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Summary 

The CPUE of striped marlin caught by Japanese longliners during 1979-2022 was standardized. Area 

definition is the same as that in the previous studies. Time-period was divided into two, 1979-1993 

and 1994-2022. Bayesian hierarchical spatial models were applied. Considering high zero catch ratio, 

zero-inflated Poisson generalized linear mixed model (ZIP-GLMM) was used with the R-INLA 

package. Best model was selected from multiple models mainly using Widely Applicable Bayesian 

Information Criterion (WAIC). Gradual annual decline trend with interannual variation were generally 

observed for the standardized CPUEs. The trends of CPUEs were similar to those for the previous 

study. 

 

1. Introduction 

The IOTC Working Party on Billfish (WPB) conducted a stock assessment of striped marlin 

(Tetrapturus audax) in the Indian Ocean. In the stock assessment, Ijima (2018) and Taki et al. (2021) 

standardized CPUE caught by Japanese longliners using a zero-inflated negative binomial generalized 

linear mixed model (ZINB-GLMM) without considering the spatial random effect. It is generally 

thought that the abundance indices of Japanese longliners are very critical for the stock assessment.  

 

Integrated nested Laplace approximations (INLA) methodology and its powerful application to the 

modelling of complex datasets have recently been introduced to a wider nontechnical audience (Illian 

et al. 2013). As opposed to Markov Chain Monte Carlo (MCMC) simulations, INLA uses an 

approximation for inference and hence avoids the intense computational demands, convergence, and 

mixing problems that are sometimes encountered by MCMC algorithms (Rue and Martino 2007). 

Additionally, R-INLA includes the stochastic partial differential equations (SPDE) approach 

(Lindgren et al. 2011) which is another statistical development. This approach enables us to model 

spatial random effect (Gaussian random field, GRFs) and to construct flexible fields that are better 

adept to handle datasets with complex partial structure (Lindgren and Rue 2013). This is often the case 

with fisheries data, since fishermen tend to aggregate particular fishing grounds, resulting in clustered 

spatial patterns and a lack of data at large regions. Together, these new statistical methods and their 

implementation in R allow scientists to fit considerably faster and more reliably complex 

spatiotemporal models (Rue et al. 2009, Cosandey-Godin et al. 2015). 

 

The aim of this paper is to estimate the annual trends in abundance indices of striped marlin caught by 

Japanese longliners in the Indian Oceans from 1979 to 2022 for the stock assessment of this species 

using the same method as that in the previous study (Taki et al. 2021). A zero-inflated Bayesian 

hierarchical approach is applied in consideration with spatial changes in the fishery and the species.  

 

2. Materials and methods 

Data sets  

Japanese longline logbook data was used in the CPUE standardization for striped marlin in the Indian 

Ocean. The logbook data has information about the resolution of fishing location at 1 x 1 degree grid 

scale. We used the data from 1979 onwards because the number of hooks between floats and the vessel 

name, which largely affect the CPUE standardization, are completely available since then. We divided 

the time-period into two periods, 1979-1993 and 1994-2022, as the gear configuration of Japanese 

longline fishery such as number of hooks between floats and gear material had drastically changed in 

the early 1990s. At the same time, the quality and quantity of logbook data were improved by adding 

new items to the logsheet as well. We also separated the Indian Ocean into four areas (NW, NE, SW, 
and SE) based on the IOTC area definition as Ijima (2018) (Figure 1), as with the previous study (Taki 
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et al., 2021). Japanese longliners operated in the four areas from the 1990s to the 2000s, but in the 

2010s, the fishing ground was shrunk rapidly (Figure 2). There are two main reasons for that the 

influence of piracy activities in the NW Indian Ocean, and the target shift of fishermen to southern 

bluefin tuna in the Southern Indian Ocean (SW and SE). The target shift makes it difficult to catch 

stripe marlins staying frequently in the shallower depths. 

 

Statistical models  

We applied Bayesian hierarchical spatial models in the present study, but we did not directly consider 

the spatiotemporal effects in the model because this approach is computationally intensive and the 

Widely Applicable Bayesian Information Criterion (WAIC; Watanabe, 2012) did not differed so much 

between spatial and spatiotemporal models in the preliminary analysis. Since the catch data is 

countable and characterized by many zeros (Figure 3), we used a zero-inflated Poisson GLMM (ZIP-

GLMM). The zero-inflated model is useful because it can estimate "true" zero catch. As an alternative 

way, it is possible to use ZINB-GLMM, but we did not use the model because the ZINB tended to 

cause underdispersion (Ijima and Kanaiwa, 2019). 

