# Scientific catch estimation for the global FAD tropical tuna purse seine fishery in the Indian Ocean 

Abascal, F.J. ${ }^{1}$, Kaplan, D. ${ }^{2}$, Gaertner, D. ${ }^{2}$, Ramos, M.L ${ }^{1}$, Duparc, A., Depetris, M., Báez, J.C. ${ }^{1}$<br>${ }^{1}$ Spanish National Research Council, Spanish Institute of Oceanography.<br>${ }^{2}$ Institut de Recherche pour le Developpement (IRD)


#### Abstract

This analysis compares IOTC catch data in the public domain with an alternative estimation for associated (log school) purse seine catches based on port sampling data from the European Union sampling program aggregated by 50 square or statistical area, year and quarter.

The underlying assumption is that any fleet fishing in the same spatio-temporal strata and on log schools will have, on average, the same catch composition.

Species composition distribution in the sampled strata (year, quarter and $5 \times 50$ cell or statistical area) was estimated by bootstrapping across the catch by species derived from each sample and was applied to the total catch (aggregated across flags) reported in these strata. For unsampled strata, a correction factor was estimated by comparing the species composition reported and estimated in sampled strata on a yearly basis. This correction factor was then applied to the total catch on log school in each unsampled strata.

The estimated catch levels when port sampling data weighted by the size category are used are close to the ones in the public domain, with some exception as in 2018. Moreover, it also indicates some deviations in the early time series and in the most recent years. Two approaches for the catch estimation, one based on the raw samples and another one in which species composition is estimated separately for different catch categories ( $<10 \mathrm{~kg}, 10-30 \mathrm{~kg}$ and $>30 \mathrm{~kg}$ ) and adjusted according to the amount of each fraction as reported in the logbooks, were tested.


While this analysis does not provide any insight on the best procedure to estimate catch composition in the purse seine fishery, it provides a time-consistent, scientific-based, estimate of catches for the purse seine fishery that can be of use for future stock assessments.

## Introduction

The estimation of catch composition in purse seine fisheries have proved problematic since the beginning of the fisheries. Due to the resemblance of the juveniles of yellowfin Thunnus albacares and bigeye tuna Thunnus obesus, the frequent overreporting of skipjack tuna Kastuwonus pelamis catches and the way the purse seine catches are directly brailed into the wells, catches reported in logbooks, particularly for small individuals- normally linked to catches on floating objects- are typically inaccurate and need to be corrected (e.g., Fonteneau et al., 1976; Báez et al., 2019).

CPCs have provided catch estimates as required by the mandatory statistical requirements on a regular basis. These provisions are assumed accurate and are used for the assessment of the different stocks. In the case of the three main fleets involved in the fishery, namely Spain, France and Seychelles, the species and size composition of the catch have been corrected since the early 1990's (the so-called T3 methodology) based on a combination of port sampling data
(species and size composition by fishing mode- i.e., free school or floating object (FOB) sets, weight category, quarter and statistical area), logbook declaration (catch by weight category, fishing mode, quarter and statistical area) and landing slips (ratio from total landed catch vs total catch recorded in logbooks) following a methodology developed by the Working Group on Juvenile Tropical Tunas (Anon. 1984) and further refined in the framework of a joint project (European ET Research Programme No. 95/37: "Analysis of the Tropical Tuna Multi-species Sampling Scheme") by France and Spain (Pallarés and Petit, 1998; Pianet et al., 2000).

In addition to the refinement in the methodology after 1998 mentioned above, the introduction of catch limits for yellowfin tuna by Resolution 16/01 implied the need of CPCs for developing monitoring, control and surveillance processes that may have changed the methodology followed in the past and produced inconsistencies in the catch time series. Moreover, the procedure for the estimation of catches in some instances is not, or poorly, documented.

The current study does not focus on the accuracy or appropriateness of different methodologies, nor examines estimates at the CPC level. It is aimed at using a consistent methodology across CPCs and through time, based on port sampling data, to provide scientific estimates for the global purse seine fishery operating in the Indian Ocean. These estimates can be of use in future stock assessments of bigeye, skipjack and yellowfin tuna and solve some of the issues linked to the methodological changes the implementation of catch limits may have had in CPCs catch estimation and reporting.

