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Abstract 

Accurate fisheries catch data are essential if fisheries are to be sustainably managed. In South Africa, many 
fisheries have compulsory observer programmes paid for by industry, but the percentage of fishery activities 
observed is generally low (<5%) with poor spatial coverage. Smaller fisheries, such as the demersal shark 
longline fishery, have no observer coverage except for a few months in 2008/2009. This gap in observer data 
could, however, be filled by an electronic monitoring system (EMS).  The demersal shark longline fishery has 
been controversial since its inception and has been the focus of negative press around allegations of high 
mortality rates of Endangered, Threatened and Protected (ETP) species. To improve observer coverage and to 
monitor ETP species, the DFFE in collaboration with WildTrust and the fishery, initiated a collaborative project to 
install an EMS on an active vessel. To date, 13,665 videos have been collected since December 2023 with 3,538 
videos processed for still images. An initial run analysed 113 still images of sharks, batoids, and teleosts from the 
processed videos were uploaded to BIIGLE and annotated. A total of 337 annotations were then analysed in 
YOLOv 5, an object recognition algorithm. The initial model was trained using 75% of the images and tested with 
the remaining 25%. Unannotated images were also used to evaluate the model's performance and feasibility. 
Species-level identification was not feasible due to the limited number of images. The model, however, 
successfully differentiated batoids, sharks, and teleosts from each other with a precision of between 72 and 73%. 
and recorded a higher species diversity than from logbook data. The precision and rate of recall will improve with 
additional training images. The next stage of the project will use additional deep learning methods to 
automatically extract video segments of catch events, which would substantially reduce storage space and 
review time by analysts.  

 

Introduction 

The collection of accurate fisheries catch data is critical to ensuring sustainable management of fisheries, 
mitigating their environmental impacts and for managing stocks. Additionally, fisheries management authorities 
rely on accurate data to manage fishing through effort or harvest controls, determine appropriate licence fees, to 
monitor catch of Endangered Threatened and Protected species (ETP) and to manage other environmental 
impacts (Brown et al. 2021). Sustainable fisheries management relies on both fisheries-independent and 
fisheries-dependent data to assess and manage stocks. Fishery-independent data are gathered through 
scientific surveys conducted independently of commercial fishing operations, and includes information on fish 
abundance, distribution, size, and age structure. These data can be collected using fishing gear similar to the 
commercial fishing operation being assessed, acoustic surveys and tagging programmes. These data are crucial 
for providing unbiased estimates of fish population and ecosystem health.  
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On the other hand, fishery-dependent data are derived from the fishing industries, including self-reporting 
logbooks which collects catch, effort and bycatch data.  The reliability of fishery-dependent information for 
assessing fish population status has often been questioned (Cotter & Pilling, 2007). Catch data from logbooks 
alone cannot be used to assess the stock status of fish caught by a particular fishery as they are a product of 
complex human behaviours involved in completing the logbooks (Branch et al. 2011). Reports on landings do not 
capture the full extent of all fish caught, as a significant portion of total catch may be discarded at sea (Poos et 
al. 2013: Uhlmann et al 2014, Ulleweit et al. 2010). This is especially true for ETP species where fishers 
downplay problematic bycatch interactions or species limited by quotas such as “choke” species, data are 
unreliable and often non-existent (Borges, 2015). Catch may be misreported (underestimated, overestimated), or 
not reported at all and may be exacerbated by the decentralised nature of many fishing sectors, poor monitoring 
and poor enforcement. Estimating total catch per species is often complicated by illegal harvest, discards and 
catches from subsistence fishers that are not reported (Pitcher et al. 2002). Globally it has been estimated that 
the overall underreporting of catch for fish populations average at 53% (Pauly and Zeller 2016). 

