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Summary 

CPUE of black marlin caught by Japanese longliners during 1979-2022 was standardized. Area 

definition is the same as that in the previous studies. Time-period was divided into two, 1979-1993 

and 1994-2022. Bayesian hierarchical spatial models were applied. Considering high zero catch ratio, 

zero-inflated Poisson generalized linear mixed model (ZIP-GLMM) was used with the R-INLA 

package. Best model was selected from multiple models mainly using Widely Applicable Bayesian 

Information Criterion (WAIC). Gradual annual declining trend with interannual variation were 

observed for the standardized CPUE during 1979-1993, while stable annual trends were observed for 

that during 1994-2022. The trend of the CPUE for 1994-2022 was similar to that for the previous study. 

 

1. Introduction 

The IOTC Working Party on Billfish (WPB) conducted the stock assessment of black marlin (Makaira 
indica) in the Indian Ocean. In this stock assessment, production models such as ASPIC, BSPM and 

JABBA (Yokoi and Nishida 2016, Andrade 2016, Parker 2021) were used. Ijima (2018) and Taki et 

al. (2021) standardized the CPUE of black marlin caught by Japanese longliners in the Indian Ocean 

using zero-inflated Negative Binomial generalized linear mixed model (ZINB-GLMM) without 

considering the spatial random effect. It is generally thought that the abundance indices of Japanese 

longliners are very critical for the stock assessment.  

 

Integrated nested Laplace approximations (INLA) methodology and its powerful application to the 

modelling of complex datasets have recently been introduced to a wider nontechnical audience (Illian 

et al. 2013). As opposed to Markov Chain Monte Carlo (MCMC) simulations, INLA uses an 

approximation for inference and hence avoids the intense computational demands, convergence, and 

mixing problems that are sometimes encountered by MCMC algorithms (Rue and Martino 2007). 

Additionally, R-INLA includes the stochastic partial differential equations (SPDE) approach 

(Lindgren et al. 2011) which is another statistical development. This approach enables us to model 

spatial random effect (Gaussian random field, GRFs) and to construct flexible fields that are better 

adept to handle datasets with complex partial structure (Lindgren and Rue 2013). This is often the case 

with fisheries data, since fishermen tend to aggregate particular fishing grounds, resulting in clustered 

spatial patterns and a lack of data at large regions. Together, these new statistical methods and their 

implementation in R allow scientists to fit considerably faster and more reliably complex 

spatiotemporal models (Rue et al. 2009, Cosandey-Godin et al. 2015). 

 

The aim of this paper is to estimate the annual trends in abundance indices of black marlin (Makaira 

indica) caught by Japanese longliners in the Indian Ocean from 1979 to 2022 for the stock assessment 

of this species using the same method as that in the previous study (Taki et al. 2021). A zero-inflated 

Bayesian hierarchical approach was applied in consideration with spatial changes in the fishery and 

the species.  

 

2. Materials and methods 

Data sets  

Japanese longline logbook data was used for the CPUE standardization of black marlin in the Indian 

Ocean. The logbook data has information about the resolution of fishing location at 1 x 1 degree grid 

scale. We used the data from 1979 onwards because the number of hooks between floats and the vessel 

name, which largely affect the CPUE standardization, are completely available since then. We divided 

the time-period into two, 1979-1993 and 1994-2022, as the gear configuration of Japanese longline 
fishery such as number of hooks between floats and gear material had drastically changed in the early 
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period of 1990s. At the same time, the quality and quantity of logbook data were improved by adding 

new items to the logsheet as well. We defined the same area of the analysis as Ijima (2018) and Taki 

et al. (2021), considering spatial CPUE and body weight information (Figure 1). In this area, Japanese 

longliners tended to catch similar body weight of black marlin in all time. Japanese longliners have 

operated throughout the Indian Ocean from the 1990s to the 2000s, but in the 2010s, the fishing ground 

was shrunk rapidly (Figure 2). There are two main reasons for this, that is, the influence of piracy 

activities in the northwest Indian Ocean, and the target shift of fishermen to southern bluefin tuna in 

the Southern Indian Ocean. The target shift makes it difficult to catch black marlins staying frequently 

in the shallower depths.  

