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SUMMARY 

Abundance indices for yellowfin tuna (Thunnus albacares) in the Indian Ocean were derived from the European 

purse seine CPUE series (2010-2022) for fishing operations made on floating objects (FOB). We used two 

modelling approaches for CPUE standardization: generalized linear mixed model (GLMM) and spatiotemporal 

GLMM model (st-GLMM). Moreover, for both modelling approaches, we implemented a hurdle method, which 

separates the probability of a positive set and the catch (kg) per set in different components. Then, we made 

predictions on a prediction grid for every time step (year-quarter). To calculate the standardized CPUE per time 

step, we aggregated the spatial predictions based on an area-weighting approach. The two standardized CPUE 

series were then compared to the nominal CPUE. To remove the effects of technological improvements and FOB 

density, several candidate variables were tested to be included as explanatory variables. 
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1. Introduction 

An abundance index is a key data input in stock assessment models that can inform fluctuations in population 

abundance or biomass (Magnusson and Hilborn, 2007). Typically, an abundance index is obtained from fishery-

independent (e.g., scientific surveys) and dependent sources. For highly migratory and large pelagic fishes (e.g., 

tunas), performing a scientific survey is impractical given the large extent of their distribution, therefore fishery-

dependent abundance indices such as catch per unit effort (CPUE) are primarily used (Hoyle et al., 2024). 

Using nominal CPUE is inappropriate since it is normally biased due to the spatial heterogeneity of fish populations, 

environmental factors, the behavior of fishers, and features of fishing vessels (Wilberg et al., 2009). These factors 

may produce a disparity between the nominal CPUE and true population abundance trends. For this reason, a CPUE 

standardization process needs to be performed in order to remove the impact of external factors that can influence 

catch rates (Maunder and Punt, 2004). 

The European (EU) tuna purse seine fishery operating in the Indian Ocean has experienced significant technological 

developments during the last years, which has increased their efficiency in locating and catching tunas (Torres-

Irineo et al., 2014). The EU purse seine fleet is divided into two categories: 1) targeting free-swimming schools 

(FS), and 2) fishing around floating objects (LS). The latter category initially used natural objects (e.g., logs) that 

occurred naturally in the ocean; however, they now use artificial buoys known as fishing aggregating devices (a.k.a. 

FADs) with incorporated technology (e.g., satellite tracks, echo-sounders) (Lopez et al., 2014). 

The EU purse seine fleet principally targets three tuna species: yellowfin (Thunnus albacares), bigeye (Thunnus 

obesus), and skipjack (Katsuwonus pelamis). Yellowfin tuna (YFT) is a fast-growing species widely distributed in 

the Indian Ocean. The largest catches come from latitudes between 30∘S and 20∘N, primarily from the western 

Indian Ocean, and peaks from November to June (Artetxe-Arrate et al., 2021). Based on the last stock assessment, 

YFT is considered overfished and subject to overfishing (Fu et al., 2021). The purse seine fishery is the main fishing 

gear operating on this stock, contributing to ∼ 36% of the total YFT annual catch, followed by handline, gillnet, and 

longline fisheries. The purse seine LS type catches mostly juveniles while the purse seine FS does mostly on adults 

(Fu et al., 2021). 

The assessment platform used in the last assessment of the YFT stock in 2021 (Fu et al., 2021) was Stock Synthesis 

(Methot and Wetzel, 2013). The final configuration was spatially explicit with four areas and employed four indices 

of abundance to inform biomass trend over time per area derived from the long-line fishery. One of the indices 

presented during the assessment process was developed using information from the EU purse seine operating on free 

schools (Guery et al., 2021), which principally informed variations in YFT adult abundance. In this study, we use 

data from the EU purse seine operating on floating objects (LS) and diverse modelling techniques to derive 

standardized CPUE indices that can inform juvenile abundance in the assessment process and help to improve the 

stock assessment model estimates. 

2. Methods 

2.1. Data 

We used logbook data from the EU purse seine fleet (Spain and France) targeting tropical tunas and operating on 

floating objects in the Indian Ocean from 2010 to 2022. The logbook data sets are managed by the Tuna 

Observatory (Ob7) and the Spanish Institute of Oceanography (IEO) for the French and Spanish fleets, respectively. 

The raw logbook data (Level 0) produced by the skippers were corrected in terms of total catch per set to account for 

the difference between reported catch at sea and landed catch. Likewise, the species composition per set was 

corrected based on port size sampling and the T3 methodology (Pallarés and Hallier, 1997) to generate Level 1 

logbook data set. 

We excluded observations from fishing sets that operated in areas (1∘ × 1∘) that were not fished for less than nine 

years during the studied period in order to retain areas constantly sampled. Figure 2 shows all the fishing sets used in 

the CPUE standardization process and Figure 4 the yearly variation in the number of sets in the data. Figure 1 shows 

the histogram of all the catch per set values, both in the original and log-transformed scale. 
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2.2. Spatial indicators 

Using the observed data, we calculated six indicators to summarize the spatial behavior of the fleet during the 

studied period. Diverse spatial indicators have previously been used for fishery-dependent (Kaplan et al., 2021; 

Russo et al., 2013; Sosa-López and Manzo-Monroy, 2002) and independent (Woillez et al., 2009; Woillez et al., 

2007) sources to increase the chance of picking up changes in critical fleet-related factors over time. We calculated 

the following spatial indicators, which were calculated by year-quarter: 

1. Clark-Evans: It is an index of point spatial aggregation (Clark and Evans, 1954), here represented by 

fishing sets, and provides information on how spatially aggregated the fishing sets took place. Smaller 

values indicate higher spatial aggregation of fishing sets. 

