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SUMMARY 

 

Management Strategy Evaluation (MSE) may be perceived as a technically complex process that 

necessarily takes months or even years of coding and technical development time. Recent 

advances in open-source MSE software have substantially reduced this technical overhead. I 

provide a demonstration of the technical components of MSE for Atlantic Blue Shark including 

operating model specification, management procedure (MP, a.k.a. ‘harvest strategy’) design, MP 

derivatives, MP tuning, closed-loop MSE calculations, performance metrics, presentation of 

MSE results and exceptional circumstances protocols. This demonstration is intended to 

underline the relative ease, accessibility and flexibility of software designed to facilitate rapid 

and efficient development of MSE frameworks.   
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Introduction 

 

The time taken to develop management strategy evaluation (MSE) frameworks varies substantially among stocks.  

 

Some of the development time can be attributed to the technical aspects of MSE which typically includes the 

following components (see Carruthers 2024 for how these fit into the broader MSE framework, Figure 1):  

 

1) specifying operating models (OMs),  

2) coding closed-loop simulation frameworks,  

3) developing management procedure (MP, a.k.a. ‘harvest strategy’) archetypes (e.g., index-target, index-

ratio, model-based etc),  

4) defining MP derivatives (e.g., maximum TAC change, maximum TAC, etc.),  

5) tuning MPs (e.g. to achieve a particular probability of overfishing),  

6) running MSE calculations,  

7) calculating performance metrics 

8) presenting MSE results 

9) defining exceptional circumstances protocols.  

 

Recently, regional MSE processes such as those for Chilean northern hake and anchovy, and Canadian groundfish 

in B.C. have made use of modern MSE software that is more efficient and powerful, allowing rapid progress in 

the technical aspects of MSE listed above, and the adoption of management procedures in a matter of months 

(Haggarty et al. 2022a). 

 

This step-change in the technical accessibility of MSE is demonstrated in this paper (see also Huynh et al. 2020) 

with an example MSE framework for Atlantic blue shark in which all the technical aspects listed above were 

completed using the open-source package OpenMSE (Hordyk et al. 2024a), the MSE presentation app Slick 

(Hordyk et al. 2024b) and the ECP exploration app ECP (Carruthers 2024).   

 

 

Methods  

 

All code for completing the following MSE steps is available on the public GitHub repository ‘blue-

matter/Blue_Shark_MSE’ and in Appendix A.  

 

1. Specifying operating models 

 

Operating models were specified using Run 6 (alternative index and length composition weighting) of the 2015 

Stock Synthesis assessment for Atlantic blue shark (Anon 2015) that was fitted to data up to and including 2013.  

 

The use of an older assessment is deliberate and reinforces that this analysis is a technical demonstration and is 

not relevant to current policy making. More recently, operating models have been developed for Atlantic blue 

shark using RCM (Rapid Conditioning Model) of OpenMSE but these are still in development.  

 

The important take-home message is that existing data for blue-shark are available to condition defensible 

operating models and that it is a single function to convert these to an OpenMSE operating model: 

 

> OM = SS2OM(‘C:/shark_assessment’) 

 

Or 

 

> OM = RCM(stock_parameters, data)@OM 

 

These functions include check that the OpenMSE operating model exactly matches the dynamics of the estimation 

model (Stock Synthesis, RCM). This has proven a significant issue for bespoke custom-coded MSE frameworks 

elsewhere.  

 

A reference grid of operating models was specified with three factors: natural mortality rate (‘M’), steepness of 

the Beverton-Holt stock-recruitment curve (‘h’) and current stock depletion (SSB2013/SSBunfished, ‘Depln’). 

Alternative levels of M were arbitrarily set as 3/4 and 4/3 of the stock assessment M-at-age vector, alternative 

levels of steepness were set at 0.6 and 0.9 (base assessment value was 0.73) and depletion was set at 2/3 and 3/2 
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of that estimated by the base assessment (the reference OM grid is summarized in Table 1). This OM grid in 

intended to encompass the three most important aspects of stock uncertainty in the determination of relative MP 

performance (productivity, resilience and status, respectively). Such axes are typical in other MSE processes such 

as that of Atlantic bluefin tuna (Carruthers et al. 2020 and North Atlantic swordfish (Hordyk et al. 2021).  

