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Summary
Standardization of bigeye tuna CPUE by Japanese longline fishery in the Indian Ocean was conducted
using the Generalized Linear Model (GLM) with lognormal error structure. Japanese longline fishery logbook
operational data was used for analyses. Cluster analysis was conducted before standardization, and cluster number
was used for main effect as well as year, quarter, vessel ID and five degree latitude/longitude block. The trend of
CPUE is usually similar among areas. CPUEs show decreasing trend from early 1980s to late 2000s, and then

CPUESs show slight increasing or constant trend The trend of CPUE was usually similar to that in the previous study.

1. INTRODUCTION
Bigeye tuna is one of main target species for Japanese longline fishery in the Indian Ocean. Its abundance
indices are very important for stock assessment of this species because they have high spatial and temporal coverage,

and detailed information on catch and effort is available through logbooks.

Satoh and Okamoto (2012), Matsumoto et al. (2013; 2015; 2016), Ochi et al. (2014) and Matsumoto
(2017; 2018; 2019) reported area aggregated annual standardized Japanese longline CPUE for bigeye tuna based on
GLM (generalized linear model, log normal error structured) for an indicator of the stock. Also, area specific CPUE
for integrated models was reported at the IOTC WPTT meetings (Ochi et al. 2014, Matsumoto et al. 2015; 2016,
Matsumoto, 2017; 2018; 2019). These are based on so called ‘traditional method’.

In 2016, IOTC joint CPUE analysis (CPUE workshop) was conducted and ‘joint CPUEs’ were created for
bigeye and yellowfin tuna, based on Japanese, Taiwanese and Korean longline operational data (Hoyle et al., 2016).
These models account for fishing power based on vessel ID where available, and use cluster analysis to incorporate
targeting. Joint CPUEs were considered to be more representative of status of the stocks and so were used for base
models of stock assessment. At that time fleet-specific CPUE indices were prepared for Japanese longline using the
same methods, but were not presented, so it was not possible to compare the joint and Japanese-only longline CPUE
indices. In 2017 the joint CPUE analysis workshop was held and CPUE indices for each fleet as well as joint CPUE
were created (Hoyle et al., 2017). Japanese longline CPUE for bigeye and yellowfin tuna created at that workshop
was reported by Matsumoto et al. (2017). They reported that the trend of both CPUEs was mostly similar to those
by traditional method, but there are some differences especially in the early period. Also in 2018 and 2019, joint
CPUE analysis workshop was again held and CPUE indices for each fleet as well as joint CPUE by Japanese,

Korean, Taiwanese and Seychelles longline fishery combined were created (e.g. Matsumoto et al., 2018, Hoyle et



al., 2019, Matsumoto and Hoyle, 2019). Those CPUE incorporated cluster analysis and vessel effect.

A new collaborative study for developing the abundance index of tunas started in late 2019 by Japanese, Korean
and Taiwanese scientists has been conducted and the results of CPUE standardization for Indian Ocean bigeye tuna
(Kitakado et al., 2022, Matsumoto, 2022), yellowfin tuna (Kitakado et al., 2021a,b, Matsumoto et al., 2021) and
albacore (Kitakado et al., 2022, Matsumoto, 2022) were reported (joint CPUE and each fleet CPUE). In this
collaborative study, the methods are similar to those mentioned above, but some changes have been made such as
different cluster analysis method. In this study, the same approach has been applied for CPUE standardization of
Indian Ocean bigeye tuna caught by Japanese longline fishery. The results may be used for comparing CPUE with
joint and other fleet’s CPUE.

2.MATERIALS AND METHODS

Catch and effort data

Operational level (set by set) Japanese longline logbook data with vessel ID were used. The data were available
for 1975-2023. The data include the fields year, month and day of operation, location to 1° of latitude and longitude,
vessel identifier (call sign and vessel registration number), number of hooks between floats (HBF), number of hooks
per set, and catch in number of each species. Each set was allocated to subregion (subarea) (Fig. 1), which is the
same as that in the previous (2022) IOTC stock assessment of bigeye tuna. Fig. 2 shows species composition of
catch in number in each area, and Fig. 3 shows the numbers and proportion of zero and positive catch in the catch

and effort data used for CPUE standardization.

Cluster analysis

The data were clustered using the approach described by Kitakado et al. (2021a, b, 2022), which used
Ward's minimum variance and the complete linkage methods. Species composition in number of the catch was
aggregated for 10-days period (1st-10th, 11th-20th, and 21st- for each month), and was used for cluster analysis. In
the previous analyses (e.g. Hoyle et al., 2017), the data was aggregated for 1 month period, but shorter period was
used in this study for better reflecting targeting. Catch for southern bluefin tuna (SBT), albacore (ALB), bigeye tuna
(BET), yellowfin tuna (YFT), swordfish (SWO), sharks (SKX) and other fish (OTH) were used for species
composition. Data were also clustered using the kmeans method, which minimises the sum of squares from points

to the cluster centres.

