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Abstract 

This report does a simple 1-component GAMM model to standardize SKJ catch per FOB set 
of the Indian Ocean EU purse-seine fleet for the period 1991-2021. 

Introduction 

In a companion document, we did a short time series SKJ catch per floating object (FOB) set 
standardization for the Indian Ocean EU tropical tuna purse-seine fleet for the period 2010-
2021. During discussions of that work, it was decided that it would be advantageous to also 
have a longer time series of standardized CPUEs. This analysis is carried out in this 
document. Though this time series is longer, all of the variables related to dFAD use and set 
time must be removed as we do not have the data for these variables before 2010. 
Therefore, the standardization is principally over vessel and vessel characteristics and to 
homogenize fishing effort in space over time. 

Methods 

Catch-effort dataset 

The catch-effort data in this study consisted of French and Spanish FOB sets over the 
period 1991-2021. The initial data consisted of 137,638 FOB sets corresponding to 134,382 
fishing activity entries in the data set. The data was filtered to remove the following data 
entries (numbers of sets indicated are not exclusive): 

• Null sets (9,390 sets) 

• Fishing activities corresponding to multiple fishing sets (5,970 sets). Such multi-set 
fishing activities are concentrated in the early part of the time series, but never 
exceed 15% of all FOB sets in a given year. 

• Sets by vessels in the bottom 5% of vessels in terms of number of positive sets or 
that were active less than 3 years or whose activities spanned less than 5 years (19 
vessels corresponding to 2,591 sets) 



After applying all of these filters, the final dataset used for building the CPUE 
standardization model consisted of 121,427 sets. 

 

Figure 1: Number and fraction of FOB sets per year that are recorded in multi-set fishing 
activities. 

Predictor variables 

The predictor variables consisted of the the standard temporal, spatial, fleet and vessel 
identifier predictor variables included in previous standardization efforts (Guéry et al. 
2021, e.g., Akia et al. 2022): 

• lon,lat spatial variables 

• year, month temporal variables 

• quarter for stratifying spatial smooths and prediction grids 

• vessel country, capacity and year of initiation of activity 

• vessel unique identifier 

Modeling approach 

Only a 1-part GAMM model was evaluated for this long time series CPUE. 



1-part GAMM model 

 

Figure 2: Histograms of SKJ catch data in model training dataset before (a) and afer (b) log 
transformation. 

A single-component general additive mixed-effects model (GAMM) was also run with 
log(𝑆𝐾𝐽 + 𝐶) as the variable to be predicted, where 𝑆𝐾𝐽 is the T3-corrected (Pianet et al. 
2000) catch of skipjack per purse seine FOB set. As for a small number of sets (2,960 sets) 
zero SKJ catch was reported, a small constant, 𝐶, was added to SKJ catch before taking the 
log. This constant 𝐶 was chosen to be 1 tonne as this amount is generally used as the limit 
between null and non-null sets and was observed to produce a response variable that was 
reasonably close to normally distributed before running the model (Figure 2) and the 
resulting GAMM had reasonably good model diagnostics (see Results below). 

Predictor variables for the GAMM model were longitude and latitude as a tensor product 
smooth by quarter, year and month as a tensor product smooth cyclic in the month 
dimension, vessel capacity and years of service at the time of fishing as individual smooths 
and vessel country as a categorical predictor. Vessel identifier was included as a categorical 
random effect. The precise command used to general the GAMM model was: 

gm = gamm(logskj~te(lon,lat,by=quarter,k=13) + 
te(year,month,k=c(20,11),bs=c("cr","cc")) +  
            s(yr_serv,k=10) + s(capacity,k=10) + country, 
          data=data,random=list(vessel_id=~1)) 
saveRDS(gm,"2023-cpue-standardization-iotc-skj.gamm-model-1991-2021.RDS") 

The model was verified using the gam.check function of the mgcv package to assure that the 
numbers of splines used for each smooth (i.e., k) were sufficient. 



