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SUMMARY 

Bayesian Surplus Production Models were fitted to the Indian Ocean 

shortfin mako shark, using the JABBA framework (Just Another 

Bayesian Biomass Assessment). The catch history of the fishery used 

either the data reported to IOTC or, alternatively, a time series using 

estimated catches. Priors for the intrinsic growth rate of the population 

(r) were calculated using stochastic Leslie matrices, using a set of 

plausible life history parameters. An ensemble grid approach was used 

for the stock assessment, to incorporate uncertainties associated with the 

life history parameters and the form of the production function. The 

combination of the various scenarios used as the base case model grid 

ensemble showed that the stock is currently overfished (B<Bmsy) and 

subject to overfishing (F>Fmsy). Stochastic projections were carried out 

for this base case grid model ensemble. Given the current high levels of 

fishing mortality and stock status, there is a need to reduce future catches 

to a maximum value (TAC) of 40% of current catches, to prevent future 

declines in biomass and allow the population to start recovery. 
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1. Introduction 

The shortfin mako is a pelagic shark species captured mostly as bycatch in oceanic pelagic 

fisheries worldwide, including in the Indian Ocean in the area under the jurisdiction of 

IOTC. 

In 2018, the WPEB conducted a semi-quantitative Ecological Risk Assessment (ERA) to 

evaluate the resilience of sharks to the impact of IOTC fisheries, with the shortfin mako 

shark receiving the highest vulnerability ranking for longline gear (Murua et al., 2018, 

due to the very low productivity of the shortfin mako shark and its high susceptibility 

especially to pelagic longline gear. 

Previous attempts have been made to assess the shortfin mako shark stock in the Indian 

Ocean. Specifically, a preliminary assessment was conducted in 2018 by Brunel et al. 

(2018) and another in 2020 by Bonhommeau et al. (2020). These assessments used catch-

only models (CMSY) and biomass dynamic models (JABBA). Given the uncertainties at 

the time with regards to the stock status and lack of projections, the stock status of the 

shortfin mako shark in the IOTC remains “unknown”. 

In April 2024, a WPEB SMA data-preparatory meeting was held, where the WPEB 

agreed that the present year assessment should focus on the use of the biomass dynamic 

model based on the JABBA platform and, should time permit, other alternative models 

like CMSY could be explored. The WPEB also noted that using a grid approach over 

several variables would be appropriate, such as for exploring different life history options, 

CPUE scenarios and production functions, thus addressing both structural and estimation 

uncertainties. 

The purpose of this paper is to present the stock assessment configuration, inputs and 

results for the IOTC shortfin mako shark. Specifically, we present the methods used and 

results regarding an alternative catch time series reconstruction, demographic analysis 

using Leslie matrices, stock assessment models configurations and results using JABBA, 

and stochastic projections, in order to provide management advice for this pelagic shark 

species to IOTC. 

 

2. Material and methods 

2.1. IOTC nominal catches and catch reconstructions 

The IOTC nominal catch series was considered for the stock assessment. Some 

assumptions were made on this series, namely, to include all species codes in the IOTC 

database as being shortfin mako sharks for the following codes: MAK (mako sharks), 

MSK (sharks mackerel and porbeagles nei), SMA (shortfin mako), AG17 (mako sharks) 

and AG20 (sharks mackerel, porbeagles nei). By joining these codes some assumptions 

are made, particularly that for the generic code categories where more than one species 

can be included (i.e, MAK, MSK, AG17, AG20), the majority is composed by shortfin 
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mako (SMA). And given the impossibility to split those in the various species, all were 

considered and used as SMA. 

It is important to note that with regards to those assumptions, that majority of the catch 

has been reported as either MAK (55,267.2 t) or SMA (47,515.0 t), while the remaining 

categories represent overall very small quantities (AG17: 115.9 t; AG20: 0.5 t and MSK: 

1,601.5 t). As such, the main assumption made with this process was to assume that the 

MAK represents mostly shortfin mako shark. Given that the only other possible 

alternative is the longfin mako shark, which is in general a much rarer and occasionally 

species in oceanic fisheries, such assumption seems justifiable. 

Additionally, an alternative catch series was used as a sensitivity analysis to the stock 

assessment, based on a catch reconstruction. The main methodology aspects used with 

this reconstruction are described in Murua et al. (2013) and have been updated to produce 

time-series data by Coelho et al. (2019). This method has been used in estimations 

presented and used as sensitivity analysis in ICCAT stock assessments (Coelho and Rosa, 

2017), and in a preliminary IOTC SMA stock assessment (Brunel et al., 2018). 

In terms of the methodology, and in summary, the catch reconstruction is carried out for 

all fleets and countries which are likely to be catching or bycatching sharks based on the 

ratio of shark catch or by-catch over the main target species of tuna and tuna-like species. 

The ratios are estimated through observer programmes when data is available, and in 

other cases from literature revisions and/or personal communications from national 

scientists (Murua et al., 2013). 

The main assumption of the method is that the main target species (i.e., tunas and 

swordfish) reported by flag/fleet to the tuna-RFMOs are considered to be accurate, or at 

least more accurate than the sharks reportings, and it is therefore more reliable to use 

those target species quantities to calculate the likely shark catches or bycatches. Based on 

that, and assuming that each fleet uses a specific métier (i.e., gear characteristics and 

respective target species), the calculation based on ratios were then performed. 

 

2.2. Life history and demographic analysis 

There are biological and life history parameters available from previous studies for 

shortfin mako shark, including age and growth estimates, maximum age, age at maturity 

and fecundity. The parameters discussed by the WPEB at the data preparatory meeting 

and the decision on which ones to use are summarized in Table 1. 

For the demographic analysis models, the age-specific fecundity was converted into 

female pup natality by multiplying the estimated fecundity-at-age by 0.5 (assumed as the 

proportion of female embryos in each litter, given a sex ratio of 1:1 for males:females). 

