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ABSTRACT 

 

    This study aggregated and analyzed catch, effort and length data of striped 

marlin caught by Taiwanese large longline fisheries in the Indian Ocean and 

conducted CPUE standardization for striped marlin for 2005-2023. This paper briefly 

describes historical patterns of fishing operations and striped marlin catches caught by 

Taiwanese large-scale longline fishery in the Indian Ocean. The groups of data sets 

derived from cluster analysis based on species compositions were incorporated in the 

CPUE standardization models as a covariate for explaining the target to obtain the 

relative abundance indices for further stock assessments. Except for the delta-

lognormal models, the standardized CPUE series obtained from different model 

assumptions revealed similar trends. The Standardized CPUE indices obtained from 

the delta-inverse Gaussian models should be more appropriate than other models 

based on statistical diagnostics. The CPUE series in both NW and NE areas generally 

increased from 2009 to 2013 and then decreased after 2013. 

 

 

1. INTRODUCTION 

 

Striped marlin is largely considered to be the bycatch species of industrial 

fisheries. Most of the striped marlin were caught by the longline fishery before the 

mid-1990s. After that, gillnet catches gradually increased while longline catches 

gradually decreased. In recent years, the proportion of gillnet catches has surpassed 

that of the longline fishery. Gillnets account for around 50% of total catches in the 

Indian Ocean between 2014 and 2018, followed by longlines (40%). The remaining 

catches are mostly recorded under troll and handlines. The catch trends of striped 

marlin in the Indian Ocean varied, ranging from 2,000 t to 8,000 t per year. In 

particular, catches reported under longlines highly varied, with lower catch levels 
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between 2009 and 2011 largely due to declining catches reported by Taiwan. In 2021, 

the lowest catch reached 2,600 tons. (IOTC, 2023). 

   The striped marlin were mainly caught by Taiwan and Japan. Before the 1970s, 

Japan was the main country for the striped marlin. Thereafter, Taiwan catches increased 

significantly and became the most important country for striped marlin in the Indian 

Ocean. In recent years, catches of striped marlin have increased by Indonesian fisheries 

and small-scale longline fisheries, which occupied a very important proportion. The 

distribution of striped marlin catches has changed since the 1980s with most of the 

catches now taken in the north-west Indian Ocean. In recent years, the catches of striped 

marlin caught by Taiwan and Japan revealed a decreasing trend, and the reason is still 

unclear. However, changes in fishing grounds and catches are thought to be related to 

changes in access agreements to the EEZs of coastal countries in the Indian Ocean 

instead of changes in the distribution of the species over time. in recent years, catches 

of striped marlin from the coastal gillnet fisheries of I.R. Iran and Pakistan have steadily 

increased to an average of 1,600 t annually and contribute around 66% of the total 

catches of striped marlin in 2021 (IOTC, 2023). 

Since the current stock status of striped marlin was pessimistic (IOTC, 2021), this 

study conducted CPUE standardization for striped marlin in the Indian Ocean to provide 

relative abundance indices for further stock assessments. 

 

 

2. MATERIALS AND METHODS 

 

2.1. Catch and Effort data 

In this study, daily operational catch and effort data (logbook) with 5x5 degree 

longitude and latitude grid for Taiwanese longline fishery during 1979-2023 were 

provided by Overseas Fisheries Development Council of Taiwan (OFDC). For the area 

stratification, this study adopted the four areas stratification for swordfish by Wang and 

Nishida (2011) (Fig. 1). For conducting the cluster analysis prior to the CPUE 

standardizations, the data were aggregated by 10-days duration (1st-10th, 11th-20th, 

and 21st~ for each month) (Kitakado et al., 2021). 

As the discussions and suggestions from previous IOTC meetings (2021a; 

2021b), Taiwanese data before 2005 were recommended not to be used to analyze the 

targeting of fishing operations and conduct the CPUE standardization for tropical tuna 

due to the problem of data quality. However, the data problem might not only 

influence the misreport for the catches of major tropical tunas but also lead to 

uncertainties in the catch and effort data for other species. Therefore, CPUE 

standardizations were conducted using the data from 2005 to 2023 as suggested in 
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previous meetings. 