2. Covered area (𝑘𝑚2): Represents the spatial expansion of the fishing sets. It was calculated assuming that 

each fishing set has an area of influence of 1 𝑘𝑚2, and then calculating the spatial union of those areas. 

3. Center of gravity (lon): Indicates the longitude where the YFT catches per set were centered. 

4. Center of gravity (lat): Indicates the latitude where the YFT catches per set were centered. 

5. Moran’s autocorrelation coefficient: Measure of spatial autocorrelation (Gittleman and Kot, 1990), which 

considers the YFT catch information per fishing set. 

6. Gini coefficient: It is a measure of inequality (Cowell, 2011) among YFT catch per fishing set. 

2.3. Statistical models 

We used two modelling approaches to standardize the observed catch rates: a traditional generalized linear mixed 

model (GLMM) and a spatiotemporal GLMM (st-GLMM). The main difference between both approaches is the 

treatment of the spatial and temporal effects (see below). For both cases, we used the two-part delta or hurdle 

approach (Aitchison, 1955), which models two components: 1) probability of a positive set (catch > 0), modelled as 

a binomial response, and 2) catch per set, which assumed a log-normal response. 

2.3.1. Generalized linear mixed model (GLMM) 

The GLMM approach is widely used for CPUE standardization. It extends the generalized linear model (GLM) 

approach by including random variables in the linear predictor, allowing the modelling of fixed and random effects 

simultaneously (Zuur et al., 2009). Time and space are usually modelled as random effects. 

The studied area was stratified by using a spatial cluster approach to identify strata that best match the population 

structure (Ono et al., 2015). To find these strata, we applied a k-medoids algorithm (Kaufman and Rousseeuw, 

1990) using the 1∘ × 1∘ catch information averaged over time (i.e., mean CPUE). We then calculated the Euclidean 

distance between pairs of grids, considering the mean CPUE values but also the longitude and latitude information 

of the grids, and then ran the cluster analysis. Finally, we found the optimal number of clusters by using the average 

silhouette width method (Rousseeuw, 1987). The identified clusters were used as the cluster variable in the GLMM 

(see Table 1). 

The GLMM model can be represented as: 

𝜂 = 𝑔(𝜇) = 𝐗𝛃 + 𝛼 + 𝜖  (1) 

Where 𝜂 is the linear predictor. 𝜇 is either the expected probability of presence with a logit link function (𝑔) for the 

first model component, or the YFT catch (tons) per set (only for positive values) with a log link function for the 

second model component. 𝐗 is the design matrix of fixed effects, and 𝛃 is a vector of estimated parameters. 𝛼 is the 

random effect (𝛼 ∼ 𝑁(0, 𝜎𝛼
2)). 𝜖 represents the random error. We implemented the GLMM model (Equation 1) in R 

using the package glmmTMB (Brooks et al., 2017). 

The first model component did not include any type of spatial effect, and treated the temporal effect by including 

𝑦𝑒𝑎𝑟 + 𝑞𝑢𝑎𝑟𝑡𝑒𝑟 as fixed effects and (1|𝑦𝑒𝑎𝑟: 𝑞𝑢𝑎𝑟𝑡𝑒𝑟) as random effects.The second model component included 

𝑦𝑒𝑎𝑟 + 𝑞𝑢𝑎𝑟𝑡𝑒𝑟 + 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 as fixed effects, and the interaction between year, quarter and cluster 

(1|𝑦𝑒𝑎𝑟: 𝑞𝑢𝑎𝑟𝑡𝑒𝑟: 𝑐𝑙𝑢𝑠𝑡𝑒𝑟) was modelled as random effect. Both model components included the effect of vessel as 
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random effect (1|𝑛𝑢𝑚𝑏𝑎𝑡). For other candidate variables (see Table 1), we performed an analysis of variance 

(likelihood ratio Chisquare) to evaluate their effect on the response variable and retained only the significant ones. 

Once significant candidate variables were identified, we then used the DHARMa R package (Hartig, 2022) to 

evaluate the model residuals. Standard raw residuals are not always appropriate when using GLMM, and other types 

of residuals (e.g., Pearson, deviance residuals) are commonly used instead. DHARMa uses a simulation-based 

approach to create readily interpretable scaled (quantile) residuals for generalized linear mixed models. We analyzed 

two plots produced by DHARMa: 1) the QQ plot residuals, which detects overall deviations from the expected 

distribution, and 2) the residual vs. predicted plot, which detects trends in residuals along model predictions and 

simulation outliers. 

2.3.2. Spatiotemporal generalized linear mixed model (st-GLMM) 

Geostatistical generalized linear mixed effects models can account for unmeasured variables (e.g., population 

biomass) that cause observations (e.g., catch) to be correlated over space and time through random effects 

(Anderson et al., 2024). A Gaussian random field (GRF) is multidimensional spatial process, where the random 

effects that describe the spatial pattern follow a multinomial distribution with mean 𝜇 = [𝜇(𝑠1), . . . , 𝜇(𝑠𝑛)] and 

spatially structured covariance matrix 𝛴 (Blangiardo and Cameletti, 2015). 