 

It is therefore vital that these data are validated by Observer programmes, which independently monitor the 
fishing operations, effort, catch, bycatch and compliance with permit conditions or other sector-specific fishing 
regulations. Observer programmes allow for the verification of the accuracy of vessel-reported logbook data and 
may inform fisheries management. Representative coverage is, however, expensive (Suuronen and Gilman, 
2020). In addition, there is an assumption made that data collected (especially catch, effort and discard of ETP 
species) on observed fishing trips are representative of unobserved trips (Hall, 1999). As selection of trips are 
often non-random and not stratified, fishing practices can be altered once an observer is on board and is termed 
the “observer effect” (Duarte and Cadrin, 2024). The observer effect may be intentional whereby a captain may 
target an area with lower ETP encounter rates, may deviate from mandatory bycatch mitigation practices (such 
as not use Tori lines). It could also be unintentional because carrying an observer is costly in terms of daily rate, 
but also in terms of losing a member of crew onboard and may result in a trip being shorter than average (Duarte 
and Cadrin, 2024; Faunce and Barbeaux, 2011). If this observer effect occurs frequently, it violates the 
assumption of representativity (Babcock et al. 2003). In general, in fisheries without 100% observer coverage, 
data collected from observer trips are used to scale up discards of ETP species across an entire fleet using a 
ratio estimator (Duarte and Cadrin, 2024: Cochran, 1977), either based on effort or landings. For observer data 
to be useful, it needs to be representative and stratified so that data scaling/expansion can be done by gear type 
or region, with confidence intervals providing estimates on variability in the observed trips within each stratum 
(Duarte and Cadrin, 2024). Non-representative sampling can lead to biased estimates and consequently errors in 
catch estimates, estimates of ETP discards and ultimately inaccurate stock assessments (Rudd and Branch, 
2017).  

Traditionally, monitoring compliance in longline fisheries has relied heavily on onboard human observers, who 
are tasked with recording catch data, bycatch incidents, and adherence to regulations. However, the challenges 
of deploying observers across vast oceanic areas, coupled with safety concerns and the high cost of human 
observation, have highlighted the need for more efficient and scalable solutions. 

Observer programs are crucial for collecting reliable data on bycatch and discarding activities at sea, but their 
effectiveness is often limited by available resources. To enhance fisheries stock assessments, endangered 
species protections, and ecosystem management, these programs must be designed to meet their specific 
objectives, which typically require high precision and minimal bias in bycatch estimates (Babcock et al. 2003). A 
significant challenge is the bias introduced by non-random sampling, as many observer programs rely on vessels 
that volunteer or are willing to carry observers, leading to potentially unrepresentative data. Studies by Liggens et 
al. (1997) and Sampson (2002) highlight the importance of assessing whether the data collected are truly 
representative of the entire fleet. Comparing the catches of observed and unobserved vessels should be an 
ongoing part of any observer program, and a mandatory, randomly allocated observer program would yield more 
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reliable results. Once observer effects and sampling bias are addressed, the necessary level of precision in 
bycatch estimates should be determined based on how the data will be used (Babcock et al. 2003). This process 
involves determining the required level of sampling effort, which can be guided by comparing with other 
programs or using general sample size considerations. Simulation studies suggest that coverage levels of at 
least 20% for common species and 50% for rare species can provide reasonably accurate bycatch estimates 
(Babcock et al. 2003). Observer coverage is generally low <10%, with most global discard estimates relying on 
costly observer programmes, which cover less than 1% of fishing activities (Benoît & Allard, 2009; Depestele et 
al., 2011; Poos et al., 2013; Rochet, Péronnet et al, 2002). 

In the absence of representative coverage, Electronic Monitoring (EM) in longline fisheries has emerged in the 
past two decades as a transformative technology, revolutionizing the way fishing activities are observed, 
recorded, and regulated (Ames et al. 2007: Stanley et al 2011; van Helmond et al. 2020). The initial EM systems 
were industry-led programmes to deal with changes in fisheries management and gear theft in the British 
Columbia Crab fishery (Ames et al. 2007). The potential of EM system was quickly recognised as a potential 
panacea in fisheries challenged by poor observer coverage and monitoring of ETP species.  