 

2.2. Cluster analysis 

The details of the procedures of cluster analysis were described by Wang et al. 

(2021). This study adopted a direct hierarchical clustering with an agglomerative 

algorithm, which brings a fast and efficient implementation through features of 

memory-saving routines in the hierarchical clustering of vector data (Müllner, 2013). 

The trials were conducted using R function “hculst.vector” of package “fastcluster” 

(Müllner 2021) with Ward's minimum variance linkage methods (“ward.D” for the 

argument “method” in “hclust.vector” of R function) applied to the squared Euclidean 

distances between data points calculated based on the species composition. 

The number of clusters was selected based on the elbow method, i.e. the change 

in deviance between/within clusters against different numbers of clusters. The number 

of clusters was determined when the improvement in the sum of within-cluster 

variations was less than 10%. 

 

2.3. CPUE Standardization 

A large amount of zero-catches was recorded in the operational catch and effort 

data sets because striped marlin was caught as the bycatch species of Taiwanese 

longline fishery in the Indian Ocean. Historically, ignoring zero observations or 

replacing them with a constant was the most common approach. An alternative and 

popular way to deal with zeros was through the delta approach (Hinton and Maunder, 

2004; Maunder and Punt, 2004). IOTC (2016) also noted the use of the delta approach 

to accommodate the high proportion of zero catches. Therefore, the delta-general 

linear models with different assumptions of error distribution were applied to conduct 

the CPUE standardization of striped marlin in the Indian Ocean (Pennington, 1983; 

Lo et. al., 1992; Pennington, 1996; Andrade, 2008; Lauretta et al., 2016; Langley, 

2019).  

As the approach of Wang (2018), the models were simply conducted with the main 

effects of year, quarter, longitude, latitude and fishing targeting (clusters), while 

interactions between main effects were not incorporated into the models. The models 

for positive catches and delta model were conducted as follows:  

 

For CPUE of positive catches: 

(log( )) posCatch Y Q CT G T offset Hooks = + + + + + + +  

For delta model: 

delPA Y Q CT G T = + + + + + +  
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where Catch is the catch in number/1,000 hooks 

 PA is the presence/absence of catch,  

 Hooks is the effort of 1,000 hooks, 

 μ is the intercept, 

 Y is the effect of year, 

 Q is the effect of quarter, 

 CT is the effect of vessel scale, 

 G is the spatial effect of Lon and Lat 5x5 grid, 

 T is the effect of targeting (cluster), 

 εpos is the error term assumed based on various distribution, 

 εdel is the error term, εdel ~ Binomial distribution. 

 

To examine the appropriateness of the assumption of error distribution, this study 

applied normal, gamma, binomial and inverse.gaussian distributions to the error 

distribution of the model for the positive catches and specified “log” for the model link 

function. For the model with inverse.gaussian distribution, the index of power variance 

function was tested using values of 1.1-1.9.  

The stepwise searches (“both” direction, i.e. “backward” and “forward”) based on 

the values of the Akaike information criterion (AIC) were performed to select the 

explanatory variables for each model. Then, the coefficient of determination (R2), and 

Bayesian information criterion (BIC) were calculated for the models with selected 

explanatory variables. The AIC and BIC, which were calculated based on the 

likelihoods with full constants obtained glm() and glm.nb(), were used to compare the 

models with different error distributions (e.g. Setyadji et al., 2019). In addition, the 

dispersion statistics for Pearson residuals were calculated to check whether under- or 

overdispersions resulted from the models with an assumed error distribution. 

The standardized CPUE indices were calculated based on the estimates of the least 

square means of the interaction between the effects of year and area, and calculated by 

the product of the standardized CPUE of positive catches and the delta model: 

log( )

1

PA

index CPUE

PA

e
DL e

e

 
=  

+ 
 

where DLindex is the standardized CPUE 

 

 

3. RESULTS AND DISCUSSION 
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3.1. Historical fishing trends 

Fig. 2 and Fig. 3 show the striped marlin catch in numbers and nominal CPUE 

distribution based on the logbook data of Taiwanese large-scale longline fishery in the 

Indian Ocean aggregated by 5 years. Striped marlin were mainly caught in tropical and 

coastal waters of the northern Indian Ocean. Although the amount of fish caught in the 

southern Indian Ocean increased significantly from 2005 to 2023 due to the increase in 

effort, the distribution of high CPUE over the years was still limited to the coastal 

waters of the northern Indian Ocean. 