Prediction/standardization approaches 

CPUE standardization is based on predicting models on a standard spatio-temporal grid, 
fixing fishing-efficiency- and catchability-related variables at standardized values, and then 
averaging over space (and potentially other predictors) to obtain a standardized estimation 
of abundance. We implemented two different approaches to this spatial averaging process. 
The first is the approach that has traditionally been used based on predicting catch in each 
1∘ × 1∘-month strata occupied by the fishery and then averaging (or summing) over 1∘ × 1∘ 
grid cells. This spatial averaging is based on the assumption that set size is a true predictor 
of abundance in each strata. Though spatial thinning is generally used to remove cells with 
very low fishing effort from the prediction step, this method still has the disadvantage that 
it combines results from grid cells with potentially highly varying sampling effort (i.e., 
numbers of fishing sets). Furthermore, catch per set is only partially satisfactory as an 
estimator of abundance as it implicitly assumes that the number of FOB fish schools is 
constant over space (so that abundance is entirely reflected in set size), an assumption that 
is unlikely to be globally valid. 

Due to these limitations, we also implement a second approach to developing a spatially-
averaged standardized CPUE. In this approach, the predictions in each 1∘ × 1∘-month strata 
are weighted by the total number of fishing sets carried out in that grid cell and the 
corresponding quarter (i.e., the weightings are stratified by quarter) over the entire time 
series of the data. As the number of sets times the average catch per set is the total catch, 
this approach is akin to using total catch as an indicator of abundance, except that the 
spatial distribution of fishing effort is standardized over time. This method will place more 
weight on core fishing areas where most fishing effort occurs relative to the previously 
described methodology. 

Before implementing both standardization approaches, the spatial area to be used for 
predictions was thinned to remove 1∘ × 1∘ grid cells with little fishing effort. Predictions 
were only made for grid cells that collectively represent the smallest number of grid cells 
accounting for at least 95% of the FOB fishing sets in each quarter included in the model 
training data. The resulting modeling domains for each of the four quarters are shown in 
Figure 3. 

Variables related to fishing efficiency and catchability were fixed at their median values 
from the training data set. Specifically, when calculating standardized CPUEs, vessel 
capacity was fixed at 1850 and vessel initial year of activity was fixed at 1992. Predictions 
were made for all levels of categorical predictor variable vessel country and then averaged 
across levels, weighting the resulting predictions by the overall prevalence of each level in 
the model training data (e.g., fraction of Spanish versus French sets). 

Predictions from the log-normal GAMM model were converted back to absolute catch using 
the standard formula for estimating the expected value of a log-normal distribution 
(Fletcher 2008): 

𝜇𝑌 = exp(𝜇𝑋 +
𝜎𝑋
2

2
)  (1) 



where 𝜇𝑋 is the expected value predicted by the GAMM model, 𝜎𝑋
2 is the residual variance of 

the GAMM model (i.e., the scale parameter of the model outputs) and 𝜇𝑌 is the final 
predicted catch. 

When averaging GAMM model predictions to obtain annual standardized CPUEs, standard 
errors were combined via simple addition, equivalent to assuming that all uncertainties in 
model predictions are correlated. Though undoubtedly inexact, this assumption will lead to 
conservative estimates of uncertainty (i.e., larger than reality). This issue can be corrected 
to obtain more exact uncertainty estimates using a bootstrap approach based on the 
Cholesky trick (Andersen 2022), but there was insufficient time to do so before the WGFAD 
meeting. 

 

Figure 3: The 1∘ × 1∘ grid cells used for model prediction for each quarter. The quarter 
number is indicated at the top of each panel. 

Results 

Model diagnostics and significance of predictor variables 

GAMM models are actually implemented as the combination of a linear mixed-effects (LME) 
model for estimating the random effect and a GAM model for estimating the final model 
with smooths after removing the variance explained by the random effect. Both of these 
components provide standard diagnostic plots, including a residuals versus fitted plot for 



the LME model (Figure 4) and a QQ-plot for the GAM (Figure 5). Both of these plots indicate 
an adequate fit of the data to the model assumptions. 