This value was then divided either by 2 or 3, depending on the assumption of a 2- or 3- 

year reproductive cycle for this species, a parameter that is still uncertain. 
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Natural mortality (M) was estimated with the use of several empirical equations that 

correlate different life history parameters with mortality. Those indirect estimations 

included both age-independent as well as age-dependent equations. The age-independent 

empirical equations used were the Pauly (1980) equation that uses Linf and k from the 

von Bertalanffy growth function (VBGF), the Hoenig (1983) equation that uses maximum 

observed ages, and the two Jensen (1996) equations that use age at maturity and k from 

the VBGF. The indirect methods using age-dependent equations were the Peterson and 

Wroblewski (1984) equation that estimates natural mortality as a function of weight at 

age, and the Chen and Watanabe (1989) equations that uses VBGF parameters to calculate 

age-specific natural mortality. Chen & Watanabe (1989) hypothesized that natural 

mortality in fish populations should have a U-shaped “bathtub” curve when plotted 

against age, and therefore proposed two equations: one describing falling mortality rates 

in early life stages/ages, and a second describing the increasing mortality towards later 

life stages/ages. 

The various natural mortality estimates (M) obtained with the different methods were 

then used to calculate age-specific survivorship (S) using the equation: S=e^(-M) 

The demographic analysis was carried out using age-structured Leslie matrices. Since 

only females produce offspring, the demographic analysis was carried out exclusively for 

the female components of the population (Simpfendorfer, 2004). The model considered 

a pre-breeding survey model type, where reproduction and natality take place first and 

only then survivorship-at-age probabilities are considered to act on the population. 

Several different scenarios were considered for analysis and compared with the Leslie 

matrices, which are represented in Table 2. These scenarios accounted for different 

alternatives at the level of the growth equations (Liu et al., 2018; Takahashi et al., 2017) 

and fecundity, considering either 2- or 3-year reproductive cycles, which is still uncertain 

for the species (Mollet et al., 2002). 

Considering that the two input vectors used in the Leslie matrices (i.e., age-specific 

fecundity and survivorship) have associated uncertainty errors, the Leslie matrices 

analysis were carried out using stochasticity in the input parameters. For the age-specific 

survivorship parameters, uncertainty was introduced by generating age-specific random 

values from a Triangular distribution, with limits defined between the age-specific 

minimum and maximum empirical estimations. For the fecundity parameters, uncertainty 

was incorporated by generating random age-specific fecundities following a Gaussian 

distribution with the expected value represented by the mean fecundity-at-age and the 

standard deviation represented by 0.25 of the mean. 

The main parameter of interest that was estimated with the Leslie matrices demographic 

analysis is the population rate of increase (λ), calculated as the dominant eigenvalue of 

the projection matrix (Caswell, 2001). This value can then be converted to r (intrinsic 

population growth rate) with the equation: r = log(λ). 
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For comparison purposes, we further calculated steepness (h), using the equation 

h=â/(4+â), where â is the maximum lifetime reproductive rate which in turn is the product 

of R0 (the net reproductive rate obtained from the Leslie matrix) and p0, the survivorship 

at age 0, de from the empirical mortality estimates (Myers et al., 1999). 

Each stochastic scenario was simulated 10,000 times by Monte Carlo Simulation. Each 

input parameter for each scenario was therefore randomly generated 10,000 times (based 

on the previously assumed distributions), and the 10,000 resulting Leslie matrices were 

compiled. The output parameters of the simulations were then analyzed and interpreted 

in terms of their mean and respective 95% confidence intervals (0.025 and 0.975 

quantiles). 

The Leslie matrix analysis was carried out in R (R Core Team, 2023), using libraries 

“primer” (Stevens, 2009), “popbio” (Stubben & Milligan, 2007) and “triangle” (Carnell, 

2022). 

 

Table 1: Life history parameters discussed by the WPEB for using in the IOTC 

assessment. The values agreed to be used are represented in bold. 

 

 

 

 

 

 

Life History Parameter Value Reference NOTES/DECICION

Linf (FL) 407.65 Barreto et al (2016) - Atlantic - Females (1 pair of bands/year)

k 0.04 Barreto et al (2016) - Atlantic - Females (1 pair of bands/year)

t0 -7.08 Barreto et al (2016) - Atlantic - Females (1 pair of bands/year)

Linf (FL) 441.64 Barreto et al (2016) - Atlantic - Females (2 pair of bands/year)

k 0.07 Barreto et al (2016) - Atlantic - Females (2 pair of bands/year)

t0 -3.98 Barreto et al (2016) - Atlantic - Females (2 pair of bands/year)

Linf (FL) 309.79 Barreto et al (2016) - Atlantic - Females (2 pair of bands/year up 5yr + 1 pair of bands/year thereafter)

k 0.13 Barreto et al (2016) - Atlantic - Females (2 pair of bands/year up 5yr + 1 pair of bands/year thereafter)
t0 -3.27 Barreto et al (2016) - Atlantic - Females (2 pair of bands/year up 5yr + 1 pair of bands/year thereafter)

Linf (FL) 350.3 Rosa et al (2017) - Atlantic - Females (1 pair of bands/year)

k 0.064 Rosa et al (2017) - Atlantic - Females (1 pair of bands/year)

t0 -3.09 Rosa et al (2017) - Atlantic - Females (1 pair of bands/year)

Linf (FL) 285.4 Groeneveld et al (2014) - IO, Sex comb (1 pair of bands/year)

k 0.113 Groeneveld et al (2014) - IO, Sex comb (1 pair of bands/year)

t0 -3.37 Groeneveld et al (2014) - IO, Sex comb (1 pair of bands/year)

Linf (FL) 323.8 Liu et al (2018) - IO - Females (1 pair of bands/year)

k 0.075 Liu et al (2018) - IO - Females (1 pair of bands/year)

t0 -4.36 Liu et al (2018) - IO - Females (1 pair of bands/year)

Linf (FL) 321.044 Takahashi et al (2017) Pacific - female (meta-analysis)

k 0.128 Takahashi et al (2017) Pacific - female (meta-analysis)

L0 64.89 Takahashi et al (2017) Pacific - female (meta-analysis)

t0 -1.76 Takahashi et al (2017) Pacific - female (meta-analysis) - Estimated from L0