## Methodology

## Port sampling data

Port sampling data were obtained from the sampling at landing in the ports of Victoria, Mombassa and Diego Suarez in the framework of the Spanish Institute of Oceanography (IEO) and the French Research Institute for Development (IRD) sampling programs and, later, from the EU data collection regulation sampling programs.

This sampling procedure selects wells that contain catches from the same spatial strata (termed ET areas), the same fishing mode (FOB or free school sets) and the same quarter to characterize species and size composition in each stratum. The detailed process for sampling is described in Sarralde et al 2009.

## Catch data

Catch data from 1990 to 2022 were obtained from the IOTC public domain (https://iotc.org/WPTT/25/Data/05-CESurface, accessed on the $8^{\text {th }}$ September 2023). In this dataset, all catch data are classified by fishing mode, month and 10 cell (with the exception of 347 t in the early 1990's provided at 50 resolution).

## Correction

Species composition was estimated at two different stratification levels: (Step 1) $5 \times 50$ cell, set type, year and quarter; and (Step 2) ET area, set type, year and quarter. The definition of the ET areas is shown in table 1.

Samples from wells with catch from different $5 \times 5$ cell (or ET area in step 2), year-quarter or fishing modes were not included. Furthermore, samples with less than 100 fish or strata will less than 5 samples were also removed. Table 2 illustrates the number of samples retained after each filtering step.

Fish numbers at size were converted to weight using IOTC length-weight conversion factors (https://iotc.org/WPTT/24/Data/13-Equations). Confidence intervals ( $10^{\text {th }}$ and $90^{\text {th }}$ percentiles) were estimated by boostrapping across samples and total catch by $1 \times 10$ cell and quarter (aggregated across flags) in the IOTC public domain was split into the three species based on the estimated composition from the samples. First, catches were corrected by the species
 could not be corrected in the previous step, because there were no estimates for that $5 \times 5$ grid/quarter, was corrected by the species composition estimated in the same ET area/quarter (step 2). Finally, for those strata that were not sampled at the $5 \times 5$ or ET area/quarter level, a yearly correction factor, estimated at the species level based on the difference between the reported and estimated catch in sampled strata that year, was applied (step 3).

In the traditional T3 process, species composition is estimated by weight category ( $<10 \mathrm{~kg}, 10-$ 30 kg and $>30 \mathrm{~kg}$ categories) and then weighted according to the total catch by category (as declared in the logbooks) in the sets contributing to the sampled wells. This may partially remove biases linked to the selectivity at sampling of certain sizes over the others (e.g., Peatman et al., 2018), size sorting at unloading, etc. We assayed two correction procedures: (1) based in this approach (the catch composition in the samples is weighted according to the $<10,10-30$ and $>30$ catch in the sampled wells) and (2) assuming a perfect random sampling, hence using the raw sampling data.

Preliminary analyses indicated significant deviations between the estimates and the reported catches in the earlier time-series when free school catches were corrected. This seemed to be linked to a different targeting, when fishing on free schools, between sampled and unsampled flags (EU vessels mainly targeting large yellowfin tuna schools and other flags mainly targeting skipjack). This led to estimates that seemed artefact. Therefore, it was decided to only correct FAD catches and assume free-school catches are accurately reported.

## Results and discussion

Figure 1 shows the percentage of catch that has been corrected using each of the procedures. For most of the time series, over $90 \%$ of the catch could be corrected using the estimations at $5 \times 5$ /quarter or ET area/quarter level. However, sampling coverage for some years was very low (1998, 1999, 2017 and 2020), and most of the estimates were derived from the yearly correction factor.