 

Statistical models 

We applied Bayesian hierarchical spatial models, but we did not directly consider the spatiotemporal 

effects in the model because this approach is computationally intensive and the Widely Applicable 

Bayesian Information Criterion (WAIC; Watanabe, 2012) did not differ so much between spatial and 

spatiotemporal models in the preliminary analysis. Since the catch data is countable and characterized 

by many zeros (Figure 3), we used a zero-inflated Poisson GLMM (ZIP-GLMM). The zero-inflated 

model is useful because it can estimate "true" zero catch. As an alternative way, it is possible to use 

ZINB-GLMM but we did not use the model because the ZINB tended to cause underdispersion (Ijima 

and Kanaiwa, 2019). 

 

The explanatory variables of fixed effect are year (yr) and quarter (Jan-Mar, Apr-Jun, Jul-Sep, Oct-

Dec; qtr), and those of random effect are area (5 x 5 degree scale; latlon), month (month), vessel ID 

(vessel name; jp_name), and gear configuration (number of hooks between floats; hpb). The hpb 

increased remarkably in the early 1990s in the defined area (Figure 4). Most variables were treated as 

the categorical variable, but the autoregressive model (AR1) was applied to year effect for two spatial 

models to consider the autocorrelation. The latest SPDE models using AR1 tended to show smaller 

WAIC as compared to those using year as fixed effect (e.g., Ijima and Koike 2020). The use of these 

random effects in the model seems more appropriate to raise the accuracy of estimation (Ijima and 

Kanaiwa 2019). The random effects are also expected to remove the pseudo-replication by each effect 

(vessel, gear configuration, month, and area).  

 

All analyses were performed using R, specifically the R-INLA package. The INLA procedure, in 

accordance with the Bayesian approach, calculates the marginal posterior distribution of all random 

effects and parameters involved in the model. We applied a half Cauchy distribution as a prior for the 

random effect. We plotted latent spatial field to indicate the expected CPUE distribution. Best 

candidate model was selected based on WAIC for the defined area in each period. 

 

3. Result and discussion 

We compared the WAIC among eight different structurer’s models for the defined area and each 

period (Table 1). The best model (yellow marker) was selected based on the lowest WAIC and by 

confirming that the results are reasonable (i.e. credible interval for CPUE is not too broad). 

 

The predicted CPUE was higher in the northwestern coastal part in the defined area during 1979-1993, 

while that was lower for the same part during 1994-2022 (Figure 5). The annual predicted CPUE 

showed a gradual decline trend for 1979-1993, while no apparent trend was observed for 1994-2022 

with a recent decrease. (Figure 6, Table 2). The 95% credible intervals were wide due to the inclusion 

of spatial effect (Taki et al., 2021). 

 

Figure 7 shows a comparison of annual trend of standardized CPUE (relative values) between present 

and previous (Taki et al., 2021) studies for the defined area. The trend of CPUE is usually very similar 

between two studies. There was some difference in CPUE for 2019 (terminal year in the previous 

analysis). This may be due to updating catch and effort data, in which 2019 data was preliminary at 

the previous analysis.  
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Figure 1. Spatial distributions of nominal CPUE and mean body weight for black marlin caught by 

Japanese longliners in the Indian Ocean. The area used for CPUE standardization (water inside of 

white line) in the present study.  
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Figure 2. Spatial-temporal (seasonal and decadal) changes in the nominal CPUE for black marlin 

caught by Japanese longliners in the Indian Ocean. 1: Jan-Mar, 2: Apr-Jun, 3: Jul-Sep, 4: Oct-Dec. 



IOTC-2024-WPB22-20 

 

6 

 

 
Figure 3. Annual changes in zero catch ratio of black marlin caught by Japanese longliners in the 

defined area of the Indian Ocean. 