 

 

2. Coding closed-loop simulation frameworks 

 

Rather than code the MSE from scratch, the R package OpenMSE (Hordyk et al 2024, OpenMSE 2024) was used 

to do the age-structured stock and fishery calculations. 

 

Observation error models for catches and indices are derived automatically from the historical fit of the operating 

models to the observed data and can include imprecision, autocorrelation and hyperstability / hyperdepletion (only 

imprecision and autocorrelation were selected in these simulations).  

 

 

3. Developing MP archetypes 

 

Three MP archetypes were developed that broadly follow the concepts of candidate MPs developed for Atlantic 

bluefin tuna and North Atlantic swordfish: 

 

• Index target (It) - reduces TAC when index is below the target level, increases TAC when index is above 

target level (tuned by adjusting the index target level) 

• Index ratio (Ir) - fishes at a constant multiplier of the recent index level, i.e. a constant F policy (tuned 

by adjusting the ratio) 

• Index slope (Is) - aims to achieve a constant slope in the index and reduces TAC when slope is below 

target and increases TAC when slope is above target (tuned by adjusting target slope).  

 

In this demonstration all MPs used assessment index 9 that had an observation error of approximately 0.25 

(coefficient of variation) and low lag-1 autocorrelation in residuals (~0.2). Index target and index ratio MPs 

calculated recent index (for comparison with target and calculation of the TAC based on ratio) as the mean index 

over the last three years. The index slope MP used the slope in the index over the last 5 years (index standardized 

to mean 1, see Appendix A for MP code).  

These MPs were assumed to have a 1-year lag in the index data and provided new TAC advice every year. MP 

advice was assumed to be taken exactly (perfect implementation).  

 

4. Defining MP derivatives 

 

Three derivatives of each MP archetype were developed: 

 

• Max TAC change of 10% (It_10, Ir_10, Is_10) 

• Max TAC change of 30% (It_30, Ir_30, Is_30) 

• Max TAC change of 30%, maximum TAC of 30kt (It_M30, Ir_M30, Is_M30) 

 

Although these derivatives are chosen somewhat arbitrarily in this case, they broadly reflect those requested by 

ICCAT managers for the Atlantic bluefin and North Atlantic swordfish MSE processes.  

 

 

5. Tuning MPs 

 

The purpose of MP tuning is to better reveal performance differences among MPs by controlling for one of the 

major performance axes: catch or biomass conservation. In this case MPs were tuned (adjusted index target, index 

ratio, index slope) to achieve probability of green kobe (F<FMSY & SSB > SSBMSY) of 60% (all 50 projection 

years, all operating models). The tuned versions of each were labelled with ‘_t’ (e.g., Ir_30_t).  

 



4 
 

Tuning is achieved using the openMSE function tune_MP() in which the user defines the MP, the tuning 

parameter, the operating models and a function to be minimized (in this case the squared difference in PGK from 

that achieved at the given tuning parameter level and the desired 10k).  PGK tuning was used in both North 

Atlantic swordfish and Atlantic bluefin tuna MP development.  

 

 

6. Running MSE calculations 

 

The OpenMSE libraries conduct the age-structured stock and fishery calculations using C++ code that is much 

faster than native R code, leading to relatively fast computation times. Calculations are divided into historical and 

projection phases, meaning that reference points and historical stock dynamics only have to be calculated once, 

and not each time a projection of that operating model is conducted for a new management procedure.  

 

 

7. Calculating performance metrics 

 

The North Atlantic swordfish MSE currently summarises top-level results according to five metrics: 

 

• AvTAC_short, AvTAC_med, AvTAC_long – the mean TAC set over projection years 1-10, 11-20 and 21-

30, respectively 

• nLRP – probability of not being below the biological limit reference point of 60% SSBMSY over the 

first 30 projection years 

• PGK, PGK_short, PGK_med – probability of green kobe (F<FMSY & SSB>SSBMSY) over all 50 

projection years (North Atlantic swordfish is 30 years), projection years 1-10 and 11-20, respectively.  