The estimation of catch composition in the samples shows that the use of raw samples underestimates the amount of skipjack and overestimate the amount of yellowfin as compared to the samples weighted by category (Figure 2). These results tend to demonstrate a possible bias in the selection of the fish during the sampling. Similarly, previous studies comparing "grab" samples (i.e., samples selected by the observers) and "spill" (samples taken from a bin were part of the catch is spilt) have shown that observers tend to underselect smaller fish, generally resulting in an underestimation of skipjack catches and an overestimation of yellowfin catches (Lawson, 2009). The correction by commercial category might solve this issue, since it would remove the impact of the overrepresentation of large yellowfin in the sample. The sampling condition and methodology at landing differs from the sampling by observers during the brailing, but the hypothesis of non-random selection of the fish remains valid and should be further investigated.

The estimated catch levels when port sampling data weighted by the size category are used (Figure 3) are close to the ones in the public domain for most of the time series. However, there
are significant departures at the beginning and end of the time series, particularly for BET and, to a lesser extent YFT. Skipjack catches fall within the estimated confidence intervals, but for the period 1990-1998 (before the new sampling protocol, as described in Pianet et al., 2000, was applied), were skipjack catches would be overreported according to these estimates.

As expected, the most significant deviation is the bigeye catch in 2018, with estimated FAD catch levels c. $50 \%$ lower than the ones in the public domain. However, significant differences between the public domain data and the current estimates are also observed at the beginning of the time series. Moreover, while estimates for yellowfin tuna and skipjack are within the confidence interval of the current estimates in the most recent period, estimates for bigeye in 2020, 2021 and 2022 are well below the reported levels. It must be noted the coverage in 2020 was very low, with only c. $12 \%$ and $25 \%$ of the catches being corrected at the $5 \times 5$ /quarter and ET area/quarter level, respectively. Hence, estimates for this year must be taken with caution. On the other hand, c. $90 \%$ of the catch in 2021 and 2022 could be corrected using the $5 \times 5$ or the ET area/quarter estimates. The change in catch estimation in each of the correction steps is shown in figure 4.

Estimates using raw sampling data indicate a systematic bias for yellowfin and skipjack across the time series (Figure 5) when comparted to the public domain dataset. YFT estimates are consistently above the reported ones, while skipjack catches would be overreported in the public domain dataset according to these estimates. The analyses of selectivity biases (ie., biases due to the effect of non-random selection of fish) in onboard samplings carried out in the western Pacific Ocean have been subject to thorough scrutiny, since it is the basis for correcting global catches in the area. Results have generally concluded skipjack is systematically underestimated when using grab sampling procedures. Noting the above, and the fact that the T3 process relies on the catch by categories reported by skippers, it is considered that the approach using samples weighted by size category is more appropriate at this stage, but further studies would help identify approaches that ensure a random selection of fish and are not subject to skippers' reports, to a large extent eyeball estimates.

WPTT26 is invited to:

- Note the approach followed and the usefulness of using time-consistent, scientificbased estimates alternative to the ones reported by CPCs for future stock assessments.
- Provide advice on any further work that might improve the current estimates


## References

Anonymous. (1984). Report of the Meeting of the Working Group on juvenile tropical tunas. Brest, France. Col. Vol. Sci. Pap. ICCAT 21, 1-289.

Báez, J. C., Duparc, A:, Ruiz, J., Manzaneque, F., Pérez San Juan, A., Pernak, M., Salgado, A., Bach, P., Lucas, J., and Ramos, M.L. (2019). Assessing the misidentification rate for bigeye and yellowfin juveniles in brine sampled at Port Victoria (Indian Ocean): consequences for the species composition estimates of landings. Report of the 21th session of the IOTC Working Party on Tropical Tunas. IOTC, San Sabastian, Spain.

Fonteneau, A. 1976. Note sur les problèmes d'identification du bigeye dans les statistiques de pêche. Col. Vol. Sci. Pap. ICCAT 5:168-171.

Lawson, T.A. 2009. Selectivity bias in grab samples and other factors affecting the analysis of species composition data collected by observers on purse seiners in the Western and Central Pacific Ocean. Fifth Regular Session of the Scientific Committee of the Western and Central Pacific Fisheries Commission. WCPFC-SC5-ST-WP-03.