For CPUE standardization, the VAST (Thorson, 2019) and R-INLA (Lindgren and Rue, 2015) R packages have been 

used in previous studies for distinct fish stocks (Grüss et al., 2019; e.g., Zhou et al., 2019). Recently, Anderson et al. 

(2024) developed the sdmTMB R package that implements geostatistical spatial and spatiotemporal GLMMs in 

TMB (Kristensen et al., 2016) for model fitting such as done in VAST, but also provides a user-friendly interface, 

especially for users familiar with the glmmTMB package. For this reason, we decided to use sdmTMB to implement 

a spatiotemporal model for CPUE standardization. 

sdmTMB approximates the GRF by relying on the Stochastic Partial Differential Equation (SPDE) approach using 

the Integrated Nested Laplace Approximation in R-INLA to reduce computational costs. The first step to using the 

SPDE approach is to construct the mesh, which was composed of triangles covering the studied area with a 

minimum allowed triangle edge length (cutoff) of 75 km (Figure 12). We assumed the spatial correlation is Matérn 

and bilinearly interpolated over the prediction grid (see below) using the values at the mesh vertices. Following 

Anderson et al. (2024), our model can be mathematically represented as: 

𝜂 = 𝑔(𝜇) = 𝐗𝛃 + 𝜔𝑠 + 𝜀𝑠,𝑡  (2) 

Where 𝜔 is the spatial random field (i.e., constant across time), which represents the effect of latent spatial variables 

that are not otherwise accounted for in the model: 

𝜔 ∼ 𝑀𝑉𝑁(0, 𝛴𝜔) 

𝜀𝑡 represents the latent spatiotemporal effects and are assumed to be iid (i.e., independent at each time step): 

𝜀𝑡 ∼ 𝑀𝑉𝑁(0, 𝛴𝜀) 

𝛴 is the covariance matrix of the multivariate normal (MVN) distribution. The spatial and spatiotemporal terms were 

only included for the second model component. Since sdmTMB requires to have the same fixed and random effects 

in both model components, we included all the candidate variables for both components, as well as the effect of 

vessel as random effect (1|𝑛𝑢𝑚𝑏𝑎𝑡). The model time step was quarter. 

To analyze the residuals, we computed the randomized quantile residuals, also known as probability-integral-

transform (PIT) residuals. (Dunn and Smyth, 1996). They apply randomization to integer response values, transform 

the residuals using the distribution function to reflect a uniform(0, 1) distribution, and transform those values such 

that they would be normal(0, 1) if consistent with the model (Anderson et al., 2024). 

2.4. Standardized CPUE calculation 

We calculated two standardized CPUE indices by year-quarter for each modelling approach (Equation 1, 

Equation 2). To do so, we made predictions (.)̂ on the response scale for each model component for all combinations 
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of years 𝑦, quarters 𝑞, and areas 𝑎. The area 𝑎 represents a cluster for the GLMM or a 1∘ × 1∘ prediction grid for the 

st-GLMM model (Figure 3). For other covariates, we assumed the mean value of the continuous covariates, or the 

level with the largest sample size for discrete covariates. 

Then, the predicted values of both model components were multiplied to produce the CPUE per year, quarter, and 

area (𝐶𝑃𝑈𝐸̂𝑦,𝑞,𝑎 = 𝑝̂𝑦,𝑞,𝑎𝑑̂𝑦,𝑞,𝑎), where 𝑝̂ and 𝑑̂ are the predictions for the first and second model component, 

respectively. Finally, we calculated the area-weighted CPUE by year-quarter: 

𝐶𝑃𝑈𝐸̂𝑦,𝑞 =∑𝐴𝑎
𝑎

× 𝐶𝑃𝑈𝐸̂𝑦,𝑞,𝑎  (3) 

Where 𝐴𝑎 is the area (𝑘𝑚2) of 𝑎, excluding the area on land. The estimates of abundance indices and their 

confidence intervals were then scaled to a mean of 1. 

2.5. Uncertainty calculation 

The standard error (𝑆𝐸(. )) of predictions was approximated based on Taylor expansion for each model component. 

For the first model component: 

𝑆𝐸(𝑝̂) ≈
𝑒𝑥𝑝(−𝜂̂)

(1 + 𝑒𝑥𝑝(−𝜂̂))
2 𝑆𝐸(𝜂̂) 

Where 𝜂̂ represents the predictions in the linear predictor scale (logit). For the second model component, we used: 

𝑆𝐸(𝑑̂) ≈ 𝑒𝑥𝑝(𝜂̂)𝑆𝐸(𝜂̂) 

Where 𝜂̂ represents the predictions in linear predictor scale (log). 

