a fixed effect and fleet as

a random effect to account for differences between fleets. We used the inverse of the standard

error of the CPUE estimate as the weight.

Catch estimation

We followed a procedure similar to (Shea, Gallagher, Bomgardner, & Ferretti, 2023)’s Monte

Carlo method of estimating shark catches from standardized CPUEs and fishing effort data. We

used the IOTC’s catch and effort database and cropped it to the time frame and bounding box

covered by the USSR survey. All data from this time period was reported at a 5◦ by 5◦ resolution

and includes data from Japan, Taiwan, South Korea, and the Seychelles.

We first randomly sampled a point from each grid cell at a 1◦ by 1◦ resolution. We used

this point to predict a CPUE using the model we developed from the USSR survey data. We

multiplied this CPUE by the number of hooks deployed in the grid cell to give an estimate of

sharks caught, and totaled these catches for each year. We repeated this process 1,000 times,

deriving a catch estimate from the median catch each year, and a confidence interval from the

2.5-th and 97.5-th percentiles.
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Results

Standardized CPUEs

A total of 1,080 shortfin mako sharks were caught throughout the USSR survey. Figure 2 and

Table 2 show the standardized CPUEs for shortfin makos from the USSR survey. There were

three years in which an insufficient number of sets caught a shortfin makos to generate a CPUE:

1966, 1974, 1975. Residual plots can be found in the Appendix.

Fig. 2. Standardized CPUEs of the shortfin mako with 95% confidence intervals.
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Table 2. Standardized CPUEs of the shortfin mako with 95% confidence interval bounds.

Year Standardized CPUE Lower Bound Upper Bound
1967 0.2297 0.1427 0.3723
1968 0.9161 0.5653 1.4594
1969 1.1435 0.8057 1.6258
1970 0.4484 0.3183 0.6307
1971 0.3073 0.1448 0.659
1972 0.3208 0.2333 0.4431
1973 0.4752 0.2061 1.0729
1976 0.8777 0.531 1.4612
1977 0.6973 0.5274 0.9226
1978 0.4942 0.39 0.6268
1979 0.3859 0.281 0.529
1980 0.562 0.4394 0.7216
1981 0.3432 0.2177 0.5405
1982 0.1098 0.0344 0.3572
1983 0.4911 0.3437 0.6988
1984 0.511 0.359 0.7305
1985 0.4847 0.3653 0.6461
1986 0.3423 0.2145 0.5495
1987 0.2987 0.1739 0.5157
1988 0.6579 0.2429 1.6862
1989 0.113 0.0341 0.3839
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Long-term CPUE trend

From 1966 through 2019, we estimate that the shortfin mako experienced a statistically signifi-

cant decline of 83.9% (95% CI 43.0% - 95.4%). This decline is shown in Figure 3 on a natural

scale and in Figure 4 on a log scale.

Fig. 3. Long-term trend in shortfin mako CPUEs shown on a natural scale.
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Fig. 4. Long-term trend in shortfin mako CPUEs shown on a log scale.

Catch estimation

Table 3 shows the estimated catches of shortfin mako sharks from the publicly available IOTC

longline catch and effort data from 1967 through 1989. These data are also illustrated in Figure

5.
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Table 3. Estimates of shortfin mako catch with 95% confidence intervals.

Year Catch estimate Lower bound Upper bound
1967 31968 30687 33435
1968 135438 128156 142721
1969 170075 163993 178193
1970 54106 51132 58559
1971 34916 33329 36692
1972 27999 26654 29654
1973 36004 33167 38457
1976 72513 67476 77173
1977 69568 66356 72545
1978 66967 63762 69971
1979 52038 49538 54174
1980 86592 83304 90266
1981 50739 48165 52973
1982 19884 19138 20750
1983 102047 97067 107179
1984 95343 90887 99820
1985 82792 79722 86496
1986 75206 72345 78366
1987 65442 63088 67848
1988 121660 116831 126025
1989 23444 22244 24514
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Fig. 5. Estimates of shortfin mako catch with 95% confidence intervals.

For reference, hooks deployed in the IOTC database over the same time period is shown in

Figure 6.
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Fig. 6. Longline hooks deployed from 1967 through 1989 from the IOTC catch and effort
database.

Size

Median shortfin mako fork length declined from 185 cm during the USSR survey (n = 1,059)

to 167.5 cm in the IOTC data (n = 7,589). Fork lengths in the IOTC data also follow a narrower

distribution than the USSR data (Fig. 7).

14



Fig. 7. Distribution of recorded fork lengths in the USSR data and publicly available IOTC size
data.

Discussion

A USSR survey that spanned 24 years provided a rare record of shark initial abundances in

the Indian Ocean. Combined with other published CPUEs, it indicates a clear downward trend

in shortfin mako abundance. This contradicts findings from the preliminary stock assessment

conducted in 2018, which found that biomass only began decreasing in the 1990s (Brunel et

al., 2018). We find that the shortfin mako has been decreasing in abundance since the start of

industrial-scale fishing in the Indian Ocean. The patterns we have identified demonstrate an

urgent need for conservation and protection for this species. A formalized stock assessment

should be conducted next to identify appropriate management measures.
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Appendix

Fig. S1. Residuals of (A) the whole model with year as a factor, (B) the count process with
year as a factor, (C) the zero process with year as a factor, (D) the whole model with year as a
continuous variable, (E) the count process with continuous year, and (F) the zero process with
continuous year for the shortfin mako.
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