EM systems, which typically consist of a combination of video cameras, GPS, activity sensors and computer 
hardware, offer a promising alternative to traditional and costly observer programmes (van Helmond et al. 2020). 
These systems automatically record fishing activities, providing a continuous, tamper-proof record that can be 
reviewed and analysed either in real-time or post-trip. By capturing detailed footage and data, EM allows for 
accurate documentation of fishing practices, species identification, and compliance with fisheries management 
regulations (van Helmond et al. 2020). As the global demand for sustainable fishing practices intensifies, the 
adoption of EM in longline fisheries is increasingly seen as essential.  

A comprehensive review of EM systems can be found in van Helmond et al. (2020). EM programmes have been 
fully adopted in many different fisheries worldwide and include trap fisheries targeting crustaceans in British 
Columbia, Canada, midwater trawl fisheries targeting hake in British Columbia, longline fisheries targeting 
Atlantic Tuna, purse seine fisheries catching tropical tuna in the Indian and Atlantic Ocean (Ames et al. 2005; 
van Helmond et al 2020; Michelin et al. 2018).  At the date of the Helmond et al. (2020) review, 12 fully 
implemented EM systems were in place with a further 100+ EM trials underway. The biggest and longest running 
EM system is the British Columbia, Groundfish hook and line/Trap Catch Monitoring program with a total 200 
vessels monitored. The most comprehensive multi-species, multi fishery EM programme is done by the 
Australian Fisheries Management Authority (AFMA) Electronic Monitoring Programme which monitors longline, 
hand line, gill net and trap net fisheries (Hoskin et al. 2017). 

Despite such a large uptake in the use of EM systems globally, there are still considerable challenges associated 
with storing and analysing large volume of video captured. Analysis of footage that can amount to 2TB of video 
data per single fishing trip (Gerner, 2015) can be labour intensive, tedious, error prone, subjective and extremely 
costly (Qaio et al., 2021). Most fisheries that use EM systems do not fully utilise all footage captured (Wallace et 
al. 2015); they either randomly select video sequences, randomly select a percentage of footage to review (5- 
56%); randomly select a single haul per trip or a census of video data is taken played at 8-12 times real time (van 
Helmond et al. 2020). This depends on the purpose of the monitoring; in general (but not always) where discards 
and bycatch of ETP species is of concern, a census of video data is done, where landings are of concern 
random percentage of footage is reviewed (van Helmond et al. 2020).  

Recent leaps in the application of artificial intelligence (AI) technology, specifically deep learning techniques and 
its application to computer vision, has been shown to provide possible solutions to the costly and time-intensive 
bottleneck of analysing digital data. Computer vision has provided numerous applications in marine sciences 
such as rapid biodiversity assessment and monitoring (Mahmood et al. 2016), species identification (Storbeck 
and Daan 2001), length frequency measurement (White et al. 2006), behaviour (Papadakis et al. 2012), 
estimates of abundance (Ditria et al. 2020), and ecosystem classification (Piechaud et al. 2019). The application 
of Computer Vision has extended to the fisheries realm (Malde et al. 2019; Probst, 2019). A fishery-dependent 
collection system has been proposed by Bradley et al. (2019) using AI automation to reduce lags between data 
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collection and action. However, despite EM systems being adopted and trialled globally, automated video 
analysist systems have not been widely applied (van Helmond et al. 2020), and if applied not yet documented in 
detail. To our knowledge, the first documented EM system using computer vision was trailed by Qaio et al. 
(2021), with promising results even from a small training dataset.  

The use of computer vision is limited and preliminary in South Africa with various trials underway over the past 
two years. These initiatives include benthic surveys, species identification, behaviour of seabirds (da Silva et al. 
2023). All the preliminary projects are in progress, however, there is substantial collaborations in South Africa 
with research groups sharing expertise.  