• PNOF – probability of not overfishing (F<FMSY) over all 30 projection years 

• VarC – absolute change in TAC among years 

 

Recognizing that an MSE for Atlantic blue shark would necessarily require a process of stakeholder and manager 

engagement to identify appropriate performance metrics specific to blue shark, these metrics for North Atlantic 

swordfish encapsulate the primary performance attributes of MPs: what is caught now (AvTAC_short, 

AvTAC_med), the biomass that is left over (nLRP, PGK, PGK_med), what can be caught later (AvTAC_long) and 

how much catch advice varies (VarC). These metrics also include overfishing metrics that are relevant to various 

stakeholder groups (PNOF).  

 

 

8. Presenting MSE results 

 

Results were summarized by the Slick app (Hordyk et al. 2024), a dedicated R package and online app (also can 

be run locally) for presenting MSE results across the key MSE axes: operating models, management procedures 

and performance metrics.  

 

 

9. Defining exceptional circumstances protocols 

 

When an adopted MP is in use, exceptional circumstances protocols (ECP) are an empirical check that new 

observations of data are consistent with those predicted by the operating models. For example, if observed indices 

used by the adopted MP are declining fast and to lower levels than any predicted by the OMs, then this may be 

considered exceptional and require a review of the operating model dynamics.  

 

In this case it is assumed that the Ir_10 MP was adopted and instead of real data observations, a single simulated 

data set is compared with the data projected by the operating model to demonstrate ECP design and diagnostics 

using the ECP R package and app (Carruthers 2024). For demonstration purposes indices 8 and 9 were used to 

investigate ECP attempting to minimize overall Type I error (probability of falsely triggering ECP) while 

maximizing power (probability of correctly identifying problematic simulations). Here ‘problematic’ was 

arbitrarily defined as a simulation where SSB falls below 75% of SSBMSY at some point in the projection.  
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A note on simulation frequency 

 

This demonstration MSE was based on relatively few simulations to allow the demonstration code to be run 

quickly by new users. In this case, only 12 simulations per operating model (96 in total) were specified allowing 

all of the code to run in less than 20 minutes on a laptop. Typically, more than 150 simulations per operating 

model (1200 in total) would be necessary to obtain the required precision in calculated performance metrics 

(taking closer to 5 hours in total). Since most of the calculations can be run in parallel, computation times can be 

reduced dramatically by using cluster computing.  

 

 

Results 

 

The projected stock status varied strongly among operating models (Figure 2). Operating model 2 (high M, low 

steepness, depleted) was the most challenging for the MPs and the stock crashed (median) for all of the MPs.  

 

The index ratio MP provided the most consistent performance across OMs (Figure 2) crashing the stock in only 

operating model 2. Index ratio MPs provided the highest yields in the medium and long terms with the lowest 

TAC variability and a probability of green Kobe greater than 70% (Table 2).  

 

In general, MP derivatives provided comparable performance outcomes (much bigger differences were seen 

among MP archetypes) (Figures 3 and 4, Table 2). There appeared to be little cost of imposing a 10% limit in 

TAC change (given annual updates this is perhaps understandable).  

 

While achieving the same 10k mean catch over all OMs, the index ratio MP (Ir_10) provided outcomes closer to 

SSBMSY and FMSY (Figures 5-8).  

 

The tuned MPs never dropped below the biological limit reference point of 60% SSBMSY (Table 2).  

 

The example ECP (using a simulation of data rather than real data) shows data broadly consistent with posterior 

predictions although index 9 falls out of the 97.5% interval (Type I error = 2.5% per index per year) at the upper 

bound in the first projection year (2014) (Figures 9 and 10). The alternative set of simulations where 

problematic conditions occur (SSB below 75% SSBMSY at some point in the projection) overlapped strongly 

with those where this did not occur (Figure 11). For index 9 (used by the MP) problematic conditions were 

indicated by index observations that were relatively high in early years (2014 and 2015) and low in later years 

(2017 – 2019) (Figure 11) suggesting that evaluating an interval would be more powerful than just the lower 

bound (which would miss indicative data early in the projection). Posterior predicted data were somewhat 

correlated with each other and along years and again, the distribution of null (non problematic) and alternative 

(problematic) simulations strongly overlapped (Figure 12).  