Then, we applied the delta-method (Lo et al., 1992) to calculate the standard error of the predicted CPUE (𝐶𝑃𝑈𝐸̂): 

𝑆𝐸(𝐶𝑃𝑈𝐸̂) = √𝑆𝐸(𝑝̂)2𝑑̂2 + 𝑆𝐸(𝑑̂)
2
𝑝̂2 + 𝑆𝐸(𝑝̂)2𝑆𝐸(𝑑̂)

2
 

Finally, we compared the temporal trends of the standardized indices of abundance with the vulnerable biomass to 

the PS log-school fleet estimated in the last assessment model (Fu et al., 2021), which did not include any PS index 

of abundance. This was done only from 2010 and for the area 1b, which is the area where is fleet mainly operates. 

3. Results 

The number of sets included in our models increased from 2010 to 2018, and decreased since then (Figure 4). The 

values of catch per set were skewed to the left, with values generally smaller than 10 tons and rarely above 100 

tonnes. In log-scale, we did not notice a clear temporal trend, but fluctuations over the years. Moreover, the 

proportion of null sets ranged from ∼ 5% in 2016 to ∼ 10% in 2020. 

The fishing sets were more frequent in the western Indian Ocean, around the equator and areas close to Kenya and 

Somalia (Figure 6). On the other hand, catches were larger between 0 and 10∘N (Figure 7). We did not observe a 

clear spatial pattern of areas with a high proportion of null sets (Figure 8). 

3.1. Spatial indicators 

We noticed that the covered area expanded progressively over the years until 2018, and then contracted and 

remained stable until 2022 (Figure 5). The Clark-Evans indices suggest that fishing set locations tended to be 

slightly more aggregated from 2010 to 2018, and then the level of aggregation decreased until 2022. The center of 

gravity (longitude) moved progressively from 53∘E to 56∘E over the years. In terms of latitude, the center of gravity 

moved from 2∘S to 1∘N. The Moran index indicated that the catch per set values slightly decreased their spatial 
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autocorrelation over the years. Moreover, the Gini index indicated that the catch per set values tended to be more 

heterogeneous from 2015 to 2022. 

3.2. GLMM 

The clustering method identified three optimal clusters in the studied area (Figure 9), which were included as the 

cluster variable in the GLMM model. When testing different candidate variables, we found that num_buoys_20nm, 

num_owned_250km, and avg_density variables were significant for model component 1 and follow, country, 

num_buoys_20nm, and num_owned_250km were significant for model component 2 (Table 2). When analyzing the 

residuals of the final model, we noted that there were no large deviations from the expected distribution, although 

the dispersion and outlier test were found significant (Figure 10). The simulated residuals did not show trends over 

model predictions. Using our final model, we then predicted CPUE by year, quarter, and cluster. Figure 11 shows 

these predictions averaged by year and cluster. 

3.3. st-GLMM 

The residual pattern for the first model component followed the assumed distribution quite well, while we observed 

a small tail of negative residuals for the second model component (Figure 13). The spatial patterns of residuals of 

component 2 did not show evident clustering of negative or positive residuals (Figure 14), which suggests that the 

model accounted for the spatial autocorrelation successfully. The spatial term of the model (𝜔) showed larger values 

in areas closer to the coast, and smaller values in offshore zones (Figure 15). Figure 16 shows the spatiotemporal 

term for each time step in the model. We then predicted CPUE by year, quarter, and grid in the prediction area 

(Figure 3), which were then averaged by year and grid (Figure 17). We noticed larger values in the north of the 

prediction area, especially during 2013 and 2022. 

Figure 18 shows the standardized CPUE for both models (see Equation 3) and the nominal CPUE calculated as the 

average observed CPUE by time step (i.e., quarter). We observed similar standardized CPUE values for most time 

steps; however, larger differences were observed in 2013 and after 2019 between the GLMM and st-GLMM models. 

Also, the confidence interval for the st-GLMM model was larger than the GLMM model. There is a notable increase 

in standardized CPUE values from 2020 to 2022, especially for the st-GLMM. When comparing the standardized 

CPUEs with the vulnerable biomass, we noticed that their trends match quite well from 2010 to 2020, although a lag 

seemed to appear during 2017-2018 (Figure 19). 

4. Discussion 

In this study, we used two modelling approaches to standardize the CPUE of the European purse seine fleet 

operating on floating objects (FOB) in the Indian Ocean. The main difference in standardized CPUE between the 

two modelling approaches was observed in a couple of years (e.g., 2013 and after 2019). This difference was 

primarily produced by the quite high values predicted by the st-GLMM model in the northern area of the prediction 

grid. There is evidence that spatiotemporal models like the one implemented here (st-GLMM) outperform other 

approaches (Grüss et al., 2019), although the treatment of the space-time interaction in the GLMM approach should 

also perform adequately (Grüss et al., 2019; Ono et al., 2015). The use of spatiotemporal models has shown potential 

for CPUE standardization for tropical tunas using purse seine data operating on FOB (Castillo-Jordan et al., 2022; 

Xu and Lennert-Cody, 2022) and similar fisheries (Xu et al., 2019) in the Pacific Ocean. 