The demersal shark longline fishery has been in place since 1991 and uses bottom set longlines to target tope 
(Galeorhinus galeus) and smoothhound sharks (Mustelus mustelus), over the past 30 years the number of active 
permitted vessels have reduced from 11 to one in 2022 (DFFE, 2023). The demersal shark longline fishery has 
been controversial since its inception and has been the focus of negative press around allegations of high 
mortality rates of Endangered, Threatened and Protected (ETP) species. In South Africa, many fisheries have 
compulsory observer programmes but the coverage is low (<5%) and with poor spatial coverage. Smaller 
fisheries, such as the demersal shark longline fishery, have been historically bereft of observer coverage except 
for a few months in 2008/2009. Given funding constraints and capacity issues within the Fisheries branch of the 
Department of Fisheries, Forestry and the Environment (DFFE) in South Africa, here we explore the use and 
feasibility of using open-source machine learning methods with infrastructure available at DFFE for EM data 
collected from the demersal shark longline fishery in South Africa.  

 

Materials and Methods 

To address the lack of observer coverage and to collect comprehensive data typically gathered by observer 
projects, the Department of Forestry, Fisheries and the Environment (DFFE), in collaboration with WildTrust and 
the fishery, initiated a collaborative project to install an Electronic Monitoring (EM) System on the last active 
vessel in the fleet. The EM system was initially installed in 2020. However, due to a combination of factors 
including the COVID-19 pandemic, vessel repairs, the listing of requiem sharks under CITES Appendix II, and 
interruptions caused by the Fisheries Rights Allocation Process in 2019/2020, fishing activities only commenced 
in December 2023. 

 

The EM system comprises three motion-controlled Hikvision Megapixel outdoor cameras (model number DS-
2XC6142FWD-IS(C)).  These cameras were strategically positioned: one to capture deck activities, another on 
the retrieval line to monitor discards, and a third on the stern to observe seabird interactions and the use of the 
mandatory Tori line. The system utilizes a Hikvision Mobile 4-channel IP Network Video Recorder with 3G 
connectivity and a generic GPS module, along with multiple storage hardware components. Hard drives are 
removed and couriered every 2-3 months to ensure data integrity and continuity. 

 

To protect the rights of the permit holder, data confidentiality contracts were established. Since December 2023, 
a total of 13,665 videos have been collected, with 3,538 videos processed for still images. From these, 113 still 
images of sharks, batoids, and teleosts were extracted using VSPlayer and subsequently uploaded to BIIGLE. In 
BIIGLE, the videos were annotated using the rectangle tool and classified according to the WORMS label tree 
into categories such as Selachii (sharks), Batoidea (skates and rays), and Osteichthyes (bony fishes). 

 

Further classification was not completed due to the limited size of the dataset. The framework developed by 
Howel and Davies (2010) and Howell et al. (2023), available on [GitHub](https://github.com/DeepSeaCRU/CRU-



5 
 

resources). This framework has been used for automating the counting of benthic invertebrate taxa (Piechaud et 
al. 2019, and Piechaud and Howell 2022). The framework was utilized to convert the BIIGLE annotations to the 
YOLO (You Only Look Once) format in R. The R script also prepared the dataset (images and annotations) for 
training the YOLO Convolutional Neural Networks (CNN) object detection model in Google Colab.  

The dataset prepared in R was subsequently processed through the YOLOv5 object detection CNN in Google 
Colab, hosted by the Jupyter Notebook service, using the framework developed by DeepSeaCRU. Training was 
conducted using a train-from-scratch (TS) approach. Since the computational resources required to train the 
object detection model is executed using the free Google Colab cloud services and is independent from a local 
machine's hardware specifications, the entire framework can be executed in a web browser and on an entry level 
computer e.g. a standard government issued laptop with an Intel i5 processor and 4GB of RAM. The model's 
training parameters were 640x640 input pixel resolution, in batches of 16, over 100 epochs and a 75/25 percent 
split between the train and validation images.  This dataset comprised 113 images, annotated with 185 instances 
of Selachii, 114 instances of Osteichthyes, and 38 instances of Batoidea. 

