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ABSTRACT 
Understanding spatiotemporal variability is essential in stock assessment and fishery conservation to 

accurately track changes in the distribution and abundance of fish stocks over time. This study 

investigates recent trends in the relative abundance of shortfin mako sharks (Isurus oxyrinchus) in the 

Indian Ocean, utilizing catch rate data from the Taiwanese large-scale longline fishery. We standardized 

the catch per unit effort (CPUE), defined as the number of fish caught per 1,000 hooks, using a vector 

autoregressive spatiotemporal (VAST) model. The results indicate that the standardized CPUE of 

shortfin mako sharks has remained stable, with a slight upward trend. While nominal CPUE exhibited 

significant fluctuations, particularly in 2005 and 2015, the standardized CPUE showed a more consistent 

increase, especially during 2015 and 2023. This suggests that shortfin mako shark stocks were optimally 

utilized between 2005 and 2023. The application of a spatiotemporal model, combined with 

comprehensive data from the Indian Ocean, provided valuable insights into the abundance trends of 

shortfin mako sharks. Future research should consider integrating environmental factors and extending 

the observation period to further enhance the analysis. 
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1. Introduction 

Referring to the shortfin mako shark (Isurus oxyrinchus), like other Elasmobranchs, it is highly 

vulnerable due to certain life history traits. These traits include long life, low fecundity, late 

maturity, and an extended reproductive cycle of 2–3 years (Mollet et al., 2000; Francis et al., 2005; 

Semba et al., 2011). Because of these characteristics, the shortfin mako shark is particularly 

susceptible to overfishing (Dulvy et al., 2021; Pacoureau et al., 2021). In 2019, the International 

Union for Conservation of Nature (IUCN) classified the shortfin mako as Endangered (EN) (Rigby 

et al., 2019; Pacoureau et al., 2021). Additionally, the shortfin mako shark is often caught as a 

bycatch in the Taiwanese large-scale tuna longline fishery (TLTL). According to the Indian Ocean 

Tuna Commission (IOTC), fisheries based in Taiwan are the second-largest harvesters of shortfin 

mako sharks in the Indian Ocean, accounting for up to 23% of the total catch (IOTC, 2019). 

To address the growing concerns of international and regional fisheries management 

organizations (RFMOs) regarding elasmobranch conservation, it is crucial to analyze the latest 

trends in shark populations using tuna fishery logbooks. Catch-per-unit-effort (CPUE) indices are 

fundamental in fisheries science for assessing resource abundance. However, standardizing catch 

and effort data is necessary to reduce potential biases and provide a more accurate indicator of 

fishery resource abundance (Maunder and Punt, 2004; Hoyle et al., 2024). The use of 

spatiotemporal statistical models has become critical in modern stock assessments. These models 

enable precise estimates by accounting for spatial and temporal variations (Grüss et al., 2023). 

The Vector Autoregressive Spatio-Temporal (VAST) model (Thorson, 2019) has been found to 

be effective in estimating relative abundance indices for highly migratory species, including blue 

sharks (Prionace glauca) and mako sharks in the North Pacific (Kai, 2019). 

Therefore, this paper aims to use the VAST model and logbook data to update the 

standardization estimates of shortfin mako sharks caught by the TLTL from 2005 to 2023. The 

resulting abundance index for the Indian Ocean shortfin mako shark population will provide 

valuable insights and help address research gaps in assessing the status of mako sharks in the region. 

 

2. Materials and methods 

2.1. Overview description 

The research methodology includes two key steps: collecting data and using the VAST 

model to standardize shark CPUE, as shown in Figure 1. 

 

 



2.2. Fisheries logbook data 

The logbook dataset obtained from the Overseas Fisheries Development Council of 

Taiwan covers the years 2005 to 2023. It provides information on 18 species, including major 

tunas, billfishes, and sharks. Using this dataset, the study analyzed the catch and discard 

amounts of shortfin mako sharks (MSK), as well as the number of hooks used and spatial-

temporal data: year, month, day, latitude (Lat), and longitude (Lon) for each fishing operation. 

The year was divided into four seasons, denoted as quarters (Q1 to Q4), as follows: Q1 

represented spring from January to March, Q2 represented summer from April to June, Q3 

represented fall from July to September, and Q4 represented winter from October to 

December. Other variables included in our models are branch lines between floats, also 

known as hooks per basket (HPB). The gear configuration HPB (HPBC) is divided into four 

classes: shallow set (HPB < 6), middle (6  HPB < 10), deep (10  HPB <16), and ultra-deep 

(HPB  16). 