Although not used in the last stock assessment model, Guery et al. (2021) also performed a standardization for the 

EU purse seine fleet operating on FOBs using a GLMM approach. In that study, a 5 × 5∘ grid factor was included as 

a fixed effect in the model, but there was no space-time interaction. One of the major improvements presented in this 

paper is the inclusion of the echosounder capacity of the buoys, which has been shown to increase the fishing power 

of this fleet (Wain et al., 2021). Also, we tested other variables related to the density of buoys, which were 

significant for both model components. One variable that might be included in future standardizations is the number 

of days at sea of the buoy on which the fishing set was performed. Previous evidence shows that tuna colonize FOBs 

the first 5-15 days after the FOB release in the ocean (Orue et al., 2019), although it could be earlier and quite 

variable in some cases, especially in the Indian Ocean (Baidai et al., 2020). 
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We consider that the standardized indices presented here could be included in the stock assessment model for 

yellowfin to inform changes in the juvenile abundance, especially in the west Indian Ocean. The comparison of the 

CPUE trends with the vulnerable biomass from the last assessment matched quite well. The two indices derived 

from both modelling approaches could be tested in the assessment model, and the final index could be chosen based 

on statistical indicators (e.g., assessment model likelihood). However, if only one index needs to be chosen, we 

recommend using the st-GLMM index since the spatiotemporal modelling approach is supported by previous 

evidence and provides more realistic uncertainty. Finally, we recommend accounting for effort creep, which is 

particularly important for purse seine fisheries (Hoyle, 2024), during the assessment model implementation since 

there are factors that were not accounted for in this standardization. 
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6. Tables 

Table 1: Candidate explanatory variables for the tested CPUE standardization models. 

Variable 

code Variable description Variable type 

year Year Factor (levels: 2010,…,2022) 

quarter Quarter of the year Factor (levels: 1,2,3,4) 

cluster Clustered area (only for GLMM) Factor (levels: 1,2,3,4) 

lon Longitude Numeric 

lat Latitude Numeric 

time Time as continuous (calculated from year and quarter 

values) 

Numeric 

country Fleet country Factor (levels: France, Spain) 

numbat Vessel identifier code Factor (levels meaningless) 

follow Followed a FAD? It had echosounder capacity? Factor (levels: No, Yes_No-Echo, 

Yes_Echo) 

num_buoys

_20nm 

Number of buoys within 20 nm Numeric 

num_owned

_250km 

Number of owned buoys within 250 km Numeric 

avg_density Monthly average density of buoys in a 1x1 grid Numeric 
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Table 2: ANOVA analysis to identify significant fixed effects to be included in the GLMM model. 

Component Term Chisq DF p.val 

Component 1 year 54.63 12 <0.01 

Component 1 quarter 62.78 3 <0.01 

Component 1 country 0.55 1 0.46 

Component 1 num_buoys_20n

m 

8.20 1 <0.01 

Component 1 num_owned_25

0km 

31.28 1 <0.01 

Component 1 avg_density 5.33 1 0.02 

Component 1 follow 3.11 2 0.21 

Component 2 year 106.06 12 <0.01 

Component 2 quarter 93.71 3 <0.01 

Component 2 cluster 87.35 2 <0.01 

Component 2 country 5.90 1 0.02 

Component 2 num_buoys_20n

m 

12.42 1 <0.01 

Component 2 num_owned_25

0km 

45.17 1 <0.01 

Component 2 avg_density 2.85 1 0.09 

Component 2 follow 18.51 2 <0.01 
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Table 3: Summary of the GLMM model. 

Component Term Est Std.err p.val 

Component 1 (Intercept) -2.534 0.131 <0.01 

Component 1 year2011 0.004 0.154 0.98 

Component 1 year2012 0.296 0.153 0.05 

Component 1 year2013 -0.029 0.155 0.85 

Component 1 year2014 0.121 0.152 0.43 

Component 1 year2015 0.102 0.155 0.51 

Component 1 year2016 -0.264 0.161 0.1 

Component 1 year2017 0.136 0.157 0.39 

Component 1 year2018 -0.174 0.156 0.27 

Component 1 year2019 0.024 0.155 0.88 

Component 1 year2020 0.539 0.151 <0.01 

Component 1 year2021 -0.083 0.157 0.59 

Component 1 year2022 -0.183 0.159 0.25 

Component 1 quarter2 0.148 0.081 0.07 

Component 1 quarter3 -0.446 0.081 <0.01 

Component 1 quarter4 -0.289 0.080 <0.01 

Component 1 num_buoys_20n

m 

0.003 0.001 0.01 

Component 1 num_owned_25

0km 

-0.009 0.002 <0.01 

Component 1 avg_density 0.005 0.002 0.03 

Component 1 sd__(Intercept) 0.163   

Component 1 sd__(Intercept) 0.309   

Component 2 (Intercept) 2.478 0.040 <0.01 

Component 2 year2011 0.003 0.043 0.94 

Component 2 year2012 -0.025 0.043 0.56 

Component 2 year2013 0.113 0.043 0.01 

Component 2 year2014 -0.045 0.043 0.3 

Component 2 year2015 -0.162 0.043 <0.01 

Component 2 year2016 -0.127 0.043 <0.01 

Component 2 year2017 -0.073 0.043 0.09 

Component 2 year2018 -0.024 0.042 0.56 

Component 2 year2019 -0.181 0.042 <0.01 

Component 2 year2020 -0.165 0.043 <0.01 

Component 2 year2021 -0.105 0.042 0.01 

Component 2 year2022 0.041 0.042 0.34 

Component 2 quarter2 -0.130 0.024 <0.01 

Component 2 quarter3 0.089 0.023 <0.01 

Component 2 quarter4 0.061 0.022 0.01 

Component 2 cluster2 -0.120 0.019 <0.01 
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Component 2 cluster3 0.073 0.021 <0.01 

Component 2 countrySpain 0.058 0.024 0.01 

Component 2 num_buoys_20n

m 

0.000 0.000 <0.01 

Component 2 num_owned_25

0km 

0.002 0.000 <0.01 

Component 2 followYes_No-

echo 

-0.068 0.017 <0.01 

Component 2 followYes_Echo 0.009 0.006 0.13 

Component 2 sd__(Intercept) 0.090   

Component 2 sd__(Intercept) 0.068   
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Table 4: Summary of the st-GLMM model. 