Evaluation metrics 

Two metrics were applied within the YOLOv5 framework to evaluate the accuracy of the object detector; 
precision and recall (Powers, 2011; Qiao et al. 2021), which are defined as  

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

where a true positive refers to predicted bounding boxes that are matched to ground-truth positives, i.e. ground-
truth bounding boxes for animals, while a false positive refers to the predicted bounding boxes having no overlap 
with any ground-truth bounding boxes. False negatives refer to the ground-truth bounding boxes missed by the 
detector. Precision and recall evaluate different aspects of the detector. Precision calculates the percentage of 
predicted bounding boxes that are relevant, whereas recall measures the percentage of the relevant bounding 
boxes that have been retrieved relative to the total number of ground-truth bounding boxes. The average 
precision (AP) score and recall rate are calculated as in Manning et al. (2008) to numerically summarize the 
precision of the detector. There is one adjustable parameter for the evaluation metrics in the detection framework 
i.e. the Intersection over Union (IoU) threshold. The IoU represents the proportion of overlap between a predicted 
object and its corresponding ground-truth. For evaluation purposes, successful detections were determined to be 
true if the IoU was above an IoU threshold set to 0.5.   

A confusion matrix (Stehman, 1997) was used via the Howel and Davies (2010) framework was used to evaluate 
the performance of the catch detector in terms of correctly identifying animal within the three categories.  

Results and Discussion 

Random observation of videos showed that the EMS system installed on the vessel recorded a higher species 
diversity than logbooks. In general, data in logbooks reflect high value catch species such as tope, smoothhound 
and requiem sharks (Carcharhinus obscurus and C. brachyurus), and live release of ETP species of concern 
such as sandtiger sharks (Carcharias taurus) and smooth hammerhead sharks (Sphyrna zygaena). Live release 
of unwanted endemic shysharks such as pyjama sharks (Poroderma africanum), leopard catsharks (P. 
pantherinum) and other unwanted teleosts such as white seacatfish (Galeichthys feliceps) was not recorded in 
logbooks. Species identification from reviewing footage alone was possible for most species with the exception 
of some of the cryptic requiem sharks and a few skates and possibly teleosts.  Given the preliminary status of 
this study, analytical comparison of logbook footage versus EM footage was not possible.  

These preliminary results do not evaluate the use of various CNN frameworks as many of the commercially 
available proprietary CNN frameworks may not be feasible for use in South Africa due to large costs. Results 
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from the YOLOv5 CNN frame by frame object detection results from the testing data set are shown in Table 1. 
Precision (p) measures the proportion of true positive predictions out of all positive predictions made by the 
model. In general, the precision was highest for Selachi (0.729, n= 185 annotations), followed by Batoidea 
(0.733, n=38 annotations) with the least precision for Osteichthyes (0.724, n = 114 annotations). This is likely 
due to the low number of training images for Batoidea and high variation in colour and shape for Osteichthyes. 
The model showed fairly consistent precision across all classes, with values around 0.729 and 0.733, this 
indicates that a good proportion of the models’ positive predictions are correct. Recall (R) measures the 
proportion of true positive predictions out of all actual positives. Overall recall was high at 0.747, Recall was 
highest for Batoidea at 0.857, indicating the model is very good at detecting them when they are present. This is 
likely related to their distinctive shape. Recall was lower for Selachii (0.717) and lowest for Osteichthyes (0.667).  

The Mean Average Precision at IoU threshhold (mAP50) (Table 1) gives an overall indication of the model’s 
detection accuracy. It is an average precision score at a specific Intersection over IoU threshold of 0.5. Detection 
accuracy was highest for Batoids (0.732), followed by Selachii (0.712) and then Osteichthyes (0.711). Scores 
suggest that the model performs reasonably well across all classes, with mAP50 values of 0.717 to 0.76, 
indicating decent detection accuracy.  