Pallarés, P., and Petit, Ch. (1998). Tropical tunas: new sampling and data processing strategy for estimating the composition of catches by species and sizes. Col. Vol. Sci. Pap. ICCAT 48:230246.

Peatman, T., Smith, N., Caillot, S., Fukofuka, S., and Park, T. (2018). Better purse seine catch composition estimates: progress on the Project 60 workplan. $14^{\text {th }}$ Scientific Committee of the Western and Central Pacific Fisheries Commission. WCPFC-SC14-2018/ST-WP-02.

Pianet, R., Pallares, P., and Petit, Ch. (2000). New sampling and data processing strategy for estimating the composition of catches by species and sizes in the European purse seine tropical tuna fisheries. IOTC Proceedings 3, 104-139. WPDCS 00-10.

Sarralde, R., Delgado de Molina, A., Ariz, J., Santana, J.C.,Pallaés, P., Pianet, R., Dewals, P., Hervé, A., Dedo, R. and Areso, J.J. 2009. Port Sampling Procedures for Tropical Tuna in the Atlantic and Indian Oceans Technical Report ICCAT Manual (2009) URL: https://www.iccat.int/en/iccatmanual.html

Table 1.- Large fishing zones (ET areas) in the Indian Ocean (source: Sarralde et al., 2000)


Table 2.- Number of samples retained after each filtering step by year

|  |  | Step 1 (5x5o) |  |  |  | Step 2 (ET area) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year | Original | Spatiotemporal strata | Set type | 100 fish th. | 5 sample th. | Spatiotemporal strata | Set type | 100 fish th. | 5 sample th. |
| 1990 | 306 | 260 | 260 | 246 | 179 | 301 | 301 | 287 | 273 |
| 1991 | 468 | 392 | 389 | 377 | 285 | 443 | 443 | 431 | 405 |
| 1992 | 388 | 330 | 319 | 311 | 212 | 366 | 366 | 356 | 345 |
| 1993 | 396 | 335 | 333 | 330 | 214 | 380 | 380 | 377 | 358 |
| 1994 | 546 | 452 | 446 | 445 | 317 | 518 | 518 | 517 | 499 |
| 1995 | 696 | 561 | 556 | 556 | 429 | 662 | 662 | 662 | 649 |
| 1996 | 607 | 471 | 462 | 459 | 316 | 554 | 554 | 550 | 534 |
| 1997 | 569 | 444 | 438 | 434 | 312 | 535 | 535 | 531 | 510 |
| 1998 | 92 | 81 | 79 | 79 | 39 | 87 | 87 | 87 | 78 |
| 1999 | 53 | 42 | 41 | 40 | 0 | 50 | 50 | 49 | 25 |
| 2000 | 207 | 156 | 155 | 153 | 96 | 198 | 198 | 196 | 172 |
| 2001 | 866 | 667 | 665 | 650 | 516 | 837 | 837 | 819 | 796 |
| 2002 | 1033 | 823 | 823 | 813 | 641 | 1021 | 1021 | 1010 | 980 |
| 2003 | 1213 | 1020 | 1020 | 1006 | 868 | 1187 | 1187 | 1172 | 1145 |
| 2004 | 1247 | 984 | 983 | 959 | 873 | 1229 | 1229 | 1201 | 1181 |
| 2005 | 1700 | 1302 | 1286 | 1254 | 1110 | 1595 | 1595 | 1559 | 1545 |
| 2006 | 1720 | 1293 | 1291 | 1254 | 1102 | 1554 | 1554 | 1511 | 1484 |
| 2007 | 1391 | 908 | 908 | 887 | 738 | 1261 | 1261 | 1235 | 1216 |
| 2008 | 1543 | 1033 | 1029 | 1001 | 877 | 1387 | 1387 | 1354 | 1334 |
| 2009 | 1258 | 801 | 791 | 776 | 617 | 1135 | 1135 | 1120 | 1097 |
| 2010 | 1407 | 844 | 820 | 809 | 679 | 1244 | 1244 | 1233 | 1202 |
| 2011 | 1367 | 895 | 870 | 857 | 714 | 1183 | 1183 | 1171 | 1144 |
| 2012 | 1522 | 1027 | 998 | 946 | 820 | 1347 | 1347 | 1291 | 1278 |
| 2013 | 907 | 595 | 575 | 566 | 448 | 778 | 778 | 769 | 757 |
| 2014 | 911 | 620 | 602 | 529 | 426 | 831 | 831 | 754 | 739 |
| 2015 | 706 | 517 | 510 | 483 | 384 | 679 | 679 | 651 | 634 |
| 2016 | 517 | 336 | 336 | 333 | 190 | 489 | 489 | 486 | 466 |
| 2017 | 334 | 259 | 256 | 249 | 149 | 311 | 311 | 305 | 281 |
| 2018 | 733 | 467 | 461 | 459 | 309 | 612 | 612 | 610 | 582 |
| 2019 | 1029 | 770 | 757 | 755 | 631 | 958 | 958 | 956 | 945 |