 

The explanatory variables of fixed effect are year (yr) and quarter (Jan-Mar, Apr-Jun, Jul-Sep, Oct-

Dec; qtr), and those of random effect are area (5 x 5 degrees grid scale; latlon), month (month), vessel 

ID (vessel name; jp_name), and gear configuration (number of hooks between floats; hpb). The hpb 

increased remarkably in the early 1990s in four areas (Figure 4). Most variables were treated as 

categorical variable, but the autoregressive model (AR1) was applied to year effect for two spatial 

models to consider the autocorrelation. The latest SPDE models using AR1 tended to show smaller 

WAIC as compared to those using year as fixed effect (e.g., Ijima and Koike 2020). The use of these 

random effects in the model seems more appropriate to raise the accuracy of the estimation (Ijima and 

Kanaiwa 2019). The random effects are also expected to remove the pseudo-replication by each effect 

(vessel, gear configuration, month, and area).  

 

All analyses were performed using R, specifically the R-INLA package. The INLA procedure, in 

accordance with the Bayesian approach, calculates the marginal posterior distribution of all random 

effects and parameters involved in the model. We applied a half Cauchy distribution as a prior for the 

random effect. We plot a latent spatial field to indicate the expected CPUE distribution. Best candidate 

model was selected based on WAIC and if the results are reasonable (i.e. credible interval for CPUE 

is not too broad). 

 

3. Result and discussion 

We compared the WAIC among eight different structure’s models for each area and period (Table 1). 

The models selected are highlighted by yellow marker. Basically, the same models as those in the 

previous study (Taki et al., 2021) have been selected. 

 

Northwest 

The predicted CPUE was higher in the northwestern part in this area for both periods (Figure 5). The 

annual standardized CPUE showed a gradual decline trend in interannual variation for both periods 

(Figure 6, Table 2). 

 

Northeast 

The predicted CPUE was higher in the northwestern part in this area for both periods (Figure 7). The 

annual standardized CPUE showed a gradual decline trend for both periods (Figure 8, Table 3). 

 

Southwest 

The predicted CPUE was higher in the northern part in this area near Madagascar for 1979-1993 

(Figure 9). The annual standardized CPUE showed a declining trend with fluctuation for 1979-1993, 

while the no apparent trend was observed for 1994-2022 (Figure 10, Table 4). For the model of the 

latter period, non-spatial model (m_zip_glmm) was selected as the best model (Table 1). 
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Southeast 

The model could not provide reasonable outputs for both periods due to a low area coverage of catch 

data (Figure 2), as with the previous study (Taki et al., 2021). 

 

Figure 11 shows a comparison of annual changes in standardized CPUE between present and previous 

(Taki et al., 2021) studies for three areas (NW, NE, and SW). The annual trends in point estimates are 

similar between them for each area, although some difference is observed for SW area. The trend of 

CPUE differed among areas, although some similarity was observed between NW and SW areas. 
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Figure 1. Four areas used in the analysis of CPUE standardization for the striped marlin in the Indian 

Ocean, which were set in the 9th session of the IOTC working party on billfish (IOTC 2014). 
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Figure 2. Spatial-temporal (seasonal and decadal) changes in the nominal CPUE for striped marlin 

caught by Japanese longliners in the Indian Ocean. 1: Jan-Mar, 2: Apr-Jun, 3: Jul-Sep, 4: Oct-Dec. 
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Figure 3. Annual changes in zero catch ratio of striped marlin caught by Japanese longliners in four 

areas of the Indian Ocean. 

 

 

 

 
Figure 4. Historical changes in the gear configuration (number of hooks between floats) in four areas 

of the Indian Ocean. Vertical range of the plots shows the range of the data, and width shows frequency 

of the data.
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Table 1. The models examined for the analyses. Selected models are yellow-highlighted. Note: the models with smallest WAIC were not always selected 

because the models with unreasonable results were eliminated. 

Model* 
NW(1979

-1993) 
NW(1994-

2022) 
NE(1979-

1993) 
NE(1994-

2022) 
SW(1979-

1993) 
SW(1994-

2022) 
m_null = inla (stm~1, data=d,offset=log(hooks/1000), family="poisson") 201027  107706  130501  67632  75465  119913  

m_glm = inla (stm~yr + qtr + latlon, data=d,offset=log(hooks/1000), 
family="poisson") 

＞1018 97609  ＞1018 74014  ＞1018 89482  

m_glmm = inla (stm~yr + qtr + f(latlon,model="iid", hyper=hcprior) 
 + f(jp_name,model="iid")+f(hpb,model="iid"), data=d,offset=log(hooks/1000), 
family="poisson") 