 

 

 

 

 
Figure 4. Historical changes in the gear configuration (number of hooks between floats) in the defined 

area of the Indian Ocean. Vertical range of the plots shows the range of the data, and width shows 

frequency of the data. 
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Table 1. The models and their WAIC values for two time periods of analyses. Selected models 

corresponded to those with the smallest values yellow-highlighted. 

 

* blm: catch of black marlin in number, hooks: number of hooks, yr: year, qtr: quarter, latlon: 5 x 5 degree 

latitude and longitude, hpb: number of hooks between floats, jp_name: vessel ID (vessel name), iid: 

Gaussian random effects, ar1: auto-regressive model of order 1, spde: stochastic partial differential 

equations, hyper: hyperparameters, hcprior: halfcauchy prior, family: likelihood family, d: catch and effort 

data set used in the program code. StackFit, StackFit2: stacked data for INLA. 

 

 

 

  
Figure 5. Spatial distribution in standardized CPUE (mean latent spatial field) of black marlin for 

two periods in the defined area of the Indian Ocean. 

 

Model* 

1979-
1993 

1994-
2022 

m_null = inla (blm~1, data=d,offset=log(hooks/1000), family="poisson") 
57409  75288  

m_glm = inla (blm~yr + latlon,data=d,offset=log(hooks/1000), family="poisson") 
>1019 75092  

m_glmm = inla (blm~yr + qtr + f(latlon,model="iid", hyper=hcprior) 
 + f(jp_name,model="iid")+f(hpb,model="iid"), data=d,offset=log(hooks/1000), 
family="poisson") 51434  75219  

m_zip_glmm = inla (blm~yr + qtr + f(latlon, model="iid") +  f(jp_name, model="iid"), 
 data=d,offset=log(hooks/1000), family="zeroinflatedpoisson1") 51070  68970  

m_spde = inla (blm~0 + intercept + yr + qtr +  f(hpb, model="iid") + f(jp_name, 
model="iid")  
 + f(w,model=spde), data=inla.stack.data(StackFit), offset=log(hooks/1000), 
family="poisson") 

51063  73203  

m_spde2 = inla (blm~0 + intercept + f(yr,model="ar1") + f(month, 
model="iid",hyper=hcprior)  
 + f(hpb,model="iid",hyper=hcprior) + f(jp_name, model="iid",hyper=hcprior) + 
f(w,model=spde), 
 data=inla.stack.data(StackFit2),offset=log(hooks/1000),family="poisson") 

50948  73081  

m_zip_spde = inla (blm~0 + intercept + yr + qtr + f(hpb,model="iid") 
+f(jp_name,model="iid")   
 + f(w,model=spde), 
 data=inla.stack.data(StackFit), offset=log(hooks/1000), family="zeroinflatedpoisson1") 

50590  68726  

m_zip_spde2 = inla (blm~0 + intercept + f(yr, model="ar1") + f(month, 
model="iid",hyper=hcprior)  
 + f(hpb, model="iid") + f(jp_name, model="iid")  + f(w, model=spde), 
 data=inla.stack.data(StackFit2),offset=log(hooks/1000),family="zeroinflatedpoisson1") 

50483  68654  

   

1979-1993 1994-2022 
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Figure 6. Historical changes in the CPUEs of black marlin for two periods in the defined area of the 

Indian Ocean. Thin line and filled points denote point estimates of standardized and nominal CPUE, 

respectively. Gray shadows denote 95% credible intervals. Note that the scale of y-axis is different 

between upper and lower figures. 
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Table 2. Nominal and standardized CPUEs of black marlin for two periods; 1979-93 and 1994-2022 

in the defined area of the Indian Ocean.  
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Figure 7. Comparison of annual standardized CPUE of black marlin (relative to its mean value for 

1994-2019) between present (red line) and previous (blue line, Taki et al., 2021) studies for the defined 

area of the Indian Ocean. Black dots denote nominal CPUE.  

 