The Mean Average Precision across 0.5 to 0.95 IoU threshold (mAP50-95) (Table 1) is a more stringent metric 
than mAP50 and is calculated across different IoU thresholds from 0. 5 to 0.95. It reflects how well the model 
performs across varying levels of strictness in overlap between the predicted and the true bounding boxes. 
mAP50-95 was highest for Batoidea (0.345), then Selachii (0.312), followed by Osteichthyes (0.293). The lower 
mAP50-95 compared to mAP50 suggest that the model’s performance decreases as the IoU threshold 
increases, indicating that it may struggle with precise localisation of the objects.   

 

The model, overall, shows good performance in detecting and classifying the Batoidea, with a high recall and 
reasonable precision, which is promising for accurately identifying his class on this fishing vessel. Selachii and 
Osteichthyes show slightly lower performance, particularly in recall for Osteichthyes, which implies that the model 
sometimes fails to detect these instances. Lower mAP50-95 values highlight that while the model is generally 
accurate, it might struggle with precise object localisation, particularly under stricter conditions. These preliminary 
results suggest that this deep learning model can be effectively used in an EM programme to monitor and 
classify species on this vessel. However, further improvements are needed to improve the recall for Osteichthyes 
as the model sometimes fails to detect them.  

 

Table 1. Yolov5 model training results output for the EM footage 

Class Images Instances P R mAP50 mAP50-95 
Selachii 29 60 0.729 0.717 0.712 0.312 
Batoidea 29 7 0.733 0.857 0.732 0.345 
Osteichthyes 29 21 0.724 0.667 0.711 0.293 
All 29 88 0.729 0.747 0.718 0.317 
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Fig 1. Confusion Matrix for Model Performance Evaluation.  

 

The confusion matrix (Figure 1) visualises the performance of the YOLOv5 model across four classes: ‘Selachii’, 
‘Osteichthyes’, ‘Batoidea’, and ‘background’. The matrix highlights the true positive rates along the diagonal and 
the misclassification rates in the off-diagonal cells, providing a comprehensive overview of the model’s accuracy 
and areas for improvement.  Diagonal elements represent the cases where the predicted class matches the true 
class i.e. true positives. Batoidea had the highest percentage of true predictions (85%), followed by Selachii 
(72%) and then Osteichthyes (64%). The off diagonal elements represent misclassifications where the predicted 
class did not match the true class, 5% of Osteichtheys were incorrectly predicted as Selachii, 14% of Batoidea, 
were mistakenly identified as Selachii and 2% of Selachii were incorrectly identified as Batoidea and 70% of the 
background was wrongly predicted as Selachii. The model performed well with Batoidea and Selachii classes, as 
indicated by the high values on the diagonal (0.85 and 0.72), respectively. Osteichthyes and the background are 
more frequently misclassified, with noticeable confusion between Osteichthyes and other classes.  The 
background class also shows significant misclassification, especially being confused with Selachii.  
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Figure 2: The precision-recall curve for three classes: Selachii, Osteichthyes, and Batoidea, and a combined line 
for all classes. The Mean Average Precision (mAP) scores set at a threshold of 0.5 are 0.712 for Selachii, 0.711 
for Osteichthyes, 0.732 for Batoidea and 0.718 for all classes combined 

Precision-Recall Curve (Figure 2), a crucial tool in evaluating the performance of classification models, 
particularly in scenarios where the classes are imbalanced. This curve plots precision (on the y-axis) against 
recall (on the x-axis) at various threshold settings, providing a comprehensive view of the trade-off between 
these two metrics.  

Recall measures the proportion of actual positives that are correctly identified by the model (ranging from 0-1, 
where 1 means that all predicted positives are correct), specifically “Of all the actual positive instances, how 
many were correctly predicted as positive?” Precision measures the proportion of positive predictions that are 
actually correct (ranging from 0-1 where1 means that all predicted positives are correct), specifically “Of all the 
instances predicted as positive, how many were actually positive?” 