120125  93199  55169  44672  27958  138939  

m_zip_glmm = inla (stm~yr + qtr + f(latlon,model="iid") +  f(jp_name,model="iid"), 
 data=d, offset=log(hooks/1000), family="zeroinflatedpoisson1") 

118005  88045  53744  42797  31514  113672  

m_spde = inla (stm~0 + intercept + yr + qtr +  f(hpb,model="iid") + 
f(jp_name,model="iid")  
 + f(w,model=spde), data=inla.stack.data(StackFit), offset=log(hooks/1000), 
family="poisson") 

117431  91993  52839  44436  26490  107455  

m_spde2 = inla (stm~0 + intercept + f(yr,model="ar1") + 
f(month,model="iid",hyper=hcprior)  
 + f(hpb,model="iid",hyper=hcprior) + f(jp_name,model="iid",hyper=hcprior) + 
f(w,model=spde), 
 data=inla.stack.data(StackFit2),offset=log(hooks/1000),family="poisson") 

116423  85376  52300  44829  25790  100041  

m_zip_spde = inla (stm~0 + intercept + yr + qtr + f(hpb,model="iid") 
+f(jp_name,model="iid")   
 + f(w,model=spde), 
 data=inla.stack.data(StackFit), offset=log(hooks/1000), 
family="zeroinflatedpoisson1") 

115434  81534  51533  42057  - 94528  

m_zip_spde2 = inla (stm~0 + intercept + f(yr,model="ar1") + 
f(month,model="iid",hyper=hcprior)  
 + f(hpb,model="iid") + f(jp_name,model="iid")  + f(w,model=spde), 
 
data=inla.stack.data(StackFit2),offset=log(hooks/1000),family="zeroinflatedpoisson1
") 

114551  80501  51143  42350  - 87719  

* stm: catch of striped marlin in number, hooks: number of hooks, yr: year, qtr: quarter, latlon: 5 x 5 degree latitude and longitude, hpb: number of hooks between 

floats, jp_name: vessel ID (vessel name), iid: Gaussian random effects, ar1: auto-regressive model of order 1, spde: stochastic partial differential equations, hyper: 

hyperparameters, hcprior: halfcauchy prior, family: likelihood family, d: catch and effort data set used in the program code. StackFit, StackFit2: stacked data for 

INLA. 
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Figure 5. Spatial distribution in standardized CPUE (mean latent spatial field) of striped marlin for 

two periods in the Northwest area in the Indian Ocean.  

 

 

 

  
 

Figure 6. Historical changes in the standardized CPUEs of striped marlin for two periods in the 

Northwest area in the Indian Ocean. Thin line and filled point denote point estimates of standardized 

and nominal CPUEs, respectively. Grey shadow denotes 95% credible interval. Note that the scale of 

y-axis is different between right and left figures. 

  

1979-1993 1994-2022 
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Table 2. Nominal and standardized CPUEs of striped marlin for two periods of 1979-93 and 1994-

2022 in the Northwest area in the Indian Ocean.  
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Figure 7. Spatial distribution in standardized CPUE (mean latent spatial field) of striped marlin for 

two periods in the Northeast area of the Indian Ocean. 

 

 

 

  
 

Figure 8. Historical changes of in the standardized CPUEs of striped marlin for two periods in the 

Northeast area of the Indian Ocean. Thin line and filled point denote point estimates of predicted 

CPUE and nominal CPUE, respectively. Gray shadow denotes 95% credible interval.  Note the scale 

of y-axis is different between the right and left figures. 

  

1979-1993 1994-2022 
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Table 3. Nominal and standardized CPUEs of striped marlin for two periods of 1979-93 and 1994-

2022 in the Northeast area of the Indian Ocean 
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Figure 9. Spatial distribution in standardized CPUE (mean latent spatial field) of striped marlin for 

1979-1993 in the Southwest area of the Indian Ocean. 

 

 

 
Figure 10. Historical changes in the standardized CPUEs of striped marlin for two periods in the 

Southwest area of the Indian Ocean. Thin line and filled point denote point estimates of predicted and 

nominal CPUE, respectively. Gray shadow denotes 95% credible interval. Right figures indicate with 

scale down for y-axis of the left figures. Also note that the scale of y-axis of between upper and lower 

figures differs.  

1979-1993 
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Table 4. Nominal and standardized CPUEs of striped marlin for two periods of 1979-93 and 1994-

2022 in the Southwest area in the Indian Ocean.  
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Figure 11. Comparison of annual standardized CPUE of striped marlin (relative to its mean value for 

1994-2019) between present (red line) and previous (blue line , Taki et al., 2021) studies for the defined 

area of the Indian Ocean. Black dots denote nominal CPUE. 

 