All predictors included in the model, including smoothed, direct and random effects, had a 
significant impact on SKJ catch per FOB set (see model summaries below and Table 1). 

 

Figure 4: Fitted values versus residuals for LME part (i.e., random part) of GAMM. 

  



 

Figure 5: QQ-plot of GAM part (i.e., non-random part) of GAMM. 

ANOVA table for LME component of GAMM model (i.e., model for estimating random 
effect): 

  numDF  denDF  F-value p-value 
X    17 121340 2210.401  <.0001 

Summary output from GAM part of GAMM model (i.e., non-random part of model): 

 
Family: gaussian  
Link function: identity  
 
Formula: 
logskj ~ te(lon, lat, by = quarter, k = 13) + te(year, month,  
    k = c(20, 11), bs = c("cr", "cc")) + s(yr_serv, k = 10) +  
    s(capacity, k = 10) + country 
 
Parametric coefficients: 
             Estimate Std. Error t value Pr(>|t|)     
(Intercept)   2.71257    0.02284 118.739   <2e-16 *** 
countryspain  0.06990    0.03137   2.228   0.0259 *   
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 



Approximate significance of smooth terms: 
                        edf Ref.df     F  p-value     
te(lon,lat):quarter1  46.09  46.09 25.12  < 2e-16 *** 
te(lon,lat):quarter2  32.80  32.80 11.64  < 2e-16 *** 
te(lon,lat):quarter3  37.01  37.01 36.32  < 2e-16 *** 
te(lon,lat):quarter4  44.21  44.21 26.04  < 2e-16 *** 
te(year,month)       182.43 182.43 35.49  < 2e-16 *** 
s(yr_serv)             1.00   1.00  0.94    0.332     
s(capacity)            1.00   1.00 23.30 1.54e-06 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
 
R-sq.(adj) =  0.121    
  Scale est. = 0.87667   n = 121427 

(a) Parametric terms 

 Estimate Std. Error t value Pr(>|t|) 

(Intercept) 2.713 0.023 118.739 0.000 

countryspain 0.070 0.031 2.228 0.026 
 

(b) Smoothed terms 

 edf Ref.df F p-value 

te(lon,lat):quarter1 46.086 46.086 25.116 0.000 

te(lon,lat):quarter2 32.798 32.798 11.645 0.000 

te(lon,lat):quarter3 37.009 37.009 36.319 0.000 

te(lon,lat):quarter4 44.214 44.214 26.041 0.000 

te(year,month) 182.431 182.431 35.494 0.000 

s(yr_serv) 1.000 1.000 0.940 0.332 

s(capacity) 1.000 1.000 23.295 0.000 
 

Table 1: Summary statistics and p-values for fixed and smooth terms included in the non-
random part of the GAMM model. 

 



Marginal effects of predictor variables 

 

Figure 6: Marginal effect of lon,lat on log SKJ catch per FOB set for each of the four quarters. 

  



 

Figure 7: Marginal effect of year,month on log SKJ catch per FOB set. 

  

 

Figure 8: Marginal effects of individual smooths on log SKJ catch per FOB set. The red 
horizontal bars on the panels indicate the central 95% of the data of the corresponding 



predictor variable in the model training data set. 

Vessel carrying capacity had a linearly increasing impact on log SKJ catch per set, whereas 
the effect of year of entry into the fishery was insignificant. The impacts of spatial 
(Figure 6) and temporal (Figure 7) predictors on log SKJ catch are more difficult to 
interpret. 