Component Term Est Std.err 

Component 1 time_factor2010 2.283 0.150 

Component 1 time_factor2010.25 2.876 0.252 

Component 1 time_factor2010.5 2.892 0.156 

Component 1 time_factor2010.75 2.709 0.161 

Component 1 time_factor2011 2.092 0.150 

Component 1 time_factor2011.25 2.181 0.201 

Component 1 time_factor2011.5 3.112 0.166 

Component 1 time_factor2011.75 3.052 0.161 

Component 1 time_factor2012 2.383 0.171 

Component 1 time_factor2012.25 1.852 0.160 

Component 1 time_factor2012.5 2.885 0.171 

Component 1 time_factor2012.75 2.177 0.146 

Component 1 time_factor2013 2.474 0.160 

Component 1 time_factor2013.25 2.529 0.204 

Component 1 time_factor2013.5 2.588 0.143 

Component 1 time_factor2013.75 2.982 0.156 

Component 1 time_factor2014 2.368 0.139 

Component 1 time_factor2014.25 2.019 0.145 

Component 1 time_factor2014.5 2.954 0.152 

Component 1 time_factor2014.75 2.540 0.141 

Component 1 time_factor2015 2.253 0.159 

Component 1 time_factor2015.25 1.980 0.162 

Component 1 time_factor2015.5 2.932 0.165 

Component 1 time_factor2015.75 2.777 0.144 

Component 1 time_factor2016 2.534 0.158 

Component 1 time_factor2016.25 2.472 0.168 

Component 1 time_factor2016.5 3.132 0.164 

Component 1 time_factor2016.75 3.315 0.180 

Component 1 time_factor2017 2.560 0.159 

Component 1 time_factor2017.25 2.415 0.154 

Component 1 time_factor2017.5 2.774 0.153 

Component 1 time_factor2017.75 2.093 0.146 

Component 1 time_factor2018 2.669 0.141 

Component 1 time_factor2018.25 2.578 0.157 

Component 1 time_factor2018.5 3.062 0.160 

Component 1 time_factor2018.75 2.720 0.156 

Component 1 time_factor2019 2.136 0.134 

Component 1 time_factor2019.25 2.331 0.160 

Component 1 time_factor2019.5 3.064 0.166 
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Component 1 time_factor2019.75 2.783 0.149 

Component 1 time_factor2020 2.137 0.130 

Component 1 time_factor2020.25 1.804 0.142 

Component 1 time_factor2020.5 1.938 0.136 

Component 1 time_factor2020.75 2.262 0.137 

Component 1 time_factor2021 2.692 0.166 

Component 1 time_factor2021.25 2.305 0.135 

Component 1 time_factor2021.5 2.910 0.162 

Component 1 time_factor2021.75 2.772 0.173 

Component 1 time_factor2022 2.798 0.165 

Component 1 time_factor2022.25 2.316 0.151 

Component 1 time_factor2022.5 3.010 0.165 

Component 1 time_factor2022.75 2.967 0.204 

Component 1 countrySpain 0.086 0.112 

Component 1 num_buoys_20nm -0.003 0.001 

Component 1 num_owned_250km 0.009 0.002 

Component 1 followYes_No-echo -0.048 0.121 

Component 1 followYes_Echo 0.072 0.043 

Component 1 avg_density -0.005 0.002 

Component 2 time_factor2010 2.074 0.136 

Component 2 time_factor2010.25 2.151 0.165 

Component 2 time_factor2010.5 2.501 0.140 

Component 2 time_factor2010.75 2.368 0.131 

Component 2 time_factor2011 2.400 0.134 

Component 2 time_factor2011.25 1.963 0.150 

Component 2 time_factor2011.5 2.441 0.149 

Component 2 time_factor2011.75 2.464 0.128 

Component 2 time_factor2012 2.415 0.143 

Component 2 time_factor2012.25 1.922 0.153 

Component 2 time_factor2012.5 2.482 0.138 

Component 2 time_factor2012.75 2.287 0.131 

Component 2 time_factor2013 2.567 0.131 

Component 2 time_factor2013.25 2.482 0.154 

Component 2 time_factor2013.5 2.871 0.133 

Component 2 time_factor2013.75 2.320 0.126 

Component 2 time_factor2014 2.536 0.133 

Component 2 time_factor2014.25 2.176 0.145 

Component 2 time_factor2014.5 2.365 0.138 

Component 2 time_factor2014.75 2.197 0.128 

Component 2 time_factor2015 2.054 0.132 

Component 2 time_factor2015.25 1.924 0.152 

Component 2 time_factor2015.5 2.299 0.151 
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Component 2 time_factor2015.75 2.015 0.127 