 

To obtain a 60% power to detect problematic simulations over 6 years (see plotted data for 2019, Figure 13) an 

ECP protocol using indices 8 and 9 would incur a cumulative type I error of 40% (a 4 in 10 chance of triggering 

ECP when data were consistent with the OM simulations). The power of the indicator and the relative power to 

Type I error was not improved by using only the lower tail of the data only (Figure 14), only using index 9 

(Figure 15) or by using a higher annual Type I error rate (5% instead of 2.5%, Figure 16).  

 

 

Discussion 

 

Clearly this demonstration is focused on coding and calculation and does not alleviate other technical tasks 

associated with defining and selecting operating models. For example, this demonstration does not consider the 

suitability of OM fitting, OM weighting or the inclusion of robustness OMs. Other technical discussions over 

performance metrics and simulation of data were also avoided in this demonstration by simply adopting the 

same protocol as other ICCAT MSEs.  

 

Nevertheless, while the coding and testing of MSE methods have previously taken several years in other 

settings, by using freely available open-source software these were implemented for Atlantic blue shark in a 

matter of weeks.  
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The demonstration of exceptional circumstances protocols confirmed the need for a principled approach to ECP 

design (selection of indices, type I error, selection of tails) based on the calculation of implied overall error and 

statistical power.   

 

 

Code 

 

The code for reproducing these analyses can be found at https://github.com/Blue-Matter/Blue_Shark_MSE 
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Figures 

 

 

 
Figure 1. The updated MSE roadmap showing technical components (denoted by blue dots) in the context of the 

broader MSE process (Carruthers 2024).  Unless specified by arrows, the process runs to the right and then 

downwards. Note that unless a specific group (colour) is assigned to a process (just a white box), all members of 

the working group are invited to participate. 
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Figure 2. Impact of operating model on the median biomass performance of the index target (It_10), index ratio 

(Ir_10) and index slope (Is_10) MPs with a maximum TAC change of 10%.  
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Figure 3. Projection of median SSB/SSBMSY for the three derivatives of the index ratio (Ir) management 

procedure that include a maximum 10% change in TAC (Ir_10), a maximum 30% change in TAC (Ir_30) and a 

maximum 30% change in TAC and a 30kt max TAC constraint (Ir_M30). Historical grey lines and shaded areas 

are the median, 50% and 80% intervals.  

 

 

 
Figure 4. As Figure 3 but split into a panel per MP showing the median, 50% and 80% intervals for projected 

catches.  
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Figure 5. Projection of median biomass (across all OMs) among the various MP archetypes given the 10% TAC 

constraint.  

 

 

 
Figure 6. As Figure 5 but for F/FMSY.  
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Figure 7. Kobe plot for the various MP archetypes given the 10% constraint in TAC change among years. Small 

points are the start of the projected time period, large labelled points are the end of the projected time series. White 

dotted lines represent the 50% interval.   

 

 
Figure 8. Kobe time plot showing the fraction of simulations in each of the Kobe quadrants (Figure 7) over 

projected years for the various MP archetypes given the 10% constraint in TAC change among years. 
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Figure 9. Posterior predicted distributions (blue shaded areas) and 97.5% interval (annual Type I error = 2.5%) 

(blue horizontal lines) compared to observed values (black horizontal lines) for indices 8 and 9.  