Lifespan Tmax (years) 32 Natanson et al (2006) Value for Atlantic

Size at maturity (FL) 250 Groeneveld et al (2014) - Females

Age at maturity (years) 10.02 Calculated from Takahashi et al (2017) growth

Age at maturity (years) 15.36 Calculated from Liu et al (2018) growth

Repro cycle (years) 2 or 3 Mollet et al (2000)

L0 - size at birth 64.89 Takahashi et al (2017) Pacific - female (meta-analysis)

Fecundity (pups) 12 Groeneveld et al (2014) (mean value, rounded)

a 0.0000349

b 2.76544
Values specific for IOL-W relation Romanov & Romanova (2009)

Age and Growth

Reproduction

Values mostly for the 

SW IO; WPEB noted the 

reproducitve cycle is 

uncertain, so agreed to 

test 2 and 3 years cycles

WPEB sugested to use 

either Liu et al. (2018) 

that is specific for IO, or 

Takahashi et al (2017) 

from a meta-analysis, 

due to uncertainties on 

the number of band 

pairs deposited per year.
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Table 2: Scenarios built to be used in the demographic analysis, for determination of r 

priors for the stock assessment models. The values where the key differences exist for 

each scenario are represented in bold. 

 

 

2.3. Standardized CPUEs series 

The CPUEs series that were originally available were those either available and/or 

presented at the IOTC WPEB data-preparatory meeting, and included series from the 

following CPCs/fleets/surveys (Figure 1): 

● USSR historical surveys (1967-1989) 

● Japan (1993-2018) 

● Portugal (2000-2022) 

● Spain (2001-2022) 

● Taiwan (2005-2018), later replaced by Taiwan (2005-2022) 

It is noted that after the WPEB data-preparatory meeting, Taiwan submitted an updated 

series with data until 2023 (Huynh and Tsai, 2023), that was further used as a sensitivity 

analysis in the stock assessment. 

The CVs for each series in the models were those produced in the CPUE standardization 

analysis, except in cases where the values were lower than 0.2, in which cases a minimum 

CV of 0.2 was defined. This allowed some flexibility in the fit of the models to the 

CPUEs. All CPUEs were tested and considered in the models, and sensitivity models 

were run excluding one at a time, both in the full models containing all series as well in 

the base case models that were later defined for the stock assessment. 

 

Scenario 1 Scenario 2 Scenario 3 Scenario 4

Theoretical maximum length (FL) 323.8 323.8 321.044 321.044

Growth coefficient 0.075 0.075 0.128 0.128

Size at birth (FL) 64.89 64.89

Theoretical age at length zero -4.36 -4.36 -1.76 -1.76

Size at 50% maturity (FL) 250 250 250 250

Mean age at 50% maturity (years) 15 15 10 10

Lifespan (years) 32 32 32 32

Sex ratio at birth 1:1 1:1 1:1 1:1

Reproductive cycle (years) 3 2 3 2

Litter size (pups) 12 12 12 12

Scalar coefficient of weight on length 0.0000349 0.0000349 0.0000349 0.0000349

Power coefficient of weight on length 2.76544 2.76544 2.76544 2.76544

Liu et al (2018) Takahashi et al (2017)
Parameters
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Figure 1: Standardized CPUE series available for the IOTC SMA stock assessment. For 

a better visualization and comparison, each series is scaled by its respective means. 

 

2.4. Stock assessment 

2.4.1. Assessment platform 

The assessment models were implemented in JABBA, a Bayesian state-space surplus 

production model framework (Winker et al., 2018). JABBA is implemented in R and 

available from: github.com/jabbamodel/JABBA. 

JABBA is a flexible Bayesian stock assessment modeling framework with various 

options, that include: 1) automatic fitting of multiple CPUE time series and associated 

standard errors, 2) estimating or fixing the process variance, 3) optional estimation of 

additional observation variance for individual or grouped CPUE time series 4) specifying 

the production function, i.e., Fox, Schaefer or Pella-Tomlinson, this last one by setting 

the inflection point from Bmsy/K and converting it into the shape parameter m, 5) setting 

priors for various parameters, including r and K, that can range from more to less 

informative depending on the confidence in the previously available information, 6) 

model diagnostics and goodness-of-fit features with associated tests and plots (e.g. 

residuals run tests, hindcast and retrospective analysis) and, 7) projections for constant 

catches (TACs) in the future to achieve management objectives over certain timeframes. 

JABBA is implemented in R (R Core Team, 2023) and uses the JAGS software (Plummer, 

2003) to estimate model parameters in a Bayesian framework, by means of Markov 

Chains Monte Carlo (MCMC) simulation. JAGS is executed from R using the library 

“r2jags” (Su and Yajima, 2012). 
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All analysis in this paper was conducted using R v.4.3.1. (R Core Team, 2023). Some 

additional libraries were used for manipulating and plotting data, including libraries 

“reshape” (Wickham, 2007), “doBy” (Højsgaard and Halekoh, 2023), “tidyr” (Wickham 

et al., 2023), “tidyverse” (Wickham et al., 2019),  “ggplot2” (Wickham, 2016), “dplyr” 

(Wickham et al., 2023), “gridExtra” (Auguie, 2017) and “cowplot” (Wilke, 2024). 

 

2.4.2. Stock assessment model specifications 

The model specifications were based on an ensemble grid of models, given the current 

uncertainty that is associated with the shortfin mako sharks, not only in the Indian Ocean 

but elsewhere in general. The scenarios incorporate 2 main sources of uncertainty, set at 

the levels of 1) population growth parameters, which relate with the r priors and stock 

productivity, and 2) production functions, either Schaefer or variations of the Pella-

Tomlinson model with the maximum of the production function set either below or above 

the Schaefer model, and which are related with assumptions in terms of density-

dependence of the populations. The grid of models used is shown in Table 3. 

For the Pella-Tomlinson models, the shape parameter (m) was estimated based on 

Bmsy/K, which were inputted in the models as informative priors set at 0.40 and 0.55, 

with a CV of 0.2, rather than as fixed values. This allowed some further variability to be 

included with the uncertainties associated with this parameter. 