Standardized CPUEs 
Table 2: Annual spatially weighted and unweighted standardized CPUEs and nominal CPUEs 
for SKJ catch per FOB set in the Indian Ocean European purse seine fleet. Values are in 

Year 
Unweighted, 

Mean 
Unweighted, 

2.5% 
Unweighted, 

97.5% 
Weighted, 

Mean 
Weighted, 

2.5% 
Weighted, 

97.5% 

1991 28.22 23.80 33.51 28.04 24.01 32.80 

1992 27.12 23.81 30.88 28.08 24.98 31.58 

1993 27.42 24.13 31.17 28.45 25.37 31.90 

1994 27.81 24.40 31.68 27.98 24.92 31.42 

1995 24.05 21.40 27.02 24.14 21.80 26.72 

1996 19.36 17.10 21.92 19.49 17.46 21.75 

1997 17.27 15.27 19.52 17.22 15.44 19.20 

1998 19.96 17.71 22.50 20.29 18.25 22.55 

1999 24.15 21.27 27.40 25.08 22.43 28.04 

2000 23.80 21.08 26.88 24.29 21.84 27.02 

2001 26.17 23.17 29.57 26.50 23.82 29.48 

2002 30.90 27.23 35.05 31.63 28.33 35.32 

2003 27.97 24.81 31.54 28.49 25.63 31.66 

2004 25.10 22.11 28.49 25.23 22.54 28.24 

2005 24.86 21.95 28.16 24.85 22.28 27.72 

2006 21.39 19.08 23.98 21.59 19.57 23.82 

2007 18.29 16.19 20.65 18.46 16.60 20.53 

2008 19.29 17.10 21.75 19.08 17.17 21.21 

2009 22.26 19.84 24.97 22.17 20.05 24.51 

2010 22.91 20.30 25.84 23.00 20.68 25.58 

2011 18.75 16.67 21.08 18.10 16.33 20.06 

2012 16.38 14.52 18.47 15.59 14.01 17.34 

2013 16.97 15.01 19.18 16.55 14.84 18.44 

2014 17.46 15.56 19.58 17.18 15.55 18.97 

2015 17.60 15.61 19.84 17.38 15.63 19.30 

2016 18.28 16.29 20.50 18.31 16.57 20.23 



Year 
Unweighted, 

Mean 
Unweighted, 

2.5% 
Unweighted, 

97.5% 
Weighted, 

Mean 
Weighted, 

2.5% 
Weighted, 

97.5% 

2017 21.82 19.58 24.32 21.90 19.95 24.03 

2018 24.39 21.82 27.28 24.37 22.10 26.87 

2019 21.93 19.55 24.59 21.94 19.83 24.28 

2020 21.88 19.39 24.69 22.04 19.77 24.56 

2021 26.30 23.16 29.85 26.66 23.78 29.88 

  

 

Figure 9: Standardized CPUE predictions from the single-component GAMM model. CPUEs are 
in units of tonnes of SKJ catch per PS FOB set in the Indian Ocean. Solid curves indicate mean 
tendencies, whereas dashed curves indicate the upper and lower limits of the 95% confidence 
interval. Red curves correspond to the spatially unweighted approach to averaging 
predictions over space, whereas green curves correspond to the spatially weighted approach 
to spatial averaging. Black and gray curves indicate the nominal CPUE derived from the 
original, unfiltered data and the filtered data used for training the GAMM model, respectively. 

Nominal and standardized CPUE curves are shown in Figure 9 and Table 2. The weighted 
and unweighted standardized CPUE curves are generally similar to each other and similar 
to the nominal CPUE curves. The most notable differences between nominal and 
standardized CPUEs occur in 3 specific periods: (a) 1991-1997: standardized CPUEs are 
consistently above nominal CPUEs, perhaps due to the balancing of catch between the 



different fleets; (b) 2007-2012: this period corresponding to the most important impacts of 
Somali piracy is also characterized by standardized CPUEs exceeding nominal CPUEs; and 
(c) 2020: fishing in this year was heavily impacted by the onset of COVID. Nominal CPUEs 
based on the original, unfiltered data and the filtered data used for GAMM model training 
are generally quite close, but at times the filtered data nominal CPUE exceeds that of the 
unfiltered data, perhaps due to the elimination of vessels that only briefly participated in 
the fishery and, therefore, had less experience and lower catch rates. 

Discussion 

This standardized CPUE appears to reproduce many of the major features seen in the 
Maldivian pole and line CPUE. 
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