 

 

Figure 10. Standardized density plots (the data of Figure 9) assuming standard normal distribution (Index 9 is 

red, Index 9 is black).  
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Figure 11. As Figure 9 but plotting the simulations where spawning biomass never falls below 75% SSBMSY 

(blue, null simulations) and those where projected spawning biomass does fall below 75% of SSBMSY at some 

point in the projection (red, alternative simulations). The figures at the top show the annual type II error 

(probability of not triggering ECP even though the simulations lead to the alternative scenarios of less than 75% 

SSBMSY).  
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Figure 12. Posterior cross-correlation plots showing simulated data (coloured points, n=96) versus the observed 

data (black points) over multiple years. As Figure 11, the blue shaded points are posterior predicted data where 

SSB never falls below 75% SSBMSY, red points are where SSB does fall below 75% SSBMSY at some point 

in the projection.    
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Figure 13. A cumulative power analysis corresponding to the distributions for indices 8 and 9 in Figure 11. This 

analysis accounts for correlations among projected data.   

 

Figure 14. As Figure 13 but with ECP triggered only for the lower tail of the indices.  

 

Figure 15. As Figure 13 but with ECP triggered only using index 9 (alpha is doubled to 5% since number of 

indices is halved).  
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Figure 16. As Figure 13 but with type I error doubled to 5% per index per year. 

 

 

Tables 

 

Table 1. The reference grid of operating models that is a full cross (2 x 2 x 2) of two factor levels for each of three 

factors: natural mortality rate (M – a multiplier of the base assessment M-at-age vector), steepness of the Beverton-

Hold stock recruitment curve (h – the base assessment value was 0.73) and current stock depletion (SSB2013 / 

SSBunfished) (Depln – a multiplier of the base assessment estimate of stock depletion).     
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Table 2. Median values over OMs as tabulated by Slick. Note that an updated version of Slick will include mean 

values that, for example, would match the PGK tunings of the MPs.  

 
 
 

 

 

 

Appendix A. Code to complete all simulation work including OM specification, MP specification, 

derivatives and tuning, and MSE projections.  
 

# ======================================================================================= 

# === A Demonstration MSE for Atlantic Blue Shark ================================================== 

# ======================================================================================= 

 

# Tom Carruthers 

# August 2024 

 

# Notes  

# Follows the technical components of the MSE roadmap (SCRS/2024/103) 'the roadmap' 

 

# === Prerequisites ========================================================================= 

 

library(openMSE) 

library(r4ss) 

setwd("C:/GitHub/Blue_shark_MSE") 

source('Source/MP_tuning.R') 

 

 

# === Technical Milestone 1 ================================================================== 

 

# --- Condition Reference Set ----------------------------------------------- 

 

OM_RefCase = SS2OM('Assessment/Preliminary_Run_6_input',nsim=12)                 # sample var-covar to make OpenMSE 

class OM 

Data = SS2Data('Assessment/Preliminary_Run_6_input')                             # convert SS3 input data to OpenMSE class Data 

Data@CAL = array(NA,c(1,1,1))                                                    # don't simulate CAL data 

Data@MPrec = Data@Cat[1,ncol(Data@Cat)]                                          # assume that the recent catch observation is the 

current TAC 

OM_RefCase@cpars$Data = Data                                                     # add real data to OM  

 

OM_grid = expand.grid(Mfac = c(3/4,4/3), h = c(0.6,0.9), dep_fac = c(2/3,3/2))   # reference operating model grid 

nOM = nrow(OM_grid)                                                              # 8 total 

 

OM_mod = function(OM, Mfac = 1, h = 0.73, dep_fac = 1, DCV = 0.05){ # OM modifier 

  OM@cpars$M_ageArray = OM@cpars$M_ageArray * Mfac 

  OM@h = h 

  OM@cpars$qs = NULL  # catchability estimated to match depletion 
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  OM@cpars$D = trlnorm(OM@nsim,OM@D[1] * dep_fac, DCV) 

  OM 

} 

 

for(i in 1:nOM){ 

  OM = OM_mod(OM_RefCase, OM_grid$Mfac[i], OM_grid$h[i], OM_grid$dep_fac[i])     # make reference case OM 

  saveRDS(OM,paste0("OMs/OM_",i,".rds"))                                         # save OM  

  saveRDS(runMSE(OM,Hist=T),paste0("OMs/Hist_",i,".rds"))                        # save historical OM dynamics (inc ref pts etc) 

}   

 

 