Two time series of catches were available, namely one with the data as reported to IOTC 

and another with estimated catches as described in this paper. Given that those time series 

have different values in terms of magnitude, it is difficult to include those options in the 

same model grid ensemble as the estimations of values such as B0 and MSY are 

dependent on the scale of the absolute values. As such, the base case grid of models was 

run using the catches reported to IOTC containing the assumptions mentioned previously, 

while a sensitivity analysis was carried out for using the estimated catches. The catches 

were used in the models with an associated CV of 0.2, therefore allowing some deviation 

from the observer catches to reflect the likelihood that the catches may not be accurately 

recorded and reported to IOTC. 

In the model specifications, the K prior (carrying capacity) was kept as vaguely 

informative, given the lack of prior knowledge on these values and to allow for more 

emphasis to be put in the r parameter (intrinsic population growth rate), which is derived 

from biological data. Specifically, the K prior used the default settings of JABBA, namely 

the use of a lognormal prior with a large CV (100%) and a central value corresponding to 

8 times the maximum total catch. This is consistent with other types of models, such as 

the approach used in catch-MSY (Martell and Froese, 2013). 

For all models the same initial depletion (B1967/K) was considered, using a prior with beta 

distribution with a mean of 0.9 and CV of 5%. Catchability parameters were formulated 
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as uninformative priors and the CPUEs were scaled externally by their respective means 

before inputting into the models. 

The process error was defined by an uninformative inverse-gamma distribution with both 

the shape and scaling parameters set at 0.001 (see Gelman, 2006; used for e.g., by 

Mourato et al., 2023). Sensitivity analyses were carried out by fixing the sigma of the 

process error to CVs of 5% and 10%. 

In addition to the CPUE variance associated with the data, the base case grid models 

configuration allowed the internal estimation of additional observation variance for each 

CPUE, allowing therefore for a larger divergence between the observed and model 

predicted CPUEs. A sensitivity analysis was carried out by disabling this process. 

 

Table 3: Grid of ensemble JABBA models, used as the base case for the 2024 SMA IOTC 

stock assessment. Note that for the Pella-Tomlinson models the Bmsy/K values were used 

as priors and not as fixed values.  

 

 

For the parameter estimation in the Bayesian models, each MCMC chain was run with 

50,000 iterations, used a burn-in period of 5,000 iterations, and a thinning rate of 5, 

reducing therefore the autocorrelation and dependence on the initial values. Each model 

specification was run for 3 independent chains, to better assess convergence and reduce 

any potential bias that might occur in a single chain analysis. 

 

2.4.3. Model diagnostics 

Basic diagnostics of model convergence included MCMC trace-plots and other statistics 

(Heidelberger and Welch, 1992; Geweke, 1992; Gelman and Rubin, 1992) implemented 

in the “CODA” package (Plummer et al., 2006). 

To evaluate the CPUE fits, the model predicted CPUE indices were compared to the 

observed CPUE. Additionally, residual plots were used to examine the residuals of 

observed versus predicted CPUE indices for all fleets and boxplots with the median and 

quantiles of all residuals for each year (the area of each box indicates the strength of the 

discrepancy between CPUE series, with larger box indicating higher degree of conflicting 

information), and a loess smoother through all residuals to aid detection of the presence 

of systematic residual patterns. 
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Additionally, the root-mean-squared-error (RMSE) was used as a goodness-of-fit 

statistic, and runs tests were conducted to quantitatively evaluate the randomness of 

residuals (Carvalho et al., 2017). The runs test diagnostic was applied to residuals of the 

CPUE fit on log-scale considering the 2-sided p-value of the Wald-Wolfowitz runs test 

and is visualized in JABBA to illustrate which time series passed or failed the test, as well 

as highlighting individual data points that fall outside the three-sigma limits (Anhøj and 

Olesen, 2014). 

To check for systematic bias in the stock status estimates, a retrospective analysis was 

carried out for all the base case Grid models. This analysis was carried out by sequentially 

removing one year of data at a time, over a total period of 4 years, and then refitting the 

model without those years. The parameters of interest (i.e., biomass, fishing mortality, 

B/Bmsy, F/Fmsy, B/K and MSY) were then compared to the original models fitted using 

the full time series. The presence of possible retrospective bias between the models was 

analyzed visually with plots, and statistically with the Mohn’s rho (ρ) statistic (Mohn, 

1999), using the formulation defined by Hurtado-Ferro et al. (2014). In this analysis, the 

more the values diverge from zero the stronger there is the presence of a retrospective 

bias. In general, values that fall between -0.15 and 0.2 are widely deemed as having an 

acceptable retrospective bias (Huerto et al., 2014). 

The analysis included several sensitivity model runs, namely based on the following 

scenarios: 1) a catch only model without using information from the CPUE time series; 

2) leave-one-out CPUE analysis where each CPUE was dropped at a time starting either 

with the full model using all available CPUEs or the base case model grid; 3) sensitivity 

analysis to the sigma of the process error (fixed at 5% and 10%) and inclusion of 

additional CPUE variance and; 4) a sensitivity analysis using the estimated catch time 

series. For the catch-only model, a prior was used for the terminal year depletion (B/K), 

set according to the values proposed by Kell et al. (2022), which are based on the ratio of 

the last year catches compared to the maximum catches over the time series.  

For the sensitivity analysis, the base model Grid.02 was used, as this model uses a 

medium prior for r, and uses the Schaefer model that falls in the middle of the production 

curve from the 2 alternative Pella-Tomlinson models used, so it can be considered as a 

more central model from the base case grid of models. 

 

2.5. Projections 

The projections were conducted for the ensemble base case grid of models, with fixed 

catches ranging from 0% to 100% relative to current catches, with 10% increments. The 

current catches were defined as the average from the last 3 years of data (2020-2022). A 

3-year lag in implementation was considered, given that the last year of data in the model 

is 2022, and the 1st year when a TAC can be implemented is 2026. This takes in 

consideration that the IOTC SC can adopt the management advice in 2024, and that the 

IOTC Commission can adopt the TACs in 2025 for implementation from 2026 onwards. 
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The projections were carried out for a period of 30 years given the long-life expectancy 

and low population growth dynamics of the shortfin mako sharks, and summarize the 

projected trajectories of B/Bmsy and F/Fmsy over time. 