GLM (Generalized Linear Model):

After cluster analysis, cluster numbers were assigned to operational revel catch and effort data. This data
set was used for CPUE standardization. In the previous studies based on new collaborative analysis, data were
aggregated by year, month, 1 degree latitude and longitude and vessel ID after cluster analysis, but it was not

conducted in this study.

GLM (generalized linear models) with lognormal analyses was conducted considering low zero catch ratio



(Fig. 3). The following initial (full) models were used:

where year: effect of year, q: effect of quarter; vessel: effect of vessel ID; latlon5: effect of five degree latitude
and longitude; cluster: effect of cluster; year*q: interaction between year and quarter; €: error term; k: constant

(10% of overall mean nominal CPUE)

All the covariates were incorporated as fixed effect. As for diagnostics of CPUE standardization, residual

distributions, Q-Q plots and influence plots were produced.

3. RESULT AND DISCUSSION
Species compositions in each cluster are plotted by cluster for each region (Fig. 4) and each region and
year (Fig. 5). Dominant species differed depending on clusters, but there was at least one cluster in each region in

which bigeye tuna was dominant. Number of clusters were 4 or 5 for each region.

The results for ANOVA (type 2) are shown in Table 1. All the effects and interactions were significant at
1% level. Fig. 6 shows comparison of bigeye tuna CPUE by area, and Fig. 7 shows comparison of CPUE in each
area with nominal CPUE and standardized CPUE in the previous study (Matsumoto, 2022), which also incorporated
cluster analysis and vessel effect but was based on aggregated data. The trend of CPUE is usually similar among
areas. CPUEs show decreasing trend from early 1980s to late 2000s, and then CPUEs show slight increasing (R2)
or constant (R1S and R3) trend although CPUE in R1N is not available in recent years due to lack of operations.
The trend of CPUE in this study is usually similar to those in the previous study.

Fig. 8 shows distribution of standardized residuals and QQ plots. It seems that the distributions are not
largely skewed. Fig. 9 shows influence plots. In some cases there is historical change of the effect. Difference of
historical change of the effect by area is also observed. For example, vessel effect is decreasing in R2, although

there is no clear trend in R3.
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Table 1. Analysis of variance (type 2) for the GLM analyses.

RIN R1S
LR Chisg Df Pr(>Chisq) LR Chisg Df Pr (>Chisq)
Year 4067.0 38 < 2.2e-16 *xx Year 4314 48 < 2.2e-16 sokx
Q 937.5 3 < 2.2e-16 *kx Q 450 3 < 2.2e-16 *okx
LatLon 913.6 14 < 2.2e-16 *xx LatLon 2813 27 < 2.2e-16 %%
Cluster 30888.9 4 < 2.2e-16 sk Cluster 36660 3 < 2.2e-16 sokk
Vessel 10915.1 609 < 2.2e-16 **x Vessel 14509 681 < 2.2e-16 sk
Year:Q 3786.9 104 < 2.2e-16 *xx Year:Q 4213 134 < 2.2e-16 *kx
R2 R3
LR Chisg Df Pr(>Chisq) LR Chisg Df Pr (>Chisq)
Year 4429 48 < 2.2e-16 sokx Year 6044 48 < 2.2e-16 %k
Q 44 3 1.73e-09 #kx Q 8359 3 < 2.2e-16 okx
LatLon 2868 32 < 2.2e-16 #kk LatLon 9306 73 < 2.2e-16 sokk
Cluster 41359 3 < 2.2e-16 *xx Cluster 84002 4 < 2.2e-16 *xx
Vessel 15682 799 < 2.2e-16 *xx Vessel 47353 978 < 2.2e-16 skk
Year:Q 4371 142 < 2.2e-16 *kx Year:Q 6559 144 < 2.2e-16 #%k
Significance level: 0 ‘s’ 0.001 ‘" 0.01 ‘¥ 0.05 ‘.~ 0.1 7 1

Fig. 1. Area used for the GLM analysis.
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Fig. 2. Species composition of catch in number in the Indian Ocean by the Japanese longline fishery in each area

shown in Fig. 1.
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Fig. 9. Influence plot for CPUE standardization.
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Fig. 9. Influence plot for CPUE standard
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Fig. 9. Influence plot for CPUE standardization. (continued)
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