Striped marlin catches were mainly made with high effort in northern waters, 

especially for the northwestern fishing area (NW). Although the catches in the 

northwestern Indian Ocean increased significantly around 2005, the catches 

substantially decreased in the following years (Fig. 4 and Fig. 5). 

 

3.2. Cluster analysis 

CPUE standardizations were separately performed for only northern areas (Fig. 

1) since the catches and CPUE of striped marlin in the southern areas were 

substantially lower than those in the northern areas, especially for recent decades 

(Figs. 2 and 3). 

    Based on the results from the elbow method, 4 clusters were selected for Areas 

NW, SW and SE, while 3 clusters were selected for Area SW (Figs. 6 and 7). For each 

area, the species compositions revealed different patterns by clusters (Fig. 8).  

Fig. 9 shows the striped marlin catches and efforts by clusters and areas and 

striped marlin catches were contained in different clusters in different periods when 

different levels of efforts were deployed. Therefore, the data of all clusters were used 

to conduct further CPUE standardizations. The annual trends of the proportions of 

zero catches of striped marlin roughly stayed the same over the years for NE, , while 

the NW area showed significant variations. (Fig. 10).  

 

3.3. CPUE standardization 

 

    Based on the AIC model selections for the models for positive catches and delta 

models, all of the effects were statistically significant and remained in the models for 

all areas. For the models for positive catches, the models with inverse Gaussian error 

distribution would be the optimal models for all areas based on the values of AIC, 

BIC and R2 (Table 1). In addition, diagnostic plots for residuals also indicated that the 

models with inverse Gaussian error distribution (Fig. 11) should be more appropriate 

than other models because there were less increasing or decreasing trends in the range 

of predicted values (plots for other models by areas were not shown here but the 
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residuals revealed obvious patterns with predicted values). Therefore, the delta-

inverse Gaussian models were selected to produce the standardized CPUE series.  

The ANOVA tables for selected models are shown in Table 2. Except for the 

impact of the effect of Y, the effects of G (Lat and Lon) were the most significant 

variable for both positive catches and delta models in NW and NE areas.  

    The area-specific standardized CPUE series are shown in Fig. 12 and the CPUE 

series revealed similar trends for all models. The standardized CPUE of positive 

catches and catch probability obtained from the selected model are shown in Fig. 13 

and CPUE of positive catches and catch probability revealed similar trends. 

The standardized CPUE series with 95% confidence intervals obtained from the 

selected model are shown in Fig. 14. The CPUE series in both NW and NE areas 

generally increased from 2009 to 2013 and then decreased after 2013. 
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 REVIEW OF THE STATISTICAL DATA AVAILABLE FOR INDIAN OCEAN 

STRIPED MARLIN (1950-2021) 
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Fig. 1. Area stratification for billfishes in the Indian Ocean. 
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Fig. 2. Striped marlin catch distribution of Taiwanese large-scale longline fishery in 

the Indian Ocean. 
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Fig. 3. Striped marlin CPUE distribution of Taiwanese large-scale longline fishery in 

the Indian Ocean. 
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Fig. 4. Annual striped marlin catches of Taiwanese large-scale longline fishery in the 

Indian Ocean. 

 

  



IOTC–2024–WPB22–17_Rev2 

Page 12 of 28  

 

 

Fig. 5. Annual efforts (number of hooks) of Taiwanese large-scale longline fishery in 

the Indian Ocean. 
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Area NW 

  

 

Area NE 

  

Fig. 6. Sum of squares within clusters for the data of Taiwanese large-scale longline 

fishery in billfish area of the Indian Ocean. 
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Area NW Area NE 

  

Fig. 7. Multivariate dispersions of the centroids by clusters derived from PCA for the 

data of Taiwanese large-scale longline fishery in billfish area of the Indian Ocean. 
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Area NW 

 

Fig. 8. Annual catches and compositions by species for each cluster of Taiwanese 

large-scale longline fishery in billfish area of the Indian Ocean. 
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Area NE 