 

3. Results and Discussion 

3.1. IOTC nominal catches and catch reconstructions 

The time series of the IOTC reported catches versus the estimations using the ratio-based 

method are shown in Figure 2. 

The two series have some differences in terms of absolute scale of values, but also in the 

shape of the historical catches. The nominal series peaks in 2014 at 5,359.7 t, while in 

that same year the estimated maximum potential catch is almost double, at 10,107.7 t. 

The main difference between the series is then in the trends for the subsequent years, 

when there is a decrease in the nominal IOTC catch series, while the estimated catches 

continue to increase until 2022. In the last terminal years, the differences are quite 

significant, namely 2,695.4 t for the IOTC reported catches versus 12,568.6 t for the ratio-

based estimations. 

One important note and assumption on the estimated SMA catches is that the 

fleets/métiers are identified based on catches of the main tuna and tuna-like species as 

reported to IOTC. Such data is based on the national reports from the national fisheries 

agencies, and can have significant limitations due to data collection, reporting efficiency 

and problems related with species identification. As such, those estimates are also 

affected by possible under- or non-reporting of the main targeted tuna and tuna like 

species by each country. 

By the contrary, and especially for the more recent period, there is a possibility for a 

decrease in SMA catches, as seen in the official nominal IOTC data, due to recent 

restrictions that have been imposed by CITES and some national regulations. Given that 

the estimation method is based in the tuna and tuna-like main species (which excludes 

sharks), and as those main species are not in general subject to those specific shark 

regulations, for this more recent period there is the possibility that the shark catches of 

species like the shortfin mako using such ratios will be over-estimated. 

It is therefore noted that this ratio-based method might no longer be fully applicable since 

the restrictions in shark catches and landings started to take place, and as such those 

estimations should be seen and handled with care. As such, those estimated catches were 

used mostly as a sensitivity analysis in the assessment. 
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Figure 2: Time series of the SMA nominal catch data, both reported to IOTC and 

estimated using the methods described in Murua et al. (2013) and Coelho et al. (2019). 

 

3.2. Life history and demographic analysis 

The outputs from estimated intrinsic population growth rates (r) in each of the scenarios 

considered is summarized in Figure 3. The different scenarios reflect the variability 

associated with the different options for life history traits, as well as the uncertainty 

around both the fertility and age-specific survivorship, in this case derived from the 

natural mortality estimated from empirical equations. It is noted the two most contrasting 

scenarios, namely scenarios 1 and 4, with scenario 1 using slower growth rates from the 

VBGF (k) and a longer 3-year reproductive cycle, while scenario 4 uses a faster growth 

rate from the VBGF (k) and a shorter 2-year reproductive cycle. The scenarios 2 and 3 

use a combination of both and fall in the middle of those. 

It is important to emphasize that the estimated values for r range from point estimates of 

0.031 to 0.085, which in all cases still represents very slow population growth rates, which 

seem fully aligned with the known life history traits of Lamniform sharks such as the 

shortfin mako. As a comparison, for the Atlantic (ICCAT) shortfin mako, Cortés (2017) 

obtained values of r ranging between 0.031-0.060 for the North Atlantic and between 

0.066-0.123 for the South Atlantic, which are relatively similar and in line with those 

obtained here. In another work based on a global analysis, Yokoi et al. (2017) estimated 

a median r for the shortfin mako shark of 0.102, varying between 0.007 and 0.318. The 

median estimate of Yokoi et al (2017) is higher than our scenarios, but the ranges they 

produce include all our point estimates from our various scenarios.  
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For the South Pacific, (Huynh et al., 2022) estimated λ values between 1.098 and 1.063 

year-1, considering either 2- or 3-year reproductive cycles, and using stage-based rather 

than age-based matrices. Our results include those values but have a wider dispersion, 

with the λ ranging between 1.021 and 1.107 year-1 (95% CIs limits of the distribution 

obtained from the 4 scenarios). In another analysis Tsai (2015) tested the influence of 

various assumption regarding the use of one vs two sex models, and provided λ estimates 

between 1.010 and 1.075, with an estimate of 1.047 year-1 for the model using females 

only, values which again fall within the range of estimates from our analysis. 

Additionally, we also calculated steepness (h), which resulted in values ranging between 

0.250 and 0.531 (95% CIs limits of the distribution obtained from the 4 scenarios). These 

values are again in line with the estimations of Cortes (2017) for the Atlantic, especially 

in the case of the North Atlantic where the h values ranged between 0.34 and 0.52, while 

for the South Atlantic ranged between 0.44 and 0.72. 

 

 

Figure 3: Distribution of r (intrinsic population growth rate) for the various scenarios 

based on the life history information for the shortfin mako shark, used in the 2024 IOTC 

stock assessment. 

 

3.3. Stock assessment results 

The stock assessment main results from the base case grid models, are summarized in 

Table 4. 
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The medians of the estimations of K, given by the marginal of the posterior distribution, 

ranged between 95,294.2 and 153,825.7 t. The values estimated for the posterior to prior 

median (PPMR) and variance (PPVR) ratios indicate that the K parameter has been 

informed by the data for all base case grid scenarios. 

With regards to r, the medians of the marginal posteriors ranged between 0.032 and 0.089, 

with the values of PPMR and PPVR showing that the estimations were largely influenced 

by using informative priors for this parameter, as was expected. The initial depletion (psi) 

marginal posteriors for each scenario were also largely informed by the prior distribution 

relative to this ratio. 

The range of MSY median estimates were relatively wide between the various grid 

models, ranging from 1,062.4 and 2,949.6 t, and had a median value of 1,873.1 t. The 

values of the absolute Bmsy ranged between 37,075.5 and 83,148.0 t, while the values of 

absolute Fmsy had a relatively narrow range with low values, between 0.013 and 0.079, 

as is expected for a species with a very low productivity as the shortfin mako shark. 
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Table 4: Summary of parameter estimates given by their posterior distributions, for the 

2024 IOTC SMA stock assessment models. The quantiles presented represent the median 

for each parameter in each of the base case grid models, and the associated lower (LCI) 

and upper (UCI) bounds of the 95% credible intervals. 