Due to the extensive reach of the Taiwanese longline fishery in the Indian Ocean, these 

statistics are highly valuable for assessing the population status of pelagic sharks. In 

particular, the catch and discard data for MSK from 2005 to 2023 were used to standardize 

CPUE of MSK in the Taiwanese large-scale longline fishery in the Indian Ocean. 

 

2.3. Filtering and exploration of data   

Incomplete datasets were excluded before standardization if they were missing key 

information like latitude, longitude, and hooks. CPUE was calculated by dividing the number 

of MSK captured (n) by the number of hooks deployed per 1,000. Nominal CPUE was 

computed using the formula: 1000i
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 , where ni represents the catch and 

discard number of MSK, ei denotes the corresponding fishing effort (number of hooks in this 

instance), and i refers to individual observations within the dataset. Table 1 provides a summary 

of this data for the period 2005 to 2023. 

Figures 2 and 3 show the geographical distribution of observed fishing effort and catch. 

This includes area stratification (Wu and Tsai, 2022) and nominal CPUE data for four specific 

regions: (1) Northwest Indian Ocean (North of 10°S, East of 70°E); (2) Northeast Indian Ocean 

(North of 10°S, 70°E-120°E); (3) Southwest Indian Ocean (South of 10°S, 20°E-60°E); (4) 

Southeast Indian Ocean (South of 10°S, 60°E-120°E).  

 

2.4. The Vector Autoregressive Spatio-Temporal model (VAST)  

In our study, we utilized the VAST model (Thorson, 2019), which is well-known for 

effectively handling spatiotemporal correlations, addressing changes in catch over time and 

space, and capturing spatial heterogeneity and autoregressive effects. The model is flexible 

enough to accommodate individual differences and non-normal data distributions. 

By default, the VAST model is structured as a delta-generalized linear mixed model. It divides 

the catch probability distribution into encounter probability and expected catch rate based on 

catch occurrence (Thorson, 2019). To improve computational efficiency, VAST employs 

predefined spatial knots to assess spatial and spatiotemporal correlations. The estimation process 

in this study utilized the K-means algorithm. This algorithm divides all grid cells into 200 spatial 

knots that are fixed on a 15'15' (arcmin) extrapolation grid, as shown in Figure 4. This approach 

was used to construct the map of MSK in this study. It is assumed that spatial and spatiotemporal 

random effects originate from their nearest spatial knot, following the methodology of Grüss et 

al. (2019). 

 



The prediction of MSK CPUE is detailed as follows: 

We use a logit-linked linear predictor to model the encounter probability (p) for observed 

CPUE (𝑖). 
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Furthermore, we utilize a log-linked linear predictor to model the positive catch rate () 

for observed CPUE (i): 
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In these equations, (𝑡𝑖): intercept in year ti (𝑠𝑖): spatial variation at location 𝑠𝑖; 𝐿: scaling 

factor (sd); (𝑠𝑖,𝑡𝑖): spatiotemporal variation at location 𝑠𝑖 in year 𝑡𝑖; 𝐿: scaling factor (sd); (𝑣𝑖): 
vessel/targeting effects on catchability, and (𝑣𝑖)~Normal(0,1); L: scaling factor (sd); 𝑄(𝑖,𝑘): 

catchability covariate (s); (𝑘): associated catchability parameter (s); 𝑋(𝑠𝑖,𝑡i,𝑝) habitat covariate 

(s); (𝑝): associated habitat parameter (s). 

The probability of catching data c for sample i: 
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Annual abundance index I was estimated as: 
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2.5. Models selection 

The final models for VAST were determined by selecting those with the lowest Akaike 

Information Criterion (AIC) weight (Akaike, 1973). To ensure that the models accurately 

represented the observed data patterns, we conducted a rigorous assessment of goodness-of-fit. 

Once the optimal models were selected, we performed a thorough goodness-of-fit test using the 

Analysis of Deviance method. 

 

2.6. Computational procedures  

The statistical analyses and visualizations for this study were performed using version 4.4.1 

of the R language for statistical computing. VAST models were created using the VAST R 

package version 3.10.1. Graphical outputs were generated using the “ggplot2” package 

(Wickham et al., 2016). 