The Precision-Recall Curve includes three lines representing different classes evaluated by the classification 
model. For Selachii, the Average Precision (AP) Score is 0.712. this summarises the precision-recall curve as the 
weighted mean of precisions achieved at each threshold, with an increase in recall from the previous threshold 
sued as the weight. An AP score of 0.712 indicates a relatively good performance for this class. For 
Osteichthyes, the AP score was 0.77, similar to Selachii, the score reflects the model’s ability to balance 
precision and recall. The close AP scores for Selachii and Osteichthyes suggest comparable performance for 
these classes. Batoidea had a higher AP score of 0.723; indicating that the model performs better in 
distinguishing Batoidea from other classes. This is not surprising given their morphometric differences to both the 
Selachii and Osteichthyes.  

The Precision-Recall Curve is particularly useful in datasets with imbalanced datasets, this is the case with this 
small data set with 185 Selachii, 114 Osteichthyes and 38 Batoidea. Model performance was high for Batoidea 
especially given the low comparative number of annotations used for training. The Curve also assists with 
choosing optimal threshold that balances precision and recall according to the specific requirements of the 
application. In this case, high recall will be prioritised to ensure that all positive cases are identified, even at the 
cost of lower precision.  

 

Conclusion and recommendations 

Although EM has been widely trailed and fully implemented in many fisheries worldwide, automation of the 
process is still lacking (van Helmond et al. 2020). In this study, we piloted deep learning methods to fill this gap 
using open-source deep learning methods accessible to marine scientists and few resources.   This preliminary 
proof of concept use of deep learning methods applied to electronic data has shown promising results even with 
a small training dataset (n=113 images) that represented 36 longline sets from the EM system installed on the 
demersal shark longline vessel. Species-level identification was not feasible due to the limited number of images. 
The model, however, successfully differentiated batoids, sharks, and teleosts from each other with a precision of 
between 72 and 73% and recorded a higher species diversity than from logbook data. The deep learning-based 
object detectors worked well for this task despite the small training set. This may be due to the small number 
annotation per class. The precision and rate of recall will improve with additional training images, including 
images with only background and training the model for longer. Due to limitations within BIIGLE and privacy 
issues, people were excluded from annotations. Therefore, the model includes people as backgrounds, often the 
confusion with backgrounds is as a result of white gumboots worn by fishers or white clothing. In addition, fishers 
use a white plastic bin to store small sharks which obscured sharks and rays. Going forward, background images 
will include people with wearing various personal protective fishing gear, background with no catch and 
backgrounds with or without catch in different weather conditions day and night. The use of other annotation 
software will be trialled to include fishers and fish in the same frame and identify “catch events” similar to what 
was used by Qaio et al. 2021. Once model performance is improved with the addition of a larger representative 
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training set, we will investigate using additional deep learning methods to automatically extract video segments 
of catch events, which would substantially reduce storage space and review time by analysts. The intention of 
this study is to assist analysts to review EM to generate accurate catch reports efficiently.  Current limitations of 
the study are that it constantly records images, due to errors during setup with the trigger from the main line 
retrieval capstain which would have ensured that only active fishing was recorded. This was not initially seen as 
a problem as Rights Holders record start of fishing time, however if time is not recorded accurately in in logbook 
it adds considerable processing time. Since this fishery operates with a single vessel, it is not necessary to 
extend the training set to other vessels for training. In the future these methods may be extended to the Large 
Pelagic Longline fleet in South Africa as several Rights Holder have installed cameras already on their vessels 
for security reasons. In conclusion, the deep learning methods applied to the EM system on the demersal shark 
longline vessel shows great promise and is feasible due to the ability to use open-source models on government 
issued infrastructure. It has the potential to enhance transparency and accountability of a fishery that has been in 
the media frequently due to allegations of ETP bycatch and also supports the conservation of marine 
ecosystems by enabling more effective monitoring of bycatch, including ETP species.  
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