 

 

3.4. Model validation 

The MCMC convergence tests by Heidelberger and Welch (1992) and Geweke (1992) all 

passed with regards to the MCMC estimation of the parameters for all models. An 

adequate convergence of the MCMC chains was also corroborated visually by checking 

the trace plots, which showed good mixing and random deviations around the parameters 
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space, without any detectable bias or patterns that could result from autocorrelations in 

the estimations. 

The fits of the base case grid models to each of the 3 standardized CPUE indices used for 

those final models are shown in Figure 4. The goodness-of-fit of those residuals were 

similar between all base case grid models used, with the RMSE statistic ranging between 

45.7% and 47.3% (Figure 5). 

The runs test for those CPUE residuals from each of the grid models are provided in 

Figure 6. Only one CPUE series passed the runs tests for all models, namely the historical 

USSR series. The Japanese series passed in some of the grid models and failed in others, 

while the Spanish CPUE showed patterns of non-randomness in the residuals. 

Additionally, some outliers were also identified in the residuals, defined as points outside 

a 3-fold limit around the overall residuals means (Anhøj and Olesen, 2014). 

The deviations from the process error show similar patterns for all base case grid models, 

with the deviates centered around zero and with the 95% credibility intervals always 

including the zero value during the entire time series (Figure 7). This suggests that there 

is no major evidence of structural model misspecifications. 

The results of the retrospective analysis applied to all the base case grid models are shown 

in Figure 8, and the corresponding summaries of the estimations of the Mohn’s rho are 

summarized in Table 5. All base case grid models fell within the acceptable range of -

0.15 to 0.20, as defined by Hurtado-Ferro et al. (2014) and Carvalho et al. (2017), relative 

to all parameters from the various stock quantities. This analysis confirms that, in general, 

there are no major retrospective patterns in the models. 

The hindcast cross-validation procedure was conducted mostly for the index where data 

for the last years was available, namely for Spain. The results show that the predictions 

when 1-year at a time for the last 4-years, all fall within the limits of the 95% CIs (Figure 

9). Nonetheless, the mean absolute scaled error (MASE) estimates were above the 

reference level (MASE > 1), indicating that the average forecasts for this index have poor 

predictive skills (Carvalho et al., 2021) and there was a pattern for the predictions to be 

always under the observed values as the various consecutive years were removed. 

On the other hand, hindcast cross-validation was also conducted for the index from Japan, 

but in that case with models terminating in 2018, as that was the last year when the index 

is available (Figure 10). In this case the results also show that the predictions fall inside 

the limits of the 95% CIs, and the estimates are within the reference level (MASE < 1), 

indicating that the average forecasts for this index have good predictive skills. 
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Figure 4: Time series of observed (circles) and predicted (solid line) CPUEs for the IOTC 

SMA stock assessment models, for each base case grid model. The dark shaded areas 

represent the 95% credibility intervals of the expected mean CPUE, and the light shaded 

areas represent the 95% posterior predictive distribution intervals. The error bars are the 

95% confidence intervals (CIs) from the CPUE observations. 
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Figure 5: Residuals diagnostic plots for the base case grid models run for the 2024 IOTC 

SMA stock assessment. Each individual CPUE index and its respective residuals are 

represented by a different color. The solid black lines represent loess smoothers through 

all residuals combined. 
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Figure 6: Runs tests for the CPUE index for all the base case grid models, used for the 

2024 IOTC SMA stock assessment. 
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Figure 7: Process error deviates for the base case grid models for the 2024 IOTC SMA 

stock assessment. The solid line represents the median, and the shaded gray area the 95% 

credibility intervals. 
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Figure 8: Retrospective analysis conducted for all base case grid models for the 2024 

IOTC SMA stock assessment, by removing 1-year at a time sequentially (n=4) and 

predicting the trends in biomass and fishing mortality relative to MSY (i.e, B/Bmsy and 

F/Fmsy). 
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Table 5: Summary of the Mohn’s rho statistic computed from the retrospective analysis 

pattern evaluated for the base case Grid models. Values that fall between -0.15 and 0.2 

are considered as having an acceptable retrospective bias (Huerto et al., 2014), and are 

highlighted in green in this table. 

 

 

 

Figure 9. Hindcasting cross-validation results for the index available in the last years of 

the model (Spain), run for all base case grid models in the 2024 SMA IOTC stock 

assessment. The plots show 1-year-ahead forecasts of CPUE values (2019-2022) when 

the last years are removed one at a time, relative to the observed CPUE using all data. 
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The CPUE observations, used for cross-validation are highlighted as the color-coded solid 

circles with associated light-grey shaded 95% confidence interval. 

 

 

Figure 10. Hindcasting cross-validation results for the index from Japan, with models 

terminating in 2018, the last year when that index is available. The plots show 1-year-

ahead forecasts of CPUE values (2015-2018) when the last years are removed one at a 

time, relative to the observed CPUE using all data. The CPUE observations, used for 

cross-validation are highlighted as the color-coded solid circles with associated light-grey 

shaded 95% confidence interval. 

 

3.5. Sensitivity analysis 

3.5.1. Catch only model 

The results of the sensitivity analysis conducted for a model with catch only information 

is shown in Figure 11. It is noted a very distinct behavior when the CPUE data is entirely 

excluded, and the results are mostly informed by the biological prior information, the 

priors set for initial and final depletion, and the history and trends from the times series 

of the catches. In general, the biomass trends using only the catch information start to 
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decline by around 2000, and continue to continuously decline over the time series. This 

results in a very pessimistic final scenario, where the stock would be much more depleted. 

 

Figure 11: Sensitivity analysis relative to a catch only model for the 2024 IOTC SMA 

stock assessment. The analysis was carried out in relation to the base case grid model 02. 

The sensitivities are shown relative to the variations in the time series of biomass, fishing 

mortality, biomass relative to BMSY, fishing mortality relative to FMSY, depletion 

(B/B0) and form of the surplus production function. 

 

3.5.2. Leave-one-out CPUE 

A second sensitivity analysis was conducted with leave-one-out CPUE scenarios, where 

each model was run excluding one CPUE series at each time, either starting with the full 

model using all CPUEs or the base case model. The main results are represented in 

Figures 12 and 13. 