# --- Develop Reference MP -------------------------------------------------- 

 

Ref_MP = FMSYref75                                                             # for now, just use 75% FMSY (perfect info) as reference 

 

 

# === Technical Milestone 2 ================================================================= 

 

# --- MP archetypes --------------------------------------------------------- 

 

Data = readRDS('OMs/Hist_1.rds')@Data; x = 1                                   # Data for designing MPs 

 

# calculates a TAC from a TAC modifier, maximum TAC changes and maxTAC 

doRec = function(MPrec, mod, maxchng, maxTAC){  

  if(mod > (1+maxchng))mod = 1+maxchng 

  if(mod < (1-maxchng))mod = 1-maxchng 

  Rec = new('Rec') 

  Rec@TAC = min(MPrec*mod, maxTAC) 

  Rec 

} 

 

# Index target MP 

I_targ = function(x, Data, reps = 1, targ = 2, nyrs = 3, maxchng = 0.3, maxTAC = 5E5, Ind = 9){ 

  I = Data@AddInd[x,Ind,]/mean(Data@AddInd[x,Ind,39:43],na.rm=T) 

  recI = mean(I[length(I)-((nyrs-1):0)]) 

  mod = recI/targ 

  doRec(Data@MPrec[x], mod, maxchng, maxTAC) 

} 

 

# Index ratio MP 

I_rat = function(x, Data, reps = 1, targ = 0.5, nyrs = 3, maxchng = 0.3, maxTAC = 5E5, Ind =9){ 

  CpI = mean(Data@Cat[x,39:43]) / mean(Data@AddInd[x,Ind,39:43],na.rm=T) 

  I = Data@AddInd[x,Ind,] 

  recI = mean(I[length(I)-((nyrs-1):0)]) 

  PropTAC = recI * CpI * targ 

  mod = PropTAC / Data@MPrec[x] 

  #if(ncol(Data@Cat)==50)saveRDS(Data,"C:/temp/Data.rds") 

  doRec(Data@MPrec[x], mod, maxchng, maxTAC) 

}   

 

# Index slope MP 

I_slp = function(x, Data, reps=1, targ = 0.025, nyrs = 5, fac = 1, maxchng = 0.3, maxTAC = 5E5, Ind = 9){ 

  I = Data@AddInd[x,Ind,]/mean(Data@AddInd[x,Ind,39:43],na.rm=T) 

  slp = lm(y~x,data=data.frame(x=1:nyrs,y=I[length(I)-((nyrs-1):0)]))$coefficients[[2]] 

  mod = exp((slp-targ)*fac) 

  doRec(Data@MPrec[x], mod, maxchng, maxTAC) 

} 

 

class(I_targ) = class(I_rat) = class(I_slp) = "MP" 

 

 

# === Technical Milestone 3 ================================================================ 

 

# --- MP derivatives -------------------------------------------------------- 

 

It_10 = It_30 = It_M30 = I_targ 

Ir_10 = Ir_30 = Ir_M30 = I_rat 
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Is_10 = Is_30 = Is_M30 = I_slp 

 

formals(It_10)$maxchng = formals(Ir_10)$maxchng = formals(Is_10)$maxchng = 0.1 # set max TAC change 

formals(It_M30)$maxTAC = formals(Ir_M30)$maxTAC = formals(Is_M30)$maxTAC = 3E4 # set max TAC 

 

class(It_10) = class(It_30) = class(It_M30) =  

  class(Ir_10) = class(Ir_30) = class(Ir_M30) =  

    class(Is_10) = class(Is_30) = class(Is_M30) = "MP" 

 

allMPs = paste(rep(c("It","Ir","Is"),each=3),c("10","30","M30"),sep="_") 

 

 

# --- Demo MSE -------------------------------------------------------------- 

 

Hist_1 = readRDS('OMs/Hist_1.rds') 

initMSE = Project(Hist_1,c("It_30","Ir_30","Is_30","FMSYref")) 

Pplot(initMSE) 

matplot(t(initMSE@Catch[,4,]),type="l") 

saveRDS(initMSE,"MSEs/initMSE.rds") 