 

Fig. 8. (continued).  
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Area NW 

 

Fig. 9. Annual striped marlin catches and efforts for each cluster of Taiwanese large-

scale longline fishery in billfish area of the Indian Ocean. 
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Area NE 

 

Fig. 9. (continued). 
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Area NW 

 

Area NE 

 

Fig. 10. Annual zero proportion of striped marlin catches for each cluster of 

Taiwanese  
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large-scale longline fishery in billfish area of the Indian Ocean.  
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Area NW 

 

Fig. 11. Diagnostic plots for GLMs with inverse Gaussian error distribution 

assumption for striped marlin caught by Taiwanese large-scale longline fishery in the 

Indian Ocean from 2005 to 2023. 
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Area NE 

 

Fig. 11. (continued).  
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Fig. 12. Standardized CPUE series based on various GLMs for striped marlin caught 

by Taiwanese large-scale longline fishery in the Indian Ocean from 2005 to 2023. 
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Fig. 13. Standardized CPUE of positive catches and catch probability based on 

selected model for striped marlin caught by Taiwanese large-scale longline fishery in 

the Indian Ocean from 2005 to 2023. 
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Fig. 14. Standardized CPUE series with 95% confidence intervals based on selected 

model for striped marlin caught by Taiwanese large-scale longline fishery in the 

Indian Ocean from 2005 to 2023. 
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Table 1. Diagnostic statistics for standardized CPUE series based on various models 

for positive catches of striped marlin caught by Taiwanese large-scale longline fishery 

in the Indian Ocean from 2005 to 2023. 

 

Area Model R2 AIC BIC 

NW 

lognormal 0.152  962,520   963,479  

Gamma 0.273  493,177   494,139  

inverse Gaussian 0.291  369,212   370,174  

NE 

lognormal 0.036  185,359   186,191  

Gamma 0.077  82,470   83,302  

inverse Gaussian 0.091  53,443   54,275  
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Table 2. ANOVA table for selected standardized CPUE series based on selected 

GLMs for striped marlin caught by Taiwanese large-scale longline fishery in the 

Indian Ocean from 2005 to 2023. 

 

Area NW 

Positive catch model with inverse Gaussian: 

 Sum Sq Df F values Pr(>F)  

Y 1731.8 18 248.6 0 *** 

Q 14.5 3 12.5  3.5e-08 *** 

G 741.1 44 43.5 0 *** 

T 219.8 2 284.1 < 2.2e-16 *** 

Q:T 56.1 6 24.2  9.8e-29 *** 

Residuals 21448.8 55429    

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Delta model: 

 LR Chisq Df Pr(>Chisq)  

Y 23796.9 18 0 *** 

Q 416.3 3 < 2.2e-16 *** 

CT 190 2 < 2.2e-16 *** 

G 8721.2 47 0 *** 

T 709.5 2 < 2.2e-16 *** 

hook 167.4 1 < 2.2e-16 *** 

Q:CT 99.4 6 < 2.2e-16 *** 

Q:T 204.3 6 < 2.2e-16 *** 

CT:T 34.8 4 < 2.2e-16 *** 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Table 2. (continued). 

 

Area NE 

Positive catch model with inverse Gaussian: 

 Sum Sq Df F values Pr(>F)  

Y 64.2 18 9.5 9.4e-27 *** 

Q 5.7 3 5 1.71E-03 ** 

G 50.4 34 4 8.38E-14 *** 

T 27.5 3 24.5 9.01E-16 *** 

Q:CT 7.3 6 3.3 3.4E-03 ** 

Q:T 7.9 9 2.3 1.23E-02 * 

Residuals 3852.4 10280    

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Delta model: 

 LR Chisq Df Pr(>Chisq)  

Y 1028.1 18 < 2.2e-16 *** 

Q 88.7 3 9.48E-14 *** 

CT 56.7 2 4.77E-13 *** 

G 1805.1 39 0 *** 

T 99.2 3 < 2.2e-16 *** 

hook 26.9 1 2.09E-07 *** 

Q:T 141.5 9 < 2.2e-16 *** 

CT:T 24.8 6 3.71E-04 *** 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

 