Component 2 time_factor2016 2.189 0.130 

Component 2 time_factor2016.25 1.908 0.136 

Component 2 time_factor2016.5 2.440 0.130 

Component 2 time_factor2016.75 2.244 0.123 

Component 2 time_factor2017 2.146 0.128 

Component 2 time_factor2017.25 2.206 0.145 

Component 2 time_factor2017.5 2.342 0.135 

Component 2 time_factor2017.75 2.399 0.130 

Component 2 time_factor2018 2.490 0.124 

Component 2 time_factor2018.25 2.044 0.129 

Component 2 time_factor2018.5 2.360 0.125 

Component 2 time_factor2018.75 2.253 0.122 

Component 2 time_factor2019 2.246 0.123 

Component 2 time_factor2019.25 1.484 0.138 

Component 2 time_factor2019.5 2.085 0.138 

Component 2 time_factor2019.75 2.060 0.132 

Component 2 time_factor2020 1.677 0.132 

Component 2 time_factor2020.25 1.609 0.131 

Component 2 time_factor2020.5 2.309 0.132 

Component 2 time_factor2020.75 2.268 0.128 

Component 2 time_factor2021 2.104 0.134 

Component 2 time_factor2021.25 1.750 0.134 

Component 2 time_factor2021.5 2.174 0.138 

Component 2 time_factor2021.75 2.266 0.132 

Component 2 time_factor2022 2.522 0.127 

Component 2 time_factor2022.25 2.311 0.135 

Component 2 time_factor2022.5 2.595 0.138 

Component 2 time_factor2022.75 2.666 0.138 

Component 2 countrySpain 0.042 0.047 

Component 2 num_buoys_20nm -0.002 0.000 

Component 2 num_owned_250km 0.003 0.000 

Component 2 followYes_No-echo -0.115 0.031 

Component 2 followYes_Echo 0.011 0.011 

Component 2 avg_density -0.003 0.001 

Component 2 range 587.931 34.574 

Component 2 phi 0.952 0.003 

Component 2 sigma_O 0.169 0.015 

Component 2 sigma_E 0.361 0.010 

Component 2 sigma_G 0.135 0.018 
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Table 5: Predicted CPUE, 95% confidence interval, and standard error (SE) by the GLMM model by year and 

quarter (Time column). 

Time Est Lower Upper SE 

2010.00 0.94 0.85 1.02 0.04 

2010.25 0.95 0.84 1.06 0.05 

2010.50 1.18 1.11 1.24 0.03 

2010.75 1.16 1.09 1.24 0.04 

2011.00 1.01 0.93 1.09 0.04 

2011.25 0.89 0.79 0.98 0.05 

2011.50 1.16 1.10 1.23 0.03 

2011.75 1.17 1.11 1.23 0.03 

2012.00 1.05 0.95 1.15 0.05 

2012.25 0.85 0.76 0.95 0.05 

2012.50 1.11 1.03 1.18 0.04 

2012.75 1.03 0.96 1.10 0.04 

2013.00 1.15 1.06 1.23 0.04 

2013.25 1.06 0.94 1.17 0.06 

2013.50 1.37 1.29 1.44 0.04 

2013.75 1.08 1.03 1.14 0.03 

2014.00 1.12 1.04 1.20 0.04 

2014.25 0.86 0.78 0.94 0.04 

2014.50 1.06 1.00 1.13 0.03 

2014.75 0.96 0.90 1.01 0.03 

2015.00 0.88 0.82 0.95 0.03 

2015.25 0.80 0.72 0.87 0.04 

2015.50 0.96 0.90 1.02 0.03 

2015.75 0.91 0.86 0.96 0.02 

2016.00 0.93 0.87 0.99 0.03 

2016.25 0.78 0.72 0.85 0.03 

2016.50 1.05 0.99 1.10 0.03 

2016.75 0.99 0.94 1.05 0.03 

2017.00 0.91 0.85 0.97 0.03 

2017.25 0.92 0.85 0.99 0.03 

2017.50 1.02 0.96 1.07 0.03 

2017.75 1.04 0.97 1.11 0.03 

2018.00 1.14 1.08 1.19 0.03 

2018.25 0.93 0.87 0.99 0.03 

2018.50 1.10 1.05 1.15 0.03 

2018.75 1.01 0.95 1.06 0.03 

2019.00 0.90 0.85 0.96 0.03 

2019.25 0.73 0.68 0.78 0.03 

2019.50 0.95 0.89 1.00 0.03 
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2019.75 0.99 0.94 1.03 0.03 

2020.00 0.81 0.76 0.87 0.03 

2020.25 0.73 0.67 0.78 0.03 

2020.50 1.01 0.95 1.08 0.03 

2020.75 1.02 0.97 1.08 0.03 

2021.00 0.93 0.87 0.99 0.03 

2021.25 0.81 0.76 0.86 0.02 

2021.50 1.04 0.99 1.10 0.03 

2021.75 1.06 0.99 1.12 0.03 

2022.00 1.09 1.03 1.15 0.03 

2022.25 0.98 0.91 1.05 0.04 

2022.50 1.17 1.11 1.23 0.03 

2022.75 1.25 1.17 1.33 0.04 
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Table 6: Predicted CPUE, 95% confidence interval, and standard error (SE) by the st-GLMM model by year and 

quarter (Time column). 