 

 

# --- MP Derivatives -------------------------------------------------------- 

 

derivMSE = Project(Hist_1, allMPs) 

Pplot(derivMSE) 

saveRDS(derivMSE,"MSEs/derivMSE.rds") 

 

 

# --- MP tuning ------------------------------------------------------------- 

 

for(i in 1:nOM) assign(paste0("Hist_",i),readRDS(paste0("OMs/Hist_",i,".rds"))) 

Hist_list = list(Hist_1, Hist_2, Hist_3, Hist_4, Hist_5, Hist_6, Hist_7, Hist_8) 

 

# A function that calculates the squared difference between obtained and target mean PGK  

minfunc = function(MSE_list){  

  PGKm = sapply(MSE_list,function(X){mean(X@SB_SBMSY>1 & X@F_FMSY < 1)}) 

  PGKw =  mean(PGKm) # ! this should really be mean() but this way it matches default slick table 

  cat(paste0("PGKw = ",round(PGKw,6),"\n")) 

  (PGKw - 0.6)^2 

} 

 

setup(cpus=8)     # do 8 MSE calcs in parallel (one per OM) 

sfExport('doRec') # export any functions used by MPs 

 

# Index target MP tuning 

 

It_30_t = tune_MP(Hist_list,"It_30","targ",c(0.8,1.6),minfunc, tol=1E-3, parallel=T) 

It_10_t = tune_MP(Hist_list,"It_10","targ",c(0.8,1.6),minfunc, tol=1E-3, parallel=T) 

It_M30_t = tune_MP(Hist_list,"It_M30","targ",c(0.8,1.6),minfunc, tol=1E-3, parallel=T) 

 

saveRDS(It_30_t,"MPs/It_30_t.rda") 

saveRDS(It_10_t,"MPs/It_10_t.rda") 

saveRDS(It_M30_t,"MPs/It_M30_t.rda") 

 

# Index ratio MP tuning 

 

Ir_30_t = tune_MP(Hist_list,"Ir_30","targ",c(0.5,0.65),minfunc, tol=1E-3, parallel=T) 

Ir_10_t = tune_MP(Hist_list,"Ir_10","targ",c(0.5,0.65),minfunc, tol=1E-3, parallel=T) 

Ir_M30_t = tune_MP(Hist_list,"Ir_M30","targ",c(0.6,0.85),minfunc, tol=1E-3, parallel=T) 

 

saveRDS(Ir_30_t,"MPs/Ir_30_t.rda") 

saveRDS(Ir_10_t,"MPs/Ir_10_t.rda") 

saveRDS(Ir_M30_t,"MPs/Ir_M30_t.rda") 

 

# Index slope MP tuning 

 

Is_30_t = tune_MP(Hist_list,"Is_30","targ",c(0,0.05),minfunc, tol=1E-3, parallel=T) 
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Is_10_t = tune_MP(Hist_list,"Is_10","targ",c(0,0.05),minfunc, tol=1E-3, parallel=T) 

Is_M30_t = tune_MP(Hist_list,"Is_M30","targ",c(0,0.05),minfunc, tol=1E-3, parallel=T) 

 

saveRDS(Is_30_t,"MPs/Is_30_t.rda") 

saveRDS(Is_10_t,"MPs/Is_10_t.rda") 

saveRDS(Is_M30_t,"MPs/Is_M30_t.rda") 

 

 

# --- Run all tuned MPs on all OMs ----------------------------- 

 

allMPs_t = paste0(allMPs,"_t") # MP names 

 

# Load MPs 

for(MP in seq_along(allMPs_t))assign(allMPs_t[MP],readRDS(paste0("MPs/",allMPs_t[MP],".rda"))) 

for(i in 1:nOM) saveRDS(Project(get(paste0("Hist_",i)), allMPs_t),paste0("MSEs/MSE_",i,".rds")) 

 

 

# --- Slick script --------------------------------------------- 

 

# --- ECP script ----------------------------------------------- 

 

 

# ==== END OF CODE ==================================================================== 

 