 

3. Results and discussion 

Exploring the characterized dataset 

The dataset from the TLTL in the Indian Ocean between 2005 and 2023 reveals a crucial 

observation: a significant proportion of recorded sets, specifically 88.6%, reported zero MSK 

catches (Figure 5). This highlights the potential influence of confounding factors on catch rates 

and underscores the necessity of standardization to address these factors effectively. 

 

Selection of the best model  

 Multiple runs were conducted using different sets of covariates to determine the optimal VAST 

model. All the models demonstrated good convergence, as indicated by a positive definite Hessian 

matrix and a small maximum gradient (Table 2). The saturated model (M-4), which included the 

variables Year, Lat, Lon, Quarter, and Area, was identified as the most parsimonious model based 

on AIC values (Table 2). This model was utilized for further analyses. 

Model diagnostics indicate that model M-4 performs well. The Q-Q plot demonstrates a 

nearly linear pattern, indicating that the residuals reasonably conform to a normal distribution. 



Furthermore, the residual vs. predicted plot reveals no apparent patterns, suggesting that the 

model assumptions are satisfied (Figure 6). 

 

The trend of nominal CPUE and standardized CPUE 

The nominal CPUE of MSK in the Indian Ocean showed significant inter-annual 

fluctuations, particularly in 2005 and 2015 (Figure 7). However, this variability was slightly 

smoothed in the standardized CPUE series. Overall, the standardized CPUE of MSK caught 

by the TLTL showed a consistent increase, especially in 2015 and 2023 (Figure 7). This trend 

suggests that MSK stock in the Indian Ocean may have been optimally utilized during the 

period from 2005 to 2023. The 95% confidence intervals of the CPUE estimates were 

substantially larger after 2010 (Figure 7), likely due to the reduction in fishing effort (number 

of hooks) by longline fisheries (Table 1). While there is an overall upward trend, it is 

important to note that the relative abundance of MSK still fluctuates rather than showing a 

smooth, consistent increase from 2005 to 2023. This indicates that while there are positive 

signs, there is still persistent variability and fluctuations. 

 

Spatial maps of predicted CPUE of MSK  

Figure 8 shows the predicted spatial patterns of MSK log density from 2005 to 2023, using 

the parsimonious VAST model. MSK is found predominantly in the Indian Ocean, with a wide 

distribution range and some consistency over the years. The annual spatial maps indicate that 

MSK is more abundant at higher latitudes (Figure 8), while lower abundances are observed in 

near-equatorial regions, particularly from 2006 to 2012 in the Northeast Indian Ocean. In the 

Indian Ocean, hotspots of MSK are distributed more irregularly across a wider temporal and 

spatial context. 

 

The spatial anisotropy for the encounter probability and positive catch-rate model components  

Figure 9, based on M-4 (the selected model), shows that the spatial residual of the 

encounter probability (i.e., 1st linear predictor) changes less than the positive catch rate (i.e., 

2nd linear predictor) over a longer distance. In other words, the ellipse representing the 

encounter probability is larger than the one representing the positive catch rate. The spatial 

correlation exhibits a higher degree of variation around the equatorial area, where both 

ellipses stretch along an east-west axis. This suggests that the distribution of mako sharks 

follows an east-west direction. 

Additionally, Figure 10 presents the coefficient-distribution-influence (CDI) plot of the 

spatial random effect for the VAST model. The annual influence values of the spatial random 

effect were slightly above one before 2010 and after 2019, as a greater proportion of data 

tended to be distributed in the grouped knots (grouped knots 16–20) with coefficients larger 

than one. 

This report highlights the benefits of the spatiotemporal standardization approach (Grüss et 

al., 2019; Cacciapaglia et al., 2024) and identifies areas for improvement in the future. 

Currently, the model does not consider environmental factors. To improve results, it is 

recommended to include longer time series of observer data and environmental factors. For 

abundance indices, we suggest utilizing the predicted annual CPUEs of mako sharks caught by 

Taiwanese tuna longline fisheries in the Indian Ocean from 2005 to 2023. This recommendation 

is based on the extensive time series data, wide geographical coverage, and statistical reliability 

of the spatiotemporal model. The model uses spatial and temporal correlations through random 

effects to impute missing data (Thorson, 2019). The spatiotemporal generalized linear mixed 

effects model (GLMM) developed by Thorson et al. (2015) allows for interaction terms between 

spatial and temporal effects with high spatial resolution. 
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Table 1. Summary logbook information from MSK used in this study summarized. 