In the case of starting with the full model, it is noted that the CPUE series that has the 

largest effect in biomass and fishing mortality is the CPUE series from Japan. Without 

this series there is very little data from the period where the catches and fishing mortality 

started to increase in the middle period of the fishery, and therefore the biomass cannot 
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get information on the trends for that period. As for the remaining CPUE series, all have 

some effects especially in the middle period of the fishery, but with lower effects than 

seen with the Japanese series, and all provide similar results in the terminal year, 

especially with regards to F/Fmsy. 

With regards to the sensitivities carried out in the base case models for the CPUE series 

(Figure 12), it is noticeable especially the importance of the Japanese series to inform the 

stock trends over the middle period, and the Spanish trends over the more recent period. 

If any of those series are removed from the base case models, the stock trajectories and 

end results would be very different. The USSR series is more important in the initial 

fishery period, but is much less influential in the end results with regards to the current 

stock status. 

 

Figure 12: Sensitivity analysis relative to the leave-one-out CPUE series, performed for 

the 2024 IOTC SMA stock assessment. The analysis was carried out in relation to the 

configurations of the base case grid model 02, but using a full model using all CPUEs. 

The sensitivities are shown relative to the variations in the time series of biomass, fishing 

mortality, biomass relative to BMSY, fishing mortality relative to FMSY, depletion 

(B/B0) and form of the surplus production function. 
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Figure 13: Sensitivity analysis relative to the leave-one-out CPUE series, performed for 

the 2024 IOTC SMA stock assessment. The analysis was carried out in relation to the 

configurations of the base case grid model 02, using only the CPUEs from the base case 

models. The sensitivities are shown relative to the variations in the time series of biomass, 

fishing mortality, biomass relative to BMSY, fishing mortality relative to FMSY, 

depletion (B/B0) and form of the surplus production function 

 

3.5.4. Process error and CPUE variance 

Additional sensitivity analyses were carried out with regards to the process error and 

additional estimation of CPUEs variance. In the base case model the process error is 

estimated within the models with uninformative igamma priors, and the option to allow 

for additional CPUEs variance internally in JABBA is also allowed. 

Sensitivities were run for options on fixing the sigma of the process error to CVs of 5% 

and 10%, and another to turn off the additional inclusion of CPUE variance. The results 

of this analysis are presented in Figure 14. 

By fixing the process error to lower values the trajectories are much more stable and will 

result in less pessimistic stock status for the terminal year. The main caveat with this 
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option is related to the model validation procedures, as using such configuration results 

in worse model fit, with poorer fits to the CPUEs and worse performance in terms of 

retrospective analysis. In general, it is preferable to allow the process error to be estimated 

internally by the models, as that will optimize the posterior of the process error based on 

the rest of the data that is providing information to the models. 

With regards to the additional CPUE variance, when that option is disabled, there are also 

very significant differences with the base case model, as the trajectories are forced to 

track the CPUEs much more closely. The biomass remains at similar levels in the initial 

period but with much more variability, and then drops considerably more when the fishing 

mortality increases around the years 2000’s. The stock status at the end period is much 

more pessimistic, with much lower B/Bmsy and higher F/Fmsy than the base case models. 

 

Figure 14: Sensitivity analysis relative to various options for the sigma of the process 

error (“BASE” = using an igamma vaguely informative prior; “proc.error” = fixing at 5%; 

“proc.error2” = fixing at 10%) and estimation of additional CPUE variance in the models, 

performed for the 2024 IOTC SMA stock assessment. The analysis was carried out in 

relation to the base case grid model 02. The sensitivities are shown relative to the 

variations in the time series of biomass, fishing mortality, biomass relative to BMSY, 

fishing mortality relative to FMSY, depletion (B/B0) and form of the surplus production 

function. 
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3.5.4. Using estimated catches 

A final sensitivity analysis was conducted for using the estimated instead of reported 

catches, as reported in this paper. The main results of this analysis are represented in 

Figure 15. 

In this case, the estimated catch series are at levels higher than the reported catch, and 

therefore there is a direct effect in terms of total stock biomass and overall MSY 

estimates. Also, given that the estimated catches continue to increase along the entire time 

series while in the reported catches there is a decrease in the more recent years, the fishing 

mortality for this alternative catch history also continues to increase and the end status 

for the relative biomass and fishing mortality is also much worse than in the base case 

models. Nonetheless, the depletion level and relative biomass at the end of the time series 

is similar to the base case model using reported catches. 

 

Figure 15: Sensitivity analysis relative to the catches using the ratio-based method, 

performed for the 2024 IOTC SMA stock assessment. The analysis was carried out in 

relation to the base case grid model 02. The sensitivities are shown relative to the 

variations in the time series of biomass, fishing mortality, biomass relative to BMSY, 
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fishing mortality relative to FMSY, depletion (B/B0) and form of the surplus production 

function. 

 

3.6. Stock Status 

The base case grid model trajectories of both biomass and fishing mortality in relation to 

MSY reference points are indicated in Figure 16. In general, it is noted that most of the 

grid models used have a current (2022) Fishing Mortality that is higher than Fmsy, with 

those values having a median value of 1.65, and ranging from 0.79 to 3.44. On the other 

hand, the status relative to biomass is more variable and dependent on specific models, 

with some grid models showing current (2022) biomass below Bmsy and others showing 

that current biomass is still above Bmsy. Specifically, the B/Bmsy of the base case grid 

had a median value of 0.96, ranging from 0.76 to 1.20. Those main trajectories of interest 

from the base case grid model in relation to absolute and relative biomass and fishing 

mortality are represented jointly in the plots in Figure 17. 

The Kobe phase plots represented in Figure 18 summarize those trends in the trajectories, 

with most of the models being either in the red or orange quadrants of the Kobe space, 

denoting therefore the current fishing mortality levels tend to be higher than those that 

support MSY, and that in most cases biomass is below Bmsy levels. 