Time Est Lower Upper SE 

2010.00 0.84 0.70 1.00 0.08 

2010.25 0.93 0.75 1.17 0.11 

2010.50 1.25 1.07 1.48 0.10 

2010.75 1.23 1.03 1.47 0.11 

2011.00 1.11 0.93 1.32 0.10 

2011.25 0.70 0.57 0.86 0.07 

2011.50 1.20 1.01 1.43 0.11 

2011.75 1.26 1.09 1.46 0.09 

2012.00 1.17 0.97 1.41 0.11 

2012.25 0.64 0.53 0.77 0.06 

2012.50 1.23 1.06 1.44 0.10 

2012.75 0.93 0.79 1.10 0.08 

2013.00 1.35 1.14 1.59 0.11 

2013.25 1.22 1.00 1.48 0.12 

2013.50 1.69 1.44 1.99 0.14 

2013.75 1.16 1.01 1.34 0.08 

2014.00 1.33 1.14 1.56 0.11 

2014.25 0.82 0.69 0.97 0.07 

2014.50 1.08 0.93 1.26 0.08 

2014.75 0.95 0.81 1.11 0.08 

2015.00 0.88 0.74 1.04 0.08 

2015.25 0.73 0.60 0.88 0.07 

2015.50 1.04 0.86 1.25 0.10 

2015.75 0.80 0.69 0.93 0.06 

2016.00 0.86 0.74 1.00 0.07 

2016.25 0.69 0.58 0.81 0.06 

2016.50 1.23 1.05 1.43 0.10 

2016.75 0.96 0.84 1.11 0.07 

2017.00 0.82 0.70 0.96 0.07 

2017.25 0.86 0.72 1.02 0.08 

2017.50 1.10 0.94 1.29 0.09 

2017.75 1.05 0.89 1.22 0.08 

2018.00 1.28 1.12 1.47 0.09 

2018.25 0.87 0.74 1.01 0.07 

2018.50 1.17 1.03 1.33 0.08 

2018.75 1.04 0.90 1.21 0.08 

2019.00 0.94 0.82 1.08 0.07 

2019.25 0.45 0.38 0.53 0.04 

2019.50 0.91 0.77 1.08 0.08 
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2019.75 0.85 0.74 0.99 0.06 

2020.00 0.55 0.47 0.63 0.04 

2020.25 0.44 0.38 0.50 0.03 

2020.50 0.98 0.83 1.16 0.08 

2020.75 0.88 0.75 1.03 0.07 

2021.00 0.81 0.66 0.99 0.09 

2021.25 0.58 0.49 0.69 0.05 

2021.50 0.95 0.80 1.13 0.09 

2021.75 0.97 0.83 1.15 0.08 

2022.00 1.18 1.02 1.37 0.09 

2022.25 0.99 0.81 1.20 0.10 

2022.50 1.44 1.22 1.70 0.12 

2022.75 1.62 1.36 1.94 0.15 
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7. Figures 

 

Figure 1: Distribution of observed catch per set values (only positive fishing sets). 

  



  IOTC-2024-WPTT26(DP)-11rev1 

 

 

 

 

Figure 2: Fishing sets included in the standardization process. 
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Figure 3: Prediction grid used for the st-GLMM model. 
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Figure 4: Distribution of catch per set, number of sets, and proportion of null sets in the data per year. 
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Figure 5: Spatial indicators calculated by year-quarter. 
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Figure 6: Aggregated number of fishing sets (effort) per grid. 
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Figure 7: Average catch per grid. 
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Figure 8: Proportion of null sets per grid. 
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Figure 9: Strata identified by the clustering method and used in the GLMM (cluster variable). 
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Figure 10: QQ-plot (left) and residual plot (right) for the GLMM model. 
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Figure 11: Predicted CPUE for each year-quarter-cluster combination by the GLMM model. Predicted values are 

aggregated by year. 
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Figure 12: Mesh used in the spatiotemporal model (st-GLMM). 
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Figure 13: Residuals for each model componenet of the st-GLMM model. 
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Figure 14: Spatial locations of residuals by time step (only shown for component 2) of the st-GLMM model. 
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Figure 15: Estimated spatial effect for the second component of the st-GLMM model. 
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Figure 16: Estimated spatiotemporal effect for the second component of the st-GLMM model. 

  



  IOTC-2024-WPTT26(DP)-11rev1 

 

 

 

 

Figure 17: Predicted CPUE for each year-quarter-cluster combination by the st-GLMM model. Predicted values are 

aggregated by year. 
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Figure 18: Predicted CPUE for year-quarter combination by the GLMM and st-GLMM models. The shaded area 

represents the 95% confidence interval. Nominal CPUE is also shown as black dots and calculated as the average 

catch per set per time step. 

  



  IOTC-2024-WPTT26(DP)-11rev1 

 

 

 

 

Figure 19: Predicted CPUE for year-quarter combination by the GLMM and st-GLMM models. The shaded area 

represents the 95% confidence interval. The vulnerable biomass to the PS log-school fishery estimated in the 2021 

assessment model is also shown (black line). 

 