IOTC-2024-WPTT26(DP)-08

| 2020 | 83 | 47 | 46 | 46 | 22 | 67 | 67 | 67 | 60 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2021 | 787 | 576 | 572 | 569 | 471 | 716 | 716 | 713 | 679 |
| 2022 | 778 | 545 | 531 | 529 | 400 | 642 | 642 | 640 | 622 |

Table 3.- Percentage of the total catch corrected by each method.

Year |  | $5 \times 5 /$ quarter | ET/quarter | Correction/year |
| :---: | ---: | ---: | ---: |
| 1990 | 33.32 | 45.76 | 20.92 |
| 1991 | 58.62 | 32.67 | 8.71 |
| 1992 | 41.9 | 45.32 | 12.78 |
| 1993 | 38.28 | 48.02 | 13.7 |
| 1994 | 50.08 | 37.09 | 12.84 |
| 1995 | 68.5 | 21.65 | 9.84 |
| 1996 | 62.63 | 30.65 | 6.72 |
| 1997 | 63.2 | 23.5 | 13.3 |
| 1998 | 13.12 | 22.96 | 63.92 |
| 1999 | 0 | 3.17 | 96.83 |
| 2000 | 39.6 | 23.93 | 36.47 |
| 2001 | 64.79 | 27.04 | 8.17 |
| 2002 | 70.7 | 25.94 | 3.37 |
| 2003 | 71.77 | 23.63 | 4.6 |
| 2004 | 77.28 | 20.16 | 2.56 |
| 2005 | 75.94 | 20.89 | 3.17 |
| 2006 | 82.78 | 13.4 | 3.82 |
| 2007 | 67.37 | 26.13 | 6.5 |
| 2008 | 75.11 | 18.84 | 6.05 |
| 2009 | 68.27 | 27.66 | 4.07 |
| 2010 | 73.4 | 24.32 | 2.28 |
| 2011 | 76.9 | 19.61 | 3.49 |
| 2012 | 62.15 | 36 | 1.85 |
| 2013 | 65.04 | 32.35 | 2.61 |
| 2014 | 66.44 | 27.8 | 5.77 |
| 2015 | 56.93 | 37.28 | 5.79 |
| 2016 | 29.63 | 62.46 | 7.9 |
| 2017 | 19.16 | 43.79 | 37.05 |
| 2018 | 54.63 | 39.86 | 5.51 |
| 2019 | 69.53 | 20.34 | 10.13 |
| 2020 | 11.83 | 24.52 | 63.65 |
| 2021 | 66.81 | 21.6 | 11.59 |
| 2022 | 63.87 | 28.61 | 7.51 |
|  |  |  |  |



Fig 1.- Catch corrected at the $5 \times 5 /$ quarter, T 3 area/quarter and yearly correction factor.


Figure 2.- Set catch by species estimated from raw samples and samples weighted by size category.


Fig 3.- Estimated global FAD purse seine catch by species and year using the catch composition from port sampling data weighted by catch category.


Fig 4.- Change in estimated catch by species and year in each of the correction steps.


Fig 5.- Estimated global FAD purse seine catch by species and year using the catch composition from raw port sampling data.