 



IOTC–2024–WPEB20(AS)–10 

31 

 

Figure 16: Trends of relative Biomass and Fishing Mortality in relation to MSY (Bmsy 

and Fmsy, respectively) for the base case grid models run for the 2024 IOTC SMA stock 

assessment. Plots from the Process Deviations and catches are also represented. 
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Figure 17: Trends of the joint trajectories of absolute and relative Biomass and Fishing 

Mortality (in relation to Bmsy and Fmsy, respectively) built from the base case grid 

models run for the 2024 IOTC SMA stock assessment. Plots from the Process Deviations 

and catches are also represented. All base case grid models are joint and plotted in a single 

line, with the respective 95%CIs. 
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Figure 18: Kobe phase plot with the estimated trajectories (1967-2022) of B/Bmsy and 

F/Fmsy for the 2024 IOTC SMA stock assessment base case grid models. The different 

gray shaded areas denote the 50%, 80%, and 95% credibility intervals for the terminal 

year of the assessment data (2022). The probability of the terminal year stock status 

falling within each quadrant of the Kobe phase plot is indicated in the figure legend, for 

each of the grid models. 

 

The overall and combined summaries of the main quantities of interest for the stock status 

from the ensemble grid models is presented in Table 5. The Kobe plot with the final year 

(2022) distribution of B/Bmsy and F/Fmsy for each of the grid models is represented in 

Figure 19. The combined Kobe plot for all base case grid models ensemble is represented 

in Figure 20. The probabilities of the stock in the final year (2022) being in each quadrant 

of the Kobe plot are represented in Figure 21. 

The point estimates from the grid of stock assessment models shows that in 2022 the 

shortfin mako shark in the Indian Ocean was overfished (median B2022/Bmsy = 0.96, 

ranging between 0.79-1.20) and is undergoing overfishing (median F2022/Fmsy = 1.65, 

ranging between 0.79-3.44) (Table 5). The average MSY was estimated at 1,873.1 t, 

ranging between 1062.4 t and 2,949.6 t. 
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Considering the uncertainties explored, the probabilities (in percentage) of the stock being 

in each quadrant of the Kobe plot are 49.7% in the red (overfished and subject to 

overfishing), 24.0% in the orange (not overfished but subject to overfishing), 22.2% in 

the green (not overfished and not subject to overfishing) and 4.1% in the yellow 

(overfished but not subject to overfishing). 

 

Table 5: Estimates (median, minimum and maximum) of the point estimates for Bmsy, 

Fmsy, MSY, B/Bmsy and F/Fmsy, from the 9 base case grid models used for the 2024 

IOTC SMA stock assessment. 

 

 

 

Figure 19: Kobe plot for the terminal year (2022) with the median point from the 9 base 

case grid models, used in the ensemble model grid approach for determining the stock 

status in the 2024 IOTC SMA stock assessment. 
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Figure 20: Kobe plot for the terminal year (2022) for all base case grid models combined, 

used for determining the stock status in the 2024 IOTC SMA stock assessment. The 

contour lines represent the 0.5, 0.8 and 0.9 quantiles of the distribution of the data. 

 

Figure 21: Probabilities (in percentage) of the IOTC shortfin mako shark stock being in 

each quadrant of the Kobe plot, from the combined base case model grid used. 
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3.7. Projections 

The results for the stochastic projections from the 9 grid models ensemble in JABBA are 

represented in Figure 22. The main point to note is that current catches and respective 

fishing mortality are higher than Fmsy, while biomass is slightly below Bmsy and 

therefore there is a need to reduce catches or otherwise the biomass will continue to 

decline continuously. 

The probabilities of violating the MSY-reference levels over 3, 10, 20 and 30-year 

periods, and considering various levels of future catches (TACs, established as 

percentages of current catches), are represented in Table 6. 

A reduction of future catches to 40% of current catches, which would represent a constant 

annual catch (TAC) of 1,217.2 t per year, will have less than 50% probability of violating 

both MSY-reference points, i.e., to return the stock to the green quadrant of the Kobe plot 

in the next 10 years. Under such TAC (1,217.2 t), such probability of violating both MSY- 

reference points would be below 50% in 10 years, and would continue to decline over 

time, reaching values closer to 40% of violaging B/Bmsy, and 30% of violating  F/Fmsy 

in a 30 year period. 
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Figure 22: Joint trajectories and stochastic projections of B/Bmsy and F/Fmsy from the 

joint 9 base case grid model ensemble for the 2024 IOTC SMA stock assessment. The 

projections were run for a period of 30 years, with TACs (constant catches) ranging from 

0% to 100% of current catches, with 10% increments. Current catches are defined as the 

average catches from the last 3-years (2020-2022: 3,042.9 t). Each line represents the 

median projections for B/Bmsy and F/Fmsy for each maximum catch (TAC) scenario. 

Note: these plots do not contain the respective CIs for simplification of the visualization. 
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Table 6: Shortfin mako aggregated IOTC Kobe II Strategy Matrix. The table shows the 

probabilities (in percentage) of violating the MSY-based reference points over the next 

3, 10, 20 and 30 year periods. The projections are calculated for constant catches (0% to 

100% of current catches, with 10% intervals) using the 9 base case model grid ensemble. 

The current catches are defined as the average of the last 3 years (average catch 2020-

2022: 3042.9 t). 

 

 

4. Conclusions (draft recommendation for management advice) 

A Bayesian production model (JABBA) ensemble grid approach was used for 

determining the stock status and providing management advice for the Indian Ocean 

(IOTC) shortfin mako shark. 

The models show that in 2022 the shortfin mako shark was overfished (median 

B2022/Bmsy = 0.96) and is undergoing overfishing (median F2022/Fmsy = 1.65), with 

an overall 49.7% probability. 

Current catches (3042.9 t, average of 2020-2022) are too high to sustain the shortfin mako 

shark population above the MSY-reference levels over time. Such fishing mortality levels 

are currently higher than Fmsy, and will lead biomass to continue to decline to values 

further below Bmsy. In order to maintain the population above MSY-reference levels in 

the next 10-year period with at least a 50% probability, future catches (TACs) of the 

shortfin mako shark in IOTC should be no more than 1,217.2 t per year, which represents 

40% of the current catches. 
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