 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Year No. of Hooks No. of Sets No. of MSK catches and discards

2005 229,125,876 72,206 11,358

2006 111,539,175 34,699 5,842

2007 141,462,466 44,026 4,181

2008 102,533,017 31,810 6,196

2009 129,191,560 40,105 7,932

2010 97,638,819 29,863 5,533

2011 73,003,298 22,551 5,093

2012 76,970,711 25,285 4,398

2013 75,819,812 23,724 3,807

2014 58,376,963 18,475 2,522

2015 70,899,449 22,537 3,089

2016 101,592,087 31,567 6,508

2017 99,408,067 29,983 7,924

2018 93,070,520 28,034 6,864

2019 97,308,263 28,692 6,282

2020 89,664,075 26,584 6,945

2021 90,950,835 27,262 6,483

2022 98,697,865 30,459 5,937

2023 99,205,141 29,942 7,017

Total 1,936,457,999 597,804 113,911



 

 

Table 2. Summary of model structure and outputs among different models. All models include fixed effects. Model 

selection information, including deviance, and AIC values, for the VAST model of the MSK caught by TLTL in the 

Indian Ocean during 2005-2023. The ∆AIC indicates the decrease in AIC compared to the best-fitting model. 

 

Model Model structure covariates Number of parameters Deviance AIC AIC Maximun gradient 

M-1 Year + Lat + Lon 47 396724.3 376542.7 8.8 < 0.0001 

M-2 Year + Lat + Lon + Quarter 49 396724.1 376546.5 12.6 < 0.0001 

M-3 Year + Lat + Lon + HPBC 49 396726.5 376545.7 11.8 < 0.0001 

M-4 Year + Lat + Lon + Quarter + Area 51 396721.4 376533.9 0 < 0.0001 

M-5 Year + Lat + Lon + Quarter + Area + HPBC 53 396723.9 376536.7 2.8 < 0.0001 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 
 

 
 

Figure 1. A framework illustrating the key steps in standardized CPUE, with photo credit to Evans 

Baudin for MSK. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 
 

 
 

Figure 2. The geographical distribution of logbook fishing effort (measured by the number 

of hooks), and logbook fishing catch and discard (measured by the number of individuals) 

are presented for the Taiwanese large-scale longline fishery operating in the Indian Ocean 

from 2005 to 2023.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 
 

 
 

 
 

Figure 3. Area stratification and log nominal CPUE data for each area stratum, are presented 

for the Taiwanese large-scale longline fishery operating in the Indian Ocean from 2005 to 2023. 

The colors used to indicate each area stratification correspond to log nominal CPUE data; for 

example, the color yellow represents the first area. 



 

 

 
 

 

 

 

Figure 4. (Left) Map of extrapolation grid cell barycenters (15'×15') and (Right) distribution of the 

200 core knots within VAST, with northing (N_km) indicating northward distance and easting 

(E_km) representing eastward distance, specifically at sea.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
Figure 5. Distribution of MSK caught numbers (zero and positive values) in the Taiwanese large-

scale longline fishery in the Indian Ocean. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
Figure 6. Diagnostic results for VAST models applied to longline MSK dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 
 

 
Figure 7. Annual relative nominal CPUE and standardized CPUE compared to their average. The 

shaded area represents the 95% confidence intervals, and the horizontal dotted red line indicates the 

mean of relative values (=1.0). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Figure 8. The log density distribution of MSK is based on the parsimonious VAST model from 2005 to 2023. 



 

 
 

 
Figure 9. Illustrates the estimation of spatial anisotropy using the delta-Gamma 

spatiotemporal model (M-4) developed in this study. The ellipses represent the estimates 

of geometric anisotropy for MSK, with the green line indicating the spatial variation in 

encounter probability and the black line indicating the spatial variation in positive catch 

rate. The distance from a point located at (0, 0) where the correlation drops to 10% is 

represented by the line. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

Figure 10. The CDI plot of the spatial random effect for the VAST model applied to MSK in the Indian 

Ocean from 2005 to 2023. The top section of the plot shows the normalized coefficients with their standard 

errors. In the bottom left section, bubbles represent the annual distribution of observed CPUEs for each group 

of five knots, with larger bubbles indicating more data records. The bottom right section illustrates the annual 

influence value for the spatial random effect